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ABSTRACT

In this work is shown that when the background space-time is type D solution
of the Einstein vacuum equations with or without cosmological constant, a
symmetry operator can be found for the Maxwell equations, as a consequence
of that each component of the electromagnetic spinor satisfies a decoupled
equation and that all the vacuum type D metrics admit a two index Killing
spinor. Besides, the Maxwell equations are solved when the background
space-time is the Carter A metric.
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Chapter 1

Introduction

When a set of differential equations that describe a physical system can be
solved by the method of separation of variables, the symmetries appeared like
operators [1]; this operators are such that produce a mapping into the solu-
tion space itself. For instances the symmetry operators are operators that
commute with the differential operator that is present in the system of dif-
ferential equations. These operator had been obtained for the equations that
describe fields massless spin 1

2
, 1 and 3

2
[2-5], and the Dirac equation too [6-7].

In this report show that the symmetry operator introduced in the Ref.[3],
without proof for the Maxwell equations is a solution typeD of the Einstein
equations in vacuum with or without cosmological constant, can be obtain
trough the followings properties: a)each component of the electromagnetic
spinor satisfy a differential equation decoupled of second order and b)that
all the solutions typeDwith or without cosmological constant have a Killing
spinor with two index.

In the chapter 2 is given the abstract of the spinorial formalism and
the Newman-Penrose notation, and the other conventions that will be use
in all this report. In the chapter 3 is studied the condition under the dif-
ferential operator satisfy an equation decoupled for each component of the
electromagnetic spinor, is founded that operator in a background space-time
of typeD.Besides is written the decoupled equations in a covariant way and
the symmetry operator obtained for the Maxwell equations. Following the
Ref.[8] and in the background space-time Carter A metric, in the chapter 4 is
shown that for the symmetry operator is possible obtain a complete solution
of the Maxwell equations from the solution of one decoupled equation with
components with weight spin maxima for the electromagnetic spinor.

6



Chapter 2

Spinorial Formalism

2.1 Spinors

The spinors are elements of a vectorial space complex of dimension two with
an inner antisymmetry given by

{ψ, ζ} ≡ εABψAζB, (2.1)

where ψA and ζB represent the components of the 1-spinors ψ and ζ
respectively, the index A and B take the values 0 and 1, while that the
matrix εAB has the property defined by εAB = εAB. The rule of rise and low
the index is

ψB = ψAεABandψA = ψBεAB. (2.2)

Under a spin transformation by the matrix (LA
B) is element of the group

SL(2, C), with the respective transformation rules.The spinors with more
indexes have a similar spin transformation given by

Ψ
′
AB...D = LA

ELB
F ...LD

GΨEF...G. (2.3)

The relation among tensorial and spinorial components is determinate by

TAȦBḂ...CĊ...=σα
AȦσβ

BḂ ...σγ
CĊT αβ...

γ... , (2.4)

By notation the Greek letters of the tensorial index have two spinorial indexes
one with dot and other without dot, and the mixed objet σα

AȦ the Greek
letter take four values and the σα

AȦ matrix is a Hermitic matrix (2 ∗ 2)
connected with the metric tensor with signature −2.
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For the case of a tensorial field antisymmetric with spinorial components,
here the tensor is Fµν = −Fνµ then the spinorial components are represented
byFAȦBḂ such that FAȦBḂ = −FBḂAȦ then can be written

FAȦBḂ = εABψȦḂ + ϕABεȦḂ, (2.5)

where ψȦḂ = ψ(ȦḂ) is symetrric, is the same for the spinor without dots, for
instance if Fµν is a tensor antisymmetry then is written by

FAȦBḂ = ϕABεȦḂ + εABϕȦḂ. (2.6)

The electromagnetic field with six components is reduced to three complex
components in a base given and are denoted for ϕ0 ≡ ϕABoAoB, ϕ1 ≡ ϕABoA-
ιB and ϕ2 ≡ ϕABιAιB.

