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ABSTRACT

In this work is shown that when the background space-time is type D solution
of the Einstein vacuum equations with or without cosmological constant, a
symmetry operator can be found for the Maxwell equations, as a consequence
of that each component of the electromagnetic spinor satisfies a decoupled
equation and that all the vacuum type D metrics admit a two index Killing
spinor. Besides, the Maxwell equations are solved when the background
space-time is the Carter A metric.
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Chapter 1

Introduction

When a set of differential equations that describe a physical system can be
solved by the method of separation of variables, the symmetries appeared like
operators [1]; this operators are such that produce a mapping into the solu-
tion space itself. For instances the symmetry operators are operators that
commute with the differential operator that is present in the system of dif-
ferential equations. These operator had been obtained for the equations that
describe fields massless spin 3,1 and 3[2-5], and the Dirac equation too [6-7].
In this report show that the symmetry operator introduced in the Ref.[3],
without proof for the Maxwell equations is a solution typeD of the Einstein
equations in vacuum with or without cosmological constant, can be obtain
trough the followings properties: a)each component of the electromagnetic
spinor satisfy a differential equation decoupled of second order and b)that
all the solutions type Dwith or without cosmological constant have a Killing
sprnor with two index.

In the chapter 2 is given the abstract of the spinorial formalism and
the Newman-Penrose notation, and the other conventions that will be use
in all this report. In the chapter 3 is studied the condition under the dif-
ferential operator satisfy an equation decoupled for each component of the
electromagnetic spinor, is founded that operator in a background space-time
of typeD.Besides is written the decoupled equations in a covariant way and
the symmetry operator obtained for the Maxwell equations. Following the
Ref.[8] and in the background space-time Carter A metric, in the chapter 4 is
shown that for the symmetry operator is possible obtain a complete solution
of the Maxwell equations from the solution of one decoupled equation with
components with weight spin maxima for the electromagnetic spinor.



Chapter 2

Spinorial Formalism

2.1 Spinors

The spinors are elements of a vectorial space complex of dimension two with
an inner antisymmetry given by

{¢a€} = EABwACB7 (21>

where 1”4 and (P represent the components of the 1-spinors ¢ and (
respectively, the index A and B take the values 0 and 1, while that the
matrix €45 has the property defined by e45 = €. The rule of rise and low

the index is
Vg = Preapandy” = Ypet?. (2.2)

Under a spin transformation by the matrix (L4”) is element of the group
SL(2,C), with the respective transformation rules.The spinors with more
indexes have a similar spin transformation given by

Vg p=La"Ls" . Lp“Vpp . (2.3)
The relation among tensorial and spinorial components is determinate by
TAABBWCOH.:U&AAUBBBW"ch'Tﬁém (2 4)

By notation the Greek letters of the tensorial index have two spinorial indexes
one with dot and other without dot, and the mixed objet 0,44 the Greek
letter take four values and the 0,4 matrix is a Hermitic matrix (2  2)
connected with the metric tensor with signature —2.
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For the case of a tensorial field antisymmetric with spinorial components,

here the tensor is F),, = —F,, then the spinorial components are represented
byl igp such that Fy ipp = —Fgpa, then can be written
Fiipp = €aBYip + ©ABE ip: (2.5)

where ¢ ;5 = ¢( Ap) 1s symetrric, is the same for the spinor without dots, for
instance if F},, is a tensor antisymmetry then is written by

Fuipp = PABCip + €ABY i (2.6)

The electromagnetic field with six components is reduced to three complex

components in a base given and are denoted for ¢y = @ 4p0*0?, 1 = papo?-

B and @y = papt?lP.
In analogy is possible built the respective spinor for the Riemann curva-

ture tensor, the spinorial components of this tensor is given by [9]

Ry ippocpp = Xapep€ipt+PapepeipcoptPipopeaseep+Xipepeasecn,
(2.7)
with

Xapcep = ZLRAEBCFDEF = Wapcp + Meacesp + €apepc), @ upep = ~RYE Lo op(2.8)

4
Where ¥ 4pcp = ¥(apep) represent the spinorial components of the Weyl
tensor, ®4pep = Papycp) that represent the spinorial components of the

Ricci tensor without trace and A = % where R is the scalar curvature.

