
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

4-1-2010

Access Control Contracts for Java Program
Modules
Carlos E. Rubio-Medrano

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-10-07

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Rubio-Medrano, Carlos E. and Cheon, Yoonsik, "Access Control Contracts for Java Program Modules" (2010). Departmental Technical
Reports (CS). Paper 7.
http://digitalcommons.utep.edu/cs_techrep/7

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/7?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Access Control Contracts for Java Program Modules
Carlos E. Rubio-Medrano and Yoonsik Cheon

TR #10-07
March 2010; revised April 2010

Keywords: access control contracts, pre and postconditions, runtime assertion checking, stack inspection,
JML.

1998 CR Categories: D.2.2 [Software Engineering] Design Tools and Techniques — Modules and
interfaces; D.2.4 [Software Engineering] Software/Program Verification — Assertion checkers, formal
methods, programming by contract; D.3.2 [Programming Languages] Language Classifications — Object-
oriented languages; D.4.6 [Operating Systems] Security and Protection — Access controls; F.3.1 [Logics
and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions, pre-
and post-conditions, specification techniques.

To appear in the 5th IEEE International Workshop on Security, Trust, and Privacy for Software Applications
(STPSA 2010), July 19-23, Seoul, Korea.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Access Control Contracts for Java Program Modules

Carlos E. Rubio-Medrano
Department of Computer Science

The University of Arizona
Tucson, Arizona, 85721, USA

cerubiom@cs.arizona.edu

Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, 79968, USA

ycheon@utep.edu

Abstract—Application-level security has become an issue in
recent years; for example, errors, discrepancies and omis-
sions in the specification of access control constraints of
security-sensitive software components are recognized as an
important source for security vulnerabilities. We propose to
formally specify access control assumptions or constraints of
a program module and enforce them at run-time. We call
such specifications access control contracts. To realize access
control contracts, we extended the JML language, a formal
interface specification language for Java, and developed a
prototype support tool that translates access control contracts
to runtime checks. The access control contract reduces the
vulnerability that a security-sensitive module be exploited to
compromise the overall security of a software system. It also
facilitates practicing the principle of “security by design” by
providing both a practical programming tool and a foundation
for formally reasoning about security properties of program
modules.

Keywords-access control contracts; pre and postconditions;
runtime assertion checking; stack inspection; JML

I. INTRODUCTION

Proper enforcement of security measures at the soft-
ware application level has become an important concern
recently, as many enforcement techniques have traditionally
focused on system level concerns, leaving attackers with a
chance of compromising the safety of a software system
by manipulating the data and resources being accessed by
an application. As an example, consider the deployment
of a web application, which is widely used and affected
by several sources of vulnerabilities because of the data
exchange between a remote client and the web application
[1]. If the data being exchanged are improperly validated,
a malicious third party may be able to trick the web
application into executing an improper operation on sensitive
data (e.g, SQL injection problem [2]). Over the years, several
techniques have been developed, primarily based on high-
level, well-typed languages such as Java, to prevent the
exploitation of well-known security vulnerabilities such as
buffer overflow and control flow hijacking. Support is also
provided for application-level security, especially to control
access to sensitive resources. In Java, for example, the Java
Security Architecture (JSA) allows for developers to enforce
access control constraints at runtime by restricting access to

sensitive resources according to a precisely specified security
policy [3].

It is equally important to also specify and enforce
component-level security. When building a security-sensitive
application by reusing or assembling existing software
components, for example, inaccurate descriptions of access
control constraints of the components can potentially lead
to a security hole, forcing developers to invest a consid-
erable amount of effort trying to analyze and modify the
components to assure their conformance to the security
requirements of the application. In fact, this has been
recognized as a potential cause of security vulnerabilities
for many software systems [4]. The problem is that an
improper description of a component’s behavior may lead
to an application developer to inaccurately establish a series
of security measures, which may fail to capture all possible
misuses of the interface provided by the component, thus
allowing for exploitable vulnerabilities to exist. An attacker
can compromise the overall safety of a system by using
the application and the interface provided transitively by
its components to access security-sensitive resources of the
system. It is a challenging task for an application developer
to know the real capabilities of an application’s components
to access security-sensitive resources and their implications.
In general, an exhaustive analysis or testing is needed to
ensure that a component is used in a safe way by an
application and its other components.