In analogy is possible built the respective spinor for the Riemann curva-
ture tensor, the spinorial components of this tensor is given by [9]

RAȦBḂCĊDḊ = XABCDεȦḂ+ΦABĊḊεȦḂεCD+ΦȦḂCDεABεĊḊ+XȦḂĊḊεABεCD,
(2.7)

with

XABCD =
1

4
RAĖBCḞD

ĖḞ = ΨABCD + Λ(εACεBD + εADεBC), ΦABĊḊ =
1

4
RĖF

AĖBFĊḊ
,(2.8)

Where ΨABCD = Ψ(ABCD) represent the spinorial components of the Weyl
tensor, ΦABĊḊ = Φ(AB)(ĊḊ) that represent the spinorial components of the

Ricci tensor without trace and Λ = R
24

where R is the scalar curvature.
The classification of the Weyl spinor is given in six cases to know:
Type I or {1111}.This the case algebraic general, four principal directions

null.
Type II or {211}:This case algebraic special where two principal directions

are merged.
Type D or {22}.This case two principal directions are merged but both

different.
Type III or {31}. Three principal directions are merged.
Type N or {4}. The four principal directions null are merged.
Type O or conformal flat space, has not principal directions null.
This clasification also is known like Petrov Classification.
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2.2 Covariant differentiation

In general relativity with the properties of the tensors and spinors is necessary
to give the definition of covariant differentiation. The symbol ∇µ,or their
respect operator differential ∇AȦ that will be used in this report, and is
defined by

∇AȦKB = ∂AȦKB − ΓC
BAȦ

KC , (2.9)

where ΓC
BAȦ

are called spin coefficients . This differential has the following
properties

a)Linear

∇µ(S... + T ...) = ∇µS
...T ... + S...∇µT

....
b)Leibnitz Rule

∇(S
...T ...) = ∇µ(S...)T ... + S...∇µ(T ...).

c) Partial over scalars

∇µφ = ∂µφ = φ,µ.
d) Real

(∇µS
...) = ∇µ(S...).

e)∇µεAB = 0, and ∇µσ
BḂ
µ = 0.

Using this property obtained that the spin coefficients are such that

ΓABCḊ = ΓBACḊ (2.10)

2.3 Bianchi and Ricci identities

The Riemann curvature tensor Rµναβ is given by the commutative derivatives
over vector or tensors, then is possible obtain a connection with the spinors
that represent to Rµναβ will be appeared so that commutator applied to the
spinors.The Ricci identity without torsion in spinorial form is

∆µνK
βα = RµνρβKρα + RµνραKβρ. (2.11)

In the spinorial formalism this equation is the same that is given at [9]

¤ABKC = XABECKE, and¤ȦḂKC = ΦȦḂECKE, (2.12)
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where

¤AB ≡ ∇Ẋ(A∇B)Ẋ , and¤ȦḂ ≡ ∇X(Ȧ∇Ḃ)X . (2.13)

Is known the relation between the operator of covariant derivative and the
curvature, called Bianchi identity and their tensorial representation is given
by

∇[αRβγ]δρ = 0. (2.14)

The spinorial representation given also in [9]

∇Ḃ
AXABCD = ∇B

ȦΦCDȦḂ. (2.15)

and their complex conjugate.

2.4 Newmann-Penrose Formalism

The Newmann-Penrose formalism for any tensor component are determinate
with respect to the tetrada null

D ≡ lµ∂µ, ∆ ≡ nµ∂µ, δ ≡ mµ∂µ, δ ≡ mµ∂µ, (2.16)

where D and ∆ are reals, while that δ and δ are conjugate complex and
satisfy the following properties

l · n = −m ·m = 1, l ·m = l ·m = n ·m = n ·m = 0. (2.17)

Given the tretada null the spin coefficients can be determinate of the following
relations

κ = mµlµ;νl
ν = −lµmµ;νl

ν ,

σ = mµlµ;νm
ν = −lµmµ;νm

ν ,

ρ = mµlµ;νm
ν = −lµmµ;νm

ν ,
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τ = mµlµ;νn
ν = −lµmµ;νn

ν ,

ε =
1

2
(nµlµ;νl

ν + mµmµ;νl
ν),

β =
1

2
(nµlµ;νm

ν + mµmµ;νm
ν),

α =
1

2
(nµlµ;νm

ν + mµmµ;νm
ν),

γ =
1

2
(nµlµ;νn

ν + mµmµ;νn
ν),

π = nµmµ;νl
ν = −mµnµ;νl

ν ,

µ = nµmµ;νm
ν = −mµnµ;νm

ν ,

λ = nµmµ;νm
ν = −mµnµ;νm

ν ,

ν = nµmµ;νn
ν = −mµnµ;νn

ν (2.18)