The classification of the Weyl spinor is given in six cases to know:

Type I or {1111}.This the case algebraic general, four principal directions
null.

Type Il or {211}:This case algebraic special where two principal directions
are merged.

Type D or {22}.This case two principal directions are merged but both
different.

Type III or {31}. Three principal directions are merged.

Type N or {4}. The four principal directions null are merged.

Type O or conformal flat space, has not principal directions null.

This clasification also is known like Petrov Classification.



2.2 Covariant differentiation

In general relativity with the properties of the tensors and spinors is necessary
to give the definition of covariant differentiation. The symbol V ,or their
respect operator differential V ,,; that will be used in this report, and is
defined by

VaiKp=0,,Ks —T , Ke, (2.9)
where I‘g 44 are called spin coefficients . This differential has the following
properties

a)Linear

V(S +T)=V,ST"+S5V,T.
b)Leibnitz Rule

VS T) =V, (S )T 4+ SV, (T).
c) Partial over scalars

Vup=0,0=0¢,.
d) Real

(V,57) = V,u(S...). .
e)V,eap =0, and VMO'EB =0.
Using this property obtained that the spin coefficients are such that

FABCD = FBACD (2- 10)

2.3 Bianchi and Ricci identities

The Riemann curvature tensor R, s is given by the commutative derivatives
over vector or tensors, then is possible obtain a connection with the spinors
that represent to R,,.3 will be appeared so that commutator applied to the
spinors.The Ricci identity without torsion in spinorial form is

N KPP =R, 0 KP* + Ryppe K. (2.11)

In the spinorial formalism this equation is the same that is given at [9]

OuapK® = Xuppe K¥ and0 s K€ = ® 550 KF, (2.12)

9



where

DABEVX(AVB)XaandDABEVX(AVB)X' (2'13>

Is known the relation between the operator of covariant derivative and the

curvature, called Bianchi identity and their tensorial representation is given
by
ViaRsy50 = 0. (2.14)

The spinorial representation given also in [9)]
Vi Xapep = Ve ®opip- (2.15)

and their complex conjugate.

2.4 Newmann-Penrose Formalism

The Newmann-Penrose formalism for any tensor component are determinate
with respect to the tetrada null

D =1"9,,A =n"d,,6 = m"0d,,0 =m"d,, (2.16)

where D and A are reals, while that § and ¢ are conjugate complex and
satisfy the following properties

Given the tretada null the spin coefficients can be determinate of the following
relations

— v __ i v
k= mMl, 1" = —1"m,,1",
Y7 v __ i v

o=m"l,,m" = —"m,,m",
p =mtl,,m" = —l"m,,m",

10



T =m"l,,n" = =1'm,,n",
_ 1 mpoTY Hyg Y
€= 5(” ppl” T MU, ),
_ 1 " v [ v
b= §(n um” +mPm,.,m"),
_ 1 Bl Y P —V
a= §(n p + mbmy,, m”),

1
7= §(nulu;vny + mfmyn”),

T =ntm,, 0" = —m'n,, 0",
= ntm,,m" = —m'n,,m",
A = nfm,,m" = —m'n,,m",
v =n"my,n" = —mh'n,,n" (2.18)

The commutators among the directional derivative is given with respect
to the null tetrada equation (2.17)

AD —DA=(y+7) D+ (c+8)A - (T+m)d— (1 +7)d,

11



6D —D§ = (a@+ B3 —7)D+ kA — (p) + —£)J — 06,
SA —AS=—TD+ (t—a—B)A+ (up—7+75)5 4+ A,

36 —65= [ —p)D+(p—p)A+ (a—pB)5+ (B —a)d, (2.19)

In the Newmann-Penrose formalism, the ten independient components of
Weyl tensor are given by five complex scalars defined by

Uy = Clupelt'm”1Pm?,
_ Ho)V 1Py O

Uy = Cpel'n”1Pm?,

Uy = Clppolt'm"mPn?,

Vs = Cupolt'n"m’n?,

Uy = Cpppontm’nm?, (2.20)

Also can be written the traceless Ricci tensor given by the scalar

1 — 1 1—
Do = —§R11; ®01 = P19 = _§R13 = _§R14;

1 —
¢y = —Z(Rm + R34); P12 = @9 = — - Roz = — 5 Ray;

1
A = —R = —2<R12 — R34); (221)



Ricci Identities

DS — 6k = (p* +07) + p(e + &) — Fr — K(3a + f — 7) + Do,

Do —6k=0(p+p+3c—5-) —k(r —T+a+30)+ ¥,

Dr—Ak=p(t+7)+0o(T+m)+7(e —8) — k(3y+7) + V1 + P01,
Da — e = a(p+E — 2¢) + 6 — fe — kA — Ry + m(e + p) + P10,
DB —de=0c(a+m)+0B(p—2)—k(p+~) —el@—7)+ ¥y,
Dy—Ae=a(r+7)+BT+7n)—v(E+8E) —e(y+7) +7m — vk + Uy + &1y — A,
D\ —ér = (pA +ap) + (1 +a — ) — vk — A(3e — B) + Dy,
Dpu—om=(pp+oX)+n(T—a+p) —ule+2) —ve + Uy + 24,
v—AT=p(r+T)+AXT+7)+7(y—7) —v(3e +E) + V3 + Py,
AN—6v=-Nu+ma+3y—7)+vBa+B+r—7)— Uy,
d0p =00 = p(@+ ) —o(3a = B) +7(p —p) + w(p — 1) — U1 + By,
ba =00 = (up— o)+ aa+ B — 228 +~(p—p) +e(p— 1) — Vo + Py + A,
ON = op=v(p+p) +m(u—7)+ pla+B) + M@ —30) — Uy + &y,
v —Ap= (2 + 2N +p(y —7) —or +v(r — 38 — @) + Py,
0y = AB =1 —a =)+ p1 —ov —ev) = By =7 — p) + @A + Dy,
6T — Ao = (no + Ap) +7(1 + B —@) — o (37 — 7) — kU + Py,
Ap—01=—(pfi+0N) +7(B—a—7)+p(y —7) + vk — Uy — 2A,

Aa—Fy=vlp+e)~Ar+8) +a(T—m) +4(F—-7) — Vs (222)
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Bianchi Identities in vacuum

DUy — 0y = —3kWy + 2( + 2p)¥; + (7 — 4a) Ty,

DUy — 6V = —2kU3 + 3pWs + 2(T — a)¥; — AW,

DUy — §Uy = —kWUy — 2(c — p)W3 + 370y — 200,

DV, — 6U3 = —(4de — p)Wy + 2(27 + a) ¥y — 3\,

A\Po - 5\1[1 = (4’)/ — M)\DO — 2(27’ + ﬁ)\:[fl + 30'1112,

A\Ijl - 5\112 = l/\Ifo + 2(’}/ - M)\Ill - T\IJQ -+ 20'\1’3,

A\IIQ - (5\113 = 2V\I’1 - 3/L\I/2 - 2(7’ - 6)\1’3 + 0'\114,

2.5 Killing Spinors

The killing spinor with two indexes [10], is a spinorial field L 45 is such that

satisfy the equation

Killing spinor L4p then satisfy for any vectorial complex field if this exist
K , 5 such that

14



1
VARLBC: g(éABKCR—}-&ACKBR). (2.25)

When the Weyl spinor is not zero and the space-time type D has the solution
Lag = —2¢ 'oatp), (2.26)

Where o# and (P are the principal spinors of ¥ zcp and ¢ is a complex
function that satisfy

oBVACOB = voBaBClngb,
BV ot = 1atP0pplng, (2.27)

Under the conditions that the unique component different of zero of Lapg
thus

k=0c=A=v=0,

p = Ding, T = dlng, 7 = —dlng, p = —Alng. (2.28)