The commutators among the directional derivative is given with respect
to the null tetrada equation (2.17)

∆D −D∆ = (γ + γ)D + (ε + ε)∆− (τ + π)δ − (τ + π)δ,
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δD −Dδ = (α + β − π)D + κ∆− (ρ) + ε− ε)δ − σδ,

δ∆−∆δ = −νD + (τ − α− β)∆ + (µ− γ + γ)δ + λδ,

δδ − δδ = (µ− µ)D + (ρ− ρ)∆ + (α− β)δ + (β − α)δ, (2.19)

In the Newmann-Penrose formalism, the ten independient components of
Weyl tensor are given by five complex scalars defined by

Ψ0 = Cµνρσl
µmνlρmσ,

Ψ1 = Cµνρσl
µnνlρmσ,

Ψ2 = Cµνρσl
µmνmρnσ,

Ψ3 = Cµνρσl
µnνmρnσ,

Ψ4 = Cµνρσn
µmνnρmσ, (2.20)

Also can be written the traceless Ricci tensor given by the scalar

Φ00 = −1

2
R11; Φ01 = Φ10 = −1

2
R13 = −1

2
R14;

Φ11 = −1

4
(R12 + R34); Φ12 = Φ21 = −1

2
R23 = −1

2
R24;

Φ22 = −1

2
R22; Φ02 = Φ20 = −1

2
R33 = −1

2
R44;

Λ =
1

24
R =

1

12
(R12 −R34); (2.21)

12



Ricci Identities

Dδ − δκ = (ρ2 + σσ) + ρ(ε + ε)− κτ − κ(3α + β − π) + Φ00,

Dσ − δκ = σ(ρ + ρ + 3ε− ε−)− κ(τ − π + α + 3β) + Ψ0,

Dτ −∆κ = ρ(τ + π) + σ(τ + π) + τ(ε− ε)− κ(3γ + γ) + Ψ1 + Φ01,

Dα− δε = α(ρ + ε− 2ε) + βσ − βε− κλ− κγ + π(ε + ρ) + Φ10,

Dβ − δε = σ(α + π) + β(ρ− ε)− κ(µ + γ)− ε(α− π) + Ψ1,

Dγ −∆ε = α(τ + π) + β(τ + π)− γ(ε + ε)− ε(γ + γ) + τπ − νκ + Ψ2 + Φ11 − Λ,

Dλ− δπ = (ρλ + σµ) + π(π + α− β)− νκ− λ(3ε− ε) + Φ20,

Dµ− δπ = (ρµ + σλ) + π(π − α + β)− µ(ε + ε)− νκ + Ψ2 + 2Λ,

ν −∆π = µ(π + τ) + λ(π + τ) + π(γ − γ)− ν(3ε + ε) + Ψ3 + Φ21,

∆λ− δν = −λ(µ + µ + 3γ − γ) + ν(3α + β + π − τ)−Ψ4,

δρ− δσ = ρ(α + β)− σ(3α− β) + τ(ρ− ρ) + κ(µ− µ)−Ψ1 + Φ01,

δα− δβ = (µρ− λσ) + αα + ββ − 2αβ + γ(ρ− ρ) + ε(µ− µ)−Ψ2 + Φ11 + Λ,

δλ− δµ = ν(ρ + ρ) + π(µ− µ) + µ(α + β) + λ(α− 3β)−Ψ3 + Φ21,

δν −∆µ = (µ2 + λλ) + µ(γ − γ)− νπ + ν(τ − 3β − α) + Φ22,

δγ −∆β = γ(τ − α− β) + µτ − σν − εν)− β(γ − γ − µ) + αλ + Φ12,

δτ −∆σ = (µσ + λρ) + τ(τ + β − α)− σ(3γ − γ)− κν + Φ02,

∆ρ− δτ = −(ρµ + σλ) + τ(β − α− τ) + ρ(γ − γ) + νκ−Ψ2 − 2Λ,

∆α− δγ = ν(ρ + ε)− λ(τ + β) + α(γ − µ) + γ(β − τ)−Ψ3. (2.22)
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Bianchi Identities in vacuum