15



Chapter 3

Symmetry Operator for the
Maxwell equations

The Maxwell equation without sources are given by [9]
VA = 0. (3.1)
In Newmann-Penrose notation can be written

(0 — 2ac+ 7)o — (D — 2p)p1 — Kpa = 0,
(A =27+ p)po — (6 = 27)p1 — oipy = 0,
(6 — 2m)p1 — (D 4 2 — p)ps — Mg = 0,

(A +2u)p1 — (0 +28 —7)p2 — vipo =0, (3.2)

and the electromagnetic spinor given in terms of a vectorial potential ® , ;
such that

pap =V iP5 (3.3)

Our interest is to find a symmetry operator for the Maxwell equations given
in [3], that is consequence of the existence of decoupled equations for each
component of p4p, then is necessary to determine a differential operator of
first order in this form . _

SBM — g AB M f, (3.4)

16



Where f and g are scalar functions and H*Z is a spinor of two indexes, that

when is applied to (3.1) is obtained a decoupled equation for each component
of the Maxwell field , then defined

Ipar = Vi eas,

with pap satisfy the Maxwell equations without sources, Jz,,; then the rela-
tion is such that

SBMJBM = Scalarequation foryg, p10r@s. (3.5)
Using the Newmann-Penrose notation this expression can be written like this

SBMJBM = fg{H"[(0 =@ = B+T +dlnf) o
—(D —e+E&—p+ Dinf)dyi + 0Jyy — kJyi]
HY[(6+ B —a+7+71+8nf)],
—(D+e+E—p+p+Dinf)Jyi
HA =Y+ —p+a+p+ Alnf)Jy
—(6—a+B—7F—m+dinf)Jy]
+H"[(A+v—7F+71a+ Alnf)J,
—(0+a+B—=F+0Inf)Jyi] — vy + Myil}, (3.6)

where

Joo = (6 — 200+ ) o — (D — 2p) 1 — Kepa),
Joi = [(A =27+ p)po — (0 — 27)p1 — o2l
Jig = [(6 + 2m)1 — (D + 2e — p)p2 — Ay,
Jii = [(A+2u)p1 — (0 + 26 — 7)pa — vl (3.7)

In the case that the component H% # 0, then

SBMJ = fgHO{[(6 —a — B+ 7 + 0lnf) (@ — 200+ 7) — oA
—(D—e+E&—p+ Dinf)(A =2y + u) + kv)]po
+[(D—e+E—p+ Dinf)(0 —27) — k(A + 2u)

—(§—a—B+7T+68Inf)(D —2p)+ a6+ 2m)]e1
+(D—e+E—p+Dinf)o+ k(0428 —171)
—(0—a—B+T+dlnf)k —o(D+ 2 —p)le2}.  (3.8)

17



Using the commutator of D and §, and the Ricci identities is obtained the
differential operators are actuation over ¢, and ¢ and can be written as
{(A =3y =7+ Rm)(=20) + (5 — 30+ 5 —7)(20)
+2pdinf —2rDInf + (2p + Dinf)o — (27 + dinf)D — 4V, }
{(2p+ Dinf)o — (21 + 0lnf)k + Yy}, (3.9)
Under the condition that should be zero therefore
/f:(I:\I/():\Iﬁ:O,
27 = —dInf,2p = —Dinf. (3.10)
Fu rthermore when 45 satisfy the Maxwell equations then the operator
(3.4) give us a decoupled equation for ggunder the condition that H is the
unique component no equal to zero of the spinor H4® and when satisfy the
Eq. (3.10) the decoupled equation is
S J gy = FH™[(5 = 8 -
~(D—-ec+E-p—

+7—27)(0 — 2a + )

2p)(A — 2y + p)]ipo = 0.
(3.11)

Now if the unique component that is not equal to zero is H'! |, thus

S oy = —FgH M {[(A+y =7+ 7+ Alnf)A
—(0+a+B—7+dnf)v
410 — 204+ 7) — AMA — 2y + )]0
—[(A+y—F+1m+ Alnf)(d +2n)
+(0+a+ B —T+dnf)(A+2u)
—v(D —=2p) + Mé — 27)]p1
HA+y=F+0a+ Alnf)(D+ 2 —p)
—(0+a+B-—T+nf)6+28—7)