DΨ1 − δΨ0 = −3κΨ2 + 2(ε + 2ρ)Ψ1 + (π − 4α)Ψ0,

DΨ2 − δΨ1 = −2κΨ3 + 3ρΨ2 + 2(π − α)Ψ1 − λΨ0,

DΨ3 − δΨ2 = −κΨ4 − 2(ε− ρ)Ψ3 + 3πΨ2 − 2λΨ1,

DΨ4 − δΨ3 = −(4ε− ρ)Ψ4 + 2(2π + α)Ψ3 − 3λΨ2,

∆Ψ0 − δΨ1 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2,

∆Ψ1 − δΨ2 = νΨ0 + 2(γ − µ)Ψ1 − τΨ2 + 2σΨ3,

∆Ψ2 − δΨ3 = 2νΨ1 − 3µΨ2 − 2(τ − β)Ψ3 + σΨ4,

∆Ψ3 − δΨ4 = 3νΨ2 − 2(γ + 2µ)Ψ3 − (τ − 4β)Ψ4. (2.23)

2.5 Killing Spinors

The killing spinor with two indexes [10], is a spinorial field LAB is such that
satisfy the equation

∇Ȧ(BLCḊ) = 0. (2.24)

Killing spinor LAB then satisfy for any vectorial complex field if this exist
KAḂ such that

14



∇AṘLBC =
1

3
(εABKCṘ + εACKBṘ). (2.25)

When the Weyl spinor is not zero and the space-time type D has the solution

LAB = −2φ−1o(AιB), (2.26)

Where oA and ιB are the principal spinors of ΨABCD and φ is a complex
function that satisfy

oB∇AĊoB = oAoB∂BĊ lnφ,

ιB∇AĊιB = ιAιB∂BĊ lnφ, (2.27)

Under the conditions that the unique component different of zero of LAB

thus

κ = σ = λ = ν = 0,

ρ = Dlnφ, τ = δlnφ, π = −δlnφ, µ = −∆lnφ. (2.28)
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Chapter 3

Symmetry Operator for the
Maxwell equations

The Maxwell equation without sources are given by [9]

∇AĊϕAB = 0. (3.1)

In Newmann-Penrose notation can be written

(δ − 2α + π)ϕ0 − (D − 2ρ)ϕ1 − κϕ2 = 0,

(∆− 2γ + µ)ϕ0 − (δ − 2τ)ϕ1 − σϕ2 = 0,

(δ − 2π)ϕ1 − (D + 2ε− ρ)ϕ2 − λϕ0 = 0,

(∆ + 2µ)ϕ1 − (δ + 2β − τ)ϕ2 − νϕ0 = 0, (3.2)

and the electromagnetic spinor given in terms of a vectorial potential ΦAȦ

such that

ϕAB = ∇Ȧ(AΦȦ
B) (3.3)

Our interest is to find a symmetry operator for the Maxwell equations given
in [3], that is consequence of the existence of decoupled equations for each
component of ϕAB, then is necessary to determine a differential operator of
first order in this form

SBṀ = gHAB∇A
Ṁf, (3.4)

16



Where f and g are scalar functions and HAB is a spinor of two indexes, that
when is applied to (3.1) is obtained a decoupled equation for each component
of the Maxwell field , then defined

JBṀ ≡ ∇Ṁ
AϕAB,

with ϕAB satisfy the Maxwell equations without sources, JBṀ then the rela-
tion is such that

SBṀJBṀ = Scalarequationforϕ0, ϕ1orϕ2. (3.5)

Using the Newmann-Penrose notation this expression can be written like this

SBṀJBṀ = fg{H00[(δ − α− β + π + δlnf)J00̇

−(D − ε + ε− ρ + Dlnf)J01̇ + σJ10̇ − κJ11̇]

H10[(δ + β − α + π + τ + δlnf)J10̇

−(D + ε + ε− ρ + ρ + Dlnf)J11̇

+(∆− γ + γ − µ + µ + ρ + ∆lnf)J00̇

−(δ − α + β − τ − π + δlnf)J01̇]

+H11[(∆ + γ − γ + µ + ∆lnf)J10̇

−(δ + α + β − τ + δlnf)J11̇]− νJ00̇ + λJ01̇]}, (3.6)

where

J00̇ = [(δ − 2α + π)ϕ0 − (D − 2ρ)ϕ1 − κϕ2],

J01̇ = [(∆− 2γ + µ)ϕ0 − (δ − 2τ)ϕ1 − σϕ2],

J10̇ = [(δ + 2π)ϕ1 − (D + 2ε− ρ)ϕ2 − λϕ0],

J11̇ = [(∆ + 2µ)ϕ1 − (δ + 2β − τ)ϕ2 − νϕ0]. (3.7)