—VK + Ao pa }. (3.12)

Using the commutator of A and dwith the Ricci identities is obtained the
differential operators over ¢y and ¢; that can be written of this form

{(A+3c+2—-7)(2v) — (0 + 38 —a+7)(2\) — 2udinf
+2rAlnf + (Alnf — 2p)6 — (dlnf — 2m)A — 403}
{(2u — Alnf)\ — (2m — dInf)v + Wy}, (3.13)

18



The operator applied to the ¢y and ¢; in (3.12)conditions are zero if
A=v=V3 =V, =0,
21 = Alnf,2r = Sinf. (3.14)
When ¢ 45 satisfy the Maxwell equations, is obtained the decoupled equation
for o with the condition that H'' is no equal to zero of the spinor H4? and
that are restricted to
S Ty = —FgHM (A +~ =7 +2u) (D + 22 — p)
—(+a+B—T+2m)(0+28—7))ps=0. (3.15)

Last one condition where H'° # 0, thus

SPM Jpir = FgHY[(6 + B —a+ 7+ 7+ 8lnf)(6 + 27)
—(D+e4+z—=p+p+Dinf)(A+2u)
~(A =y =F+1—p+Alnf)(D - 2p)
+(0—a+pf—T—7m+0dnf)(0 —27)|p
—[0+B8—a+7+7+dnf)(D + 2 — p)
—(D4+e+z—=p+p+Dinf)(0+26—71)
+A—-—y—F+a—p+Alnf)k
—(0 —a+ B =T —7+dlnf)y]e,
+H-O0+p—a+T+ 71+ 0Inf)A
+(D+e+e—p+p+Dinfu
A —y—=F+a—p+Alnf)(d —2a+T)
—(0—a+B—T—7+0Inf) (A —2y+ p)]eo}. (3.16)
Using the commutator od D and 6, A and ¢ and the Ricci identities is
obtained a differential operator over ¢y and 5 it can be written as
{2(D+¢e+%—7+ Dinf*)v+ (Alnf)w
—2(6+ f—a+7+ dlnfY)\ — (Slnf)u
+(SInf —27)(A + 27y) + (Alnf —2u) (6 — 2a)},

and

{200 —a+ B =7 + dInft?)o — (Dinf)r
—2(A =y = F + T+ Alnf?) k4 (SInf)p
+(inf +27)(D — 2¢) + (Dinf +2p)(d + 20) }, (3.17)

19



That operators over gy and @y are equal to zero if

k=0c=A=v=0,
2p = —Dinf, 21 = =dinf
21 = Alnf,2r = élnf. (3.18)

Furthermore when ¢ 4 satisfy the Maxwell equations then the operator (3.4)
give us the decoupled equations for ¢; under the condition that H'¥ is the
component no equal to zero of the spinor H4Z then by (3.18) is given as

SEM g = fgHY[(6+ B —a+7 —7)(3 + 2n)
—(D+e+z—p—p)(A+2u)
(A=y=7+nu+p)(D—-2p) —

+(0 —a+B—-T+m)(d —27)]p1 = 0. (3.19)

For space-time type D is observed that exist a differential operator, that when
is applied to the Maxwell equations without sources is obtained a decoupled
equation for each component of the electromagnetis spinor given by

SEM = g AP M2, (3.20)

where ¢ is such that satisfy the eq.(2.25)and the decoupled equation for the
electromagnetic spinor in covariant form is given by

¢*VuM 7V ;e = 0. (3.21)
Thus the eqgs. (3.11),(3.15) and (3.19) are write in this form

(0 —F—a—27+7)(0 — 20+ )
—(D—e+8=2p—7)(A =27+ p)]po =0,

[(0+B—a—71+7)(0+2n)
—(D+e+e—p—p)(A+2u)

+0+f—a+m=T)(0-27) = (A =y =T+ p+7aD —2p)p1 =0,

(A4+~y—F+2u+0)(D+2—p)— 0 +a+B+21—7)(6 +28 — 1) = (8.22)