In the case that the component H00 6= 0, then

SBṀJBṀ = fgH00{[(δ − α− β + π + δlnf)(δ − 2α + π)− σλ

−(D − ε + ε− ρ + Dlnf)(∆− 2γ + µ) + κν)]ϕ0

+[(D − ε + ε− ρ + Dlnf)(δ − 2τ)− κ(∆ + 2µ)

−(δ − α− β + π + δlnf)(D − 2ρ) + σ(δ + 2π)]ϕ1

+[(D − ε + ε− ρ + Dlnf)σ + κ(δ + 2β − τ)

−(δ − α− β + π + δlnf)κ− σ(D + 2ε− ρ)]ϕ2}. (3.8)
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Using the commutator of D and δ, and the Ricci identities is obtained the
differential operators are actuation over ϕ1 and ϕ2 and can be written as

{(∆− 3γ − γ + µ)(−2κ) + (δ − 3α + β − τ)(2σ)

+2ρδlnf − 2τDlnf + (2ρ + Dlnf)δ − (2τ + δlnf)D − 4Ψ1}
{(2ρ + Dlnf)σ − (2τ + δlnf)κ + Ψ0}, (3.9)

Under the condition that should be zero therefore

κ = σ = Ψ0 = Ψ1 = 0,

2τ = −δlnf, 2ρ = −Dlnf. (3.10)

Fu rthermore when ϕAB satisfy the Maxwell equations then the operator
(3.4) give us a decoupled equation for ϕ0under the condition that H00 is the
unique component no equal to zero of the spinor HAB and when satisfy the
Eq. (3.10) the decoupled equation is

SBṀJBṀ = fgH00[(δ − β − α + π − 2τ)(δ − 2α + π)

−(D − ε + ε− ρ− 2ρ)(∆− 2γ + µ)]ϕ0 = 0.

(3.11)

Now if the unique component that is not equal to zero is H11 , thus

SBṀJBṀ = −fgH11{[(∆ + γ − γ + µ + ∆lnf)λ

−(δ + α + β − τ + δlnf)ν

+ν(δ − 2α + π)− λ(∆− 2γ + µ)]ϕ0

−[(∆ + γ − γ + µ + ∆lnf)(δ + 2π)

+(δ + α + β − τ + δlnf)(∆ + 2µ)

−ν(D − 2ρ) + λ(δ − 2τ)]ϕ1

+[(∆ + γ − γ + µ + ∆lnf)(D + 2ε− ρ)

−(δ + α + β − τ + δlnf)(δ + 2β − τ)

−νκ + λσ]ϕ2}. (3.12)

Using the commutator of ∆ and δwith the Ricci identities is obtained the
differential operators over ϕ0 and ϕ1 that can be written of this form

{(∆ + 3ε + ε− ρ)(2ν)− (δ + 3β − α + π)(2λ)− 2µδlnf

+2π∆lnf + (∆lnf − 2µ)δ − (δlnf − 2π)∆− 4Ψ3}
{(2µ−∆lnf)λ− (2π − δlnf)ν + Ψ4}, (3.13)
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The operator applied to the ϕ0 and ϕ1 in (3.12)conditions are zero if

λ = ν = Ψ3 = Ψ4 = 0,

2µ = ∆lnf, 2π = δlnf. (3.14)

When ϕAB satisfy the Maxwell equations, is obtained the decoupled equation
for ϕ2 with the condition that H11 is no equal to zero of the spinor HAB and
that are restricted to

SBṀJBṀ = −fgH11[(∆ + γ − γ + 2µ)(D + 2ε− ρ)

−(δ + α + β − τ + 2π)(δ + 2β − τ)]ϕ2 = 0. (3.15)

Last one condition where H10 6= 0, thus

SBṀJBṀ = fgH10[(δ + β − α + π + τ + δlnf)(δ + 2π)

−(D + ε + ε− ρ + ρ + Dlnf)(∆ + 2µ)

−(∆− γ − γ + µ− µ + ∆lnf)(D − 2ρ)

+(δ − α + β − τ − π + δlnf)(δ − 2τ)]ϕ1

−[(δ + β − α + π + τ + δlnf)(D + 2ε− ρ)

−(D + ε + ε− ρ + ρ + Dlnf)(δ + 2β − τ)

+(∆− γ − γ + µ− µ + ∆lnf)κ

−(δ − α + β − τ − π + δlnf)γ]ϕ2

+[−(δ + β − α + π + τ + δlnf)λ

+(D + ε + ε− ρ + ρ + Dlnf)µ

+(∆− γ − γ + µ− µ + ∆lnf)(δ − 2α + π)

−(δ − α + β − τ − π + δlnf)(∆− 2γ + µ)]ϕ0}. (3.16)

Using the commutator od D and δ, ∆ and δ and the Ricci identities is
obtained a differential operator over ϕ0 and ϕ2 it can be written as

{2(D + ε + ε− ρ + Dlnf 1/2)ν + (∆lnf)π

−2(δ + β − α + π + δlnf 1/2)λ− (δlnf)µ

+(δlnf − 2π)(∆ + 2γ) + (∆lnf − 2µ)(δ − 2α)},
and

{2(δ − α + β − τ + δlnf 1/2)σ − (Dlnf)τ

−2(∆− γ − γ + µ + ∆lnf 1/2)κ + (δlnf)ρ

+(δlnf + 2τ)(D − 2ε) + (Dlnf + 2ρ)(δ + 2β)}, (3.17)
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That operators over ϕ0 and ϕ2 are equal to zero if

κ = σ = λ = ν = 0,

2ρ = −Dlnf, 2τ = −δlnf

2µ = ∆lnf, 2π = δlnf. (3.18)

Furthermore when ϕAB satisfy the Maxwell equations then the operator (3.4)
give us the decoupled equations for ϕ1 under the condition that H10 is the
component no equal to zero of the spinor HAB, then by (3.18) is given as

SBṀJBṀ = fgH10[(δ + β − α + π − τ)(δ + 2π)

−(D + ε + ε− ρ− ρ)(∆ + 2µ)

(∆− γ − γ + µ + µ)(D − 2ρ)−
+(δ − α + β − τ + π)(δ − 2τ)]ϕ1 = 0. (3.19)

For space-time type D is observed that exist a differential operator, that when
is applied to the Maxwell equations without sources is obtained a decoupled
equation for each component of the electromagnetis spinor given by

SBṀ = φ2HAB∇A
Ṁφ−2, (3.20)

where φ is such that satisfy the eq.(2.25)and the decoupled equation for the
electromagnetic spinor in covariant form is given by

φ2∇(A
Ṁφ−2∇Ṁ

CϕB)C = 0. (3.21)

Thus the eqs. (3.11),(3.15) and (3.19) are write in this form

[(δ − β − α− 2τ + π)(δ − 2α + π)

−(D − ε + ε− 2ρ− ρ)(∆− 2γ + µ)]ϕ0 = 0,

[(δ + β − α− τ + π)(δ + 2π)

−(D + ε + ε− ρ− ρ)(∆ + 2µ)

+(δ + β − α + π − τ)(δ − 2τ)− (∆− γ − γ + µ + µ(D − 2ρ)ϕ1 = 0,

[(∆ + γ − γ + 2µ + µ)(D + 2ε− ρ)− (δ + α + β + 2π − τ)(δ + 2β − τ)]ϕ2 = 0.(3.22)
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The equations for ϕ0 and ϕ2 were obtained by Teukolsky [12]and shown that
when the background space-time is the Kerr metric, those equations have
solution by variables separables. Thus the adjunt operator of (3.21)is given
by

∇Ṙ(Aφ−2∇SṘχC)S = 0. (3.23)

If is defined
XṘ

C ≡ φ−2∇SṘφ2χCS. (3.24)

Then is written the vectorial field XṘ
C is the vectorial potential for the

elctromagnetic field self-dual. Thus is possible writte a spinorial field that is
solution of the Maxwell equations, let to define

WṘṠ ≡ ∇B
(Ṙφ−2∇S

Ṡ)φ
2χBS, (3.25)

Where
χAB = LACLBDϕCD. (3.26)

Thus if ϕAB is a solution to the Maxwell equations in a spce-time background
type D solution to the Einstein equations in vacuum, with the possibility of
the cosmological constant no equal to zero then