20



The equations for ¢y and ¢y were obtained by Teukolsky [12]and shown that
when the background space-time is the Kerr metric, those equations have
solution by variables separables. Thus the adjunt operator of (3.21)is given
by '

V¢ Vs = 0. (3.23)
If is defined , ,

XPo =02V Ry s (3.24)

Then is written the vectorial field X RC is the vectorial potential for the
elctromagnetic field self-dual. Thus is possible writte a spinorial field that is
solution of the Maxwell equations, let to define

Wis = VP 32072V 6" xps, (3.25)

Where
XaB = LacLppe™”. (3.26)
Thus if ¢ 45 is a solution to the Maxwell equations in a spce-time background

type D solution to the Einstein equations in vacuum, with the possibility of
the cosmological constant no equal to zero then

Gps = VP02V 6" Lpp Lspp"”, (3.27)

Is another solution for the Maxwell equations.The complex conjugate of this
1s

—2_ & —2 5E
GRS - VB(R(b Vss)¢ LBDLSEQDDE, (328)
Thus the complete operator is written as
o a4 o . .
Wap =V ud Vo5 LypLgpV P>V Ly Lore™, (3.29)

Is another solution for the Maxwell equations.Now using the Newmann-
Penrose notation can be written as

Wo=16[(D+z—ec—p)(D+2+p)
o+ B+a—T1)(6+28+7)(¢ %),
Wi =8[(D+z+e—p+p(6+23+7)
+@+pB—a—-7—m)(D+2E+Dp)
6B+ B+a—T)0+28+1)(¢ %),
Wo=16[0+8+a—7)(0+26+7)
60+ Bra—T1)0+28+1)](6 2p). (3.30)
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Chapter 4

Solution for the Maxwell
equations in the Carter A
metric

4.1 The Carter A metric

The Carter A metric [14]is solution to the Einstein equations in vacuum with
cosmological constant and is written as

ds* = {

2+q2

P
P

2
(4.1)

where {p, ¢, u, v} is a real system of coordinates and the functions P = P(q),
Q = Q(q) are given by

P =b+2np — eop® — (Mo/3)p%,
Q=b-2mq+eoq’ — (No/3)q",

The parameters m,n and Ay are representated by the mass, NUT param-
eter, and the cosmological constant each one, ¢y and b are two additional
parameters. The Kerr metric is obtained when b = a®>,n = 0 and gy = 1.In
Boyer-Lindquist coordinates ¢ = r,p = —acosf,u = —t + a¢p and v = ¢/a,
where a represent the angular momentum.

The tangent vectors

(du— p*dv)? (du+q2dv)2—p

P+ ¢

1
D =90,+ é(&, — ¢%0,),
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A= 1/2¢5Q(_8q + é(av - q2au))7

6= (P/2)"2¢(d, + %((% +p*04)),

1

5= (P/2)"6(0, - =

(0 + 1°30)), (4.2)
with
1
q+ip
The spin coefficients are given by

RZVI)\:V:O,
e=0,8=dlnP"*,

_ pl/apl/2 1/41/2
o= —5171&,7 = —Aln&7
q—+1p q-+1wp
p = Ding, T = §lng, 7 = —dlng, u = —Alng. (4.3)

4.2  Solution of the equations for
po and ¢

The transformation of the differential operator with dependence over u and
v are changing by

D—Dy A— —1/206QDy,
5 — 1/V20Lh, 5 — 1/V20L,, (4.4)
Where the solutions of the eq. (3.22)have dependence in the variables u and

v given by [8] with k and [ are separation constants, that defined the operator
by

' Q
D, =09, + é(l —k¢*) + né,

T ey 2
Q(l kq)+nQ,

1 P
L, =P8, + 5(1 + kp?) + n/27—3),

Dl =0, —

ci= P, - %(z + k) + n/Qg), (4.5)
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Using the equations (4.3) and (4.4) the decoupled equation for ¢, take the
form