GṘṠ ≡ ∇B
(Ṙφ−2∇S

Ṡ)φ
2LBDLSEϕDE, (3.27)

Is another solution for the Maxwell equations.The complex conjugate of this
is

GRS = ∇B
(Rφ

−2∇Ṡ
S)φ

2
LḂḊLṠĖϕḊĖ, (3.28)

Thus the complete operator is written as

WAB ≡ ∇Ḃ
(Aφ

−2∇Ṡ
B)φ

2
LḂḊLṠĖ∇F (Ḋφ2∇Ė)CLFHLCIϕ

HI , (3.29)

Is another solution for the Maxwell equations.Now using the Newmann-
Penrose notation can be written as

W0 = 16[(D + ε− ε− ρ)(D + 2ε + ρ)

φ
−2

(δ + β + α− τ)(δ + 2β + τ)](φ−2ϕ2),

W1 = 8[(D + ε + ε− ρ + ρ)(δ + 2β + τ)

+(α + β − α− τ − π)(D + 2ε + ρ)

φ
−2

(δ + β + α− τ)(δ + 2β + τ)](φ−2ϕ2),

W2 = 16[(δ + β + α− τ)(δ + 2β + τ)

φ
−2

(δ + β + α− τ)(δ + 2β + τ)](φ−2ϕ2). (3.30)
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Chapter 4

Solution for the Maxwell
equations in the Carter A
metric

4.1 The Carter A metric

The Carter A metric [14]is solution to the Einstein equations in vacuum with
cosmological constant and is written as

ds2 = { Q
p2 + q2

(du−p2dv)2− p2 + q2

Q dq2− P
p2 + q2

(du+q2dv)2− p2 + q2

P dp2},
(4.1)

where {p, q, u, v} is a real system of coordinates and the functions P = P(q),
Q = Q(q) are given by

P = b + 2np− ε0p
2 − (λ0/3)p4,

Q = b− 2mq + ε0q
2 − (λ0/3)q4,

The parameters m,n and λ0 are representated by the mass, NUT param-
eter, and the cosmological constant each one, ε0 and b are two additional
parameters.The Kerr metric is obtained when b = a2, n = 0 and ε0 = 1.In
Boyer-Lindquist coordinates q = r, p = −acosθ, u = −t + aφ and v = φ/a,
where a represent the angular momentum.

The tangent vectors

D = ∂q +
1

Q(∂v − q2∂u),
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∆ = 1/2φφQ(−∂q +
1

Q(∂v − q2∂u)),

δ = (P/2)1/2φ(∂p +
i

P (∂v + p2∂u)),

δ = (P/2)1/2φ(∂p − i

P (∂v + p2∂u)), (4.2)

with

φ ≡ 1

q + ip
.

The spin coefficients are given by

κ = γ = λ = ν = 0,

ε = 0, β = δlnP1/4,

α = −δln
P1/4Q1/2

q + ip
, γ = −∆ln

P1/4Q1/2

q + ip
,

ρ = Dlnφ, τ = δlnφ, π = −δlnφ, µ = −∆lnφ. (4.3)

4.2 Solution of the equations for

ϕ0 and ϕ2

The transformation of the differential operator with dependence over u and
v are changing by

D −→ D0 ∆ −→ −1/2φφQD0,

δ −→ 1/
√

2φL†0, δ −→ 1/
√

2φL0, (4.4)

Where the solutions of the eq. (3.22)have dependence in the variables u and
v given by [8] with k and l are separation constants, that defined the operator
by

Dn ≡ ∂q +
i

Q(l − kq2) + n
Q̇
Q ,

D†
n ≡ ∂q − i

Q(l − kq2) + n
Q̇
Q ,

Ln ≡ P1/2(∂p +
1

P (l + kp2) + n/2
Ṗ
P ),

L†n ≡ P1/2(∂p − 1

P (l + kp2) + n/2
Ṗ
P ), (4.5)
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Using the equations (4.3) and (4.4) the decoupled equation for ϕ0 take the
form

[QD′D†
0 + 2ikq + L†0L1 + 2kp]ϕ0 = 0, (4.6)

thus
ϕ0 = ei(ku+lv)R+1(q)S+1(p), (4.7)