[OD, D} + 2ikq + L1 L1 + 2kpleo = 0, (4.6)

thus '
wo = MR 1(g)S41(p), (4.7)

The functions R;1(q) and S;;(p) satisfy the differential equations

(QDyD} + 2ikq|QR11(q) = A1QR1(q),

[L8L1 + 2kp]Sia(p) = —A1S1a(p), (4.8)
where A; is a separation constant.Of the same way for @5 thus
[QD{Dy — 2ikq + LoL] — 2kp](¢~ g2 = 0, (4.9)

thus .
s = ¢ F IR (¢)S_1(p), (4.10)

The functions R_1(q) and S_;(p) satisfy the differential equations

[OD{Dy — 2ikq]R_1(q) = AsR_1(q),

(Lol — 2kp)S_1(p) = —A3S_1(p), (4.11)

where A, is a separation constant.
The values of the constants should be equal and the functions QR and
R_; then satisfy the Teukolsky-Starobinsky identities [8]

DyDyR_1(q) = BR1(q),
QD|D}QR;1(g) = BR_1(q), (4.12)

The constant B is known how Starobinsky constant and is real, of the same
way the functions Sy (p) take the form

LoL1S11(p) = BS_1(p),
LILIS 1 (p) = BS11(p). (4.13)



From (4.12) and (4.13)the components of the electromagnetic field with max-
imal spin weight and the normalization right are given as

wo = "M HIR 1 (q)S41(p),

P2 = 1/2¢2€i(ku+lv)R—1(Q)S—1(p)- (4.14)

The relationship among the constants is
B? = A% 4 4kl. (4.15)

When was found the decoupled equation for ¢, is not separable over p
and ¢.Thus using (4.14) and with the use of the symmetry operator obtained
in the previus chapter we can find the expression for ;.

4.3 The Full Solution

Using the equations (4.3) and (3.30) is obtained

Wy = 8DODO£T£T<¢ 2902>
Wi = 8/V26%((qDo — 1)L1) +i(pLy — VP)DOILLL (6 p2),
Wy = 4¢°LoLi LELY (672 pa).  (4.16)

Now using the equations (4.12) and (4.14) we obtained

Wi = 4B%¢% V2 "1 (9,1 (q)£1841(p) + i.f-1(p) DoR-1(a)),

Wy = 4B ™R (q) S (D),
o R_
Wy = 4B%¢? /2¢" IR 1 (¢)S 1 (p),  (4.17)

where

9+1(q) = 1/B(¢DoR_1(q) — R-1(q)),
f-1(p) = 1/B(pL1S41(p) — VPS11(p)). (4.18)

From (4.14) and (4.17)is obtained the expression for ¢; with ¢y and ¢ ,
thus taking the right normalization can be written

o1 = 1/V26°" ") g1 (q) L1841 (p) + if-1(p)DoR-1(q)]- (4.19)
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From (4.17)is observed that if ¢ 45 is a separable solution for the Maxwell
equations without sources thus:

s e e -
1/4V5 46 V® 3¢ LypLspGPE = B2pap, (4.20)

where o . .
GDE — VF(D¢_2VE)C¢2LFHLC]QOHI- (421>
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Chapter 5

Conclusions

According the result obtained in this report the symmetry operator (3.27) for
the Maxwell equations there is a relationship with the Killing spinor of two
index for all solutions type D of the Einstein equations in vacuum with or
without cosmological constant, that can be resolved of (3.26). The equation
for o and 9, but no for ¢, with ¢! = L1y = Lspt*¢” expressed in term of
an unique component differential of the Weyl spinor ¥y, obtained previously
by Wald [13],whatsoever no show the importance of the Killing spinor. The
equation (3.26) wa given by Torres del Castillo no only for electromagnetic
field, furthermore for the case massless field spin % with perturbation and
gravitational space-time type D [15,16].The results of the chapter 3 can not
apply in the case of perturbations in fields of spin % and gravitational, due
to the cases that no all the field components satisfy a decoupled equation
. The result of the chapter 4 the symmetry operator given us the complete
solution for the Maxwell equations.
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