The functions R+1(q) and S+1(p) satisfy the differential equations

[QD0D†
0 + 2ikq]QR+1(q) = A1QR+1(q),

[L†0L1 + 2kp]S+1(p) = −A1S+1(p), (4.8)

where A1 is a separation constant.Of the same way for ϕ2 thus

[QD†
0D0 − 2ikq + L0L†1 − 2kp](φ−2ϕ2 = 0, (4.9)

thus
ϕ2 = φ2ei(ku+lv)R−1(q)S−1(p), (4.10)

The functions R−1(q) and S−1(p) satisfy the differential equations

[QD†
0D0 − 2ikq]R−1(q) = A2R−1(q),

[L0L†1 − 2kp]S−1(p) = −A2S−1(p), (4.11)

where A2 is a separation constant.
The values of the constants should be equal and the functions QR+1 and

R−1 then satisfy the Teukolsky-Starobinsky identities [8]

D0D0R−1(q) = BR+1(q),

QD†
0D†

0QR+1(q) = BR−1(q), (4.12)

The constant B is known how Starobinsky constant and is real, of the same
way the functions S±(p) take the form

L0L1S+1(p) = BS−1(p),

L†0L†1S−1(p) = BS+1(p). (4.13)
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From (4.12) and (4.13)the components of the electromagnetic field with max-
imal spin weight and the normalization right are given as

ϕ0 = ei(ku+lv)R+1(q)S+1(p),

ϕ2 = 1/2φ2ei(ku+lv)R−1(q)S−1(p). (4.14)

The relationship among the constants is

B2 = A2 + 4kl. (4.15)

When was found the decoupled equation for ϕ1 is not separable over p
and q.Thus using (4.14) and with the use of the symmetry operator obtained
in the previus chapter we can find the expression for ϕ1.

4.3 The Full Solution

Using the equations (4.3) and (3.30) is obtained

W0 = 8D0D0L†0L†1(φ−2ϕ2),

W1 = 8/
√

2φ2[(qD0 − 1)L1) + i(pL1 −
√
P)D0]L†0L†1(φ−2ϕ2),

W2 = 4φ2L0L1L†0L†1(φ−2ϕ2). (4.16)

Now using the equations (4.12) and (4.14) we obtained

W0 = 4B2ei(ku+lv)R+1(q)S+1(p),

W1 = 4B2φ2/
√

2ei(ku+lv)[(g+1(q)L1S+1(p) + if−1(p)D0R−1(q)],

W2 = 4B2φ2/2ei(ku+lv)R−1(q)S−1(p), (4.17)

where

g+1(q) ≡ 1/B(qD0R−1(q)−R−1(q)),

f−1(p) ≡ 1/B(pL1S+1(p)−
√
PS+1(p)). (4.18)

From (4.14) and (4.17)is obtained the expression for ϕ1 with ϕ0 and ϕ2 ,
thus taking the right normalization can be written

ϕ1 = 1/
√

2φ2ei(ku+lv)[g+1(q)L1S+1(p) + if−1(p)D0R−1(q)]. (4.19)
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From (4.17)is observed that if ϕAB is a separable solution for the Maxwell
equations without sources thus:

1/4∇Ḃ
(Aφ

2∇Ṡ
B)φ

2
LḂḊLṠĖGḊĖ = B2ϕAB, (4.20)

where
GḊĖ = ∇F (Ḋφ−2∇Ė)Cφ2LFHLCIϕ

HI . (4.21)
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Chapter 5

Conclusions

According the result obtained in this report the symmetry operator (3.27) for
the Maxwell equations there is a relationship with the Killing spinor of two
index for all solutions type D of the Einstein equations in vacuum with or
without cosmological constant, that can be resolved of (3.26). The equation
for ϕ0 and ϕ2, but no for ϕ1, with φ−1 = L10 = LABιAøB expressed in term of
an unique component differential of the Weyl spinor Ψ2, obtained previously
by Wald [13],whatsoever no show the importance of the Killing spinor. The
equation (3.26) wa given by Torres del Castillo no only for electromagnetic
field, furthermore for the case massless field spin 3

2
with perturbation and

gravitational space-time type D [15,16].The results of the chapter 3 can not
apply in the case of perturbations in fields of spin 3

2
and gravitational, due

to the cases that no all the field components satisfy a decoupled equation
. The result of the chapter 4 the symmetry operator given us the complete
solution for the Maxwell equations.
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