We claim that formally specifying security concerns of a
software component and checking them at runtime alleviate
the above-mentioned problem. We also claim that such a
specification should be part of the interface description of
the component. In order to prove our claim, we extend
the Java Modeling Language (JML) [5], a formal interface
specification language for Java to describe the behavior
of Java program modules such as classes and interfaces.
Our extension allows one to formally describe the access
control requirements of Java program modules, which we
call access control contracts. The access control contract of
a program module defines a set of access control constraints
and relates them to the expected runtime behavior of the
module. We first show that JML is ineffective for writing
access control contracts. We then propose an extension by

introducing a declarative approach for describing the access
control contracts in terms of the Java Security Architecture
(JSA). JSA is based on a model known as stack-based access
control [6] and allows one to specify the permissions needed
for a program to successfully execute. We also develop a
prototype support tool to check at runtime the access control
contract of a program module. Our prototype shows that
tool support for the access control contract can be easily
integrated into the existing JML tools [7].

The main contribution of our work is the introduction
of access control contracts to formally specify the access
control requirements of a program module. By introducing
access control contracts, we related the access control and
functional behavior constraints in the same framework of
Hoare-style pre and postconditions. By doing so, we also
made access control contracts to be part of the interface
of a program module. We expect that our work provide a
formal basis for reasoning about security properties of Java
program modules in a modular way.

The rest of this paper is organized as follows. In Sec-
tion II, we give a quick overview of both JML and JSA.
In Section III, we introduce the concept of access control
contracts. We explain in detail how we realize this concept
in JML. In Section IV, we describe the experiments that
we performed to evaluate the effectiveness of access control
contracts. We next describe related work in Section V. We
then conclude this paper with a concluding remark in Section
VI.

II. BACKGROUND

A. The Java Modeling Language

The Java Modeling Language (JML) is a behavioral
interface specification language tailored for specifying both
the runtime behavior and the syntactic interface of Java
program modules such as classes and interfaces [5] [7]. It
uses Hoare-style pre and postconditions to describe what a
module is expected to do at runtime [8]. JML specifications
are commonly written in the source code file as special
comments. Figure 1 shows an example JML specification.
As shown, a JML specification precedes the Java decla-
ration such as a method declaration that it annotates. The
requires clause specifies the precondition, and the ensures
clause specifies the postcondition. The precondition of the
connect method states that the port number should be
between 1024 and 4096, inclusive, and the host should be
valid. The special syntax (* *), known as an informal
description, allows one to escape from formality when
writing JML assertions. JML treats an informal description
as a boolean expression and thus allows to mix formal
and informal descriptions in assertions. The pseudo variable
\result in the postcondition denotes the return value of
a method. The postcondition states that the resulting socket
should be freshly created and its port number and host name
should be same as the given port number and host name.

public interface NetworkManager {

/*@ requires 1024 <= port && port <= 4096 &&
@ (* host is a valid host name *);
@ ensures \fresh(\result)
@ && \result.isConnected()
@ && \result.getPort() == port
@ && \result.getHost().equals(host);
@*/
public Socket connect(String host, int port);

}

Figure 1. Example JML specification

public interface NetworkManager {

/*@ public model boolean isValid(String host) {
@ if (host == null || host.length() == 0)
@ return false;
@ ...
@ }
@*/

//@ requires isValid(host);
public Socket connect(String host, int port);

}

Figure 2. Example model method in JML

An interesting feature of JML is that it supports
specification-only declarations [9]. Commonly known as
model elements, they allows one to write abstract speci-
fications by introducing fields, methods, and classes only
to be used in JML specifications but not in Java code.
For example, we can formulate the notion of validity of
a host name by introducing a model method that checks
well-formedness of a host name. Figure 2 shows a model
method named isValid that checks whether a given host
name is valid or not. As shown, a model method can be
used only in JML assertions such as the precondition of
the connect method. The JML compiler can translate
assertions written in terms of model elements into runtime
checks. In Section III below, we will show how we can
utilize model methods to write access control contracts in
JML and check them at runtime.

B. The Java Security Architecture

The Java Security Architecture (JSA) was originally de-
signed to enforce security measures when executing Java
applets downloaded from a network [3] [10]. Applets are
executed by placing them in a so-called sandbox envi-
ronment, which restricts access to any sensitive resources.
This approach was too restrictive in practice because many
trusted applets couldn’t run properly, thus limiting their
potential benefits for distributed applications. Later, a more
flexible yet secure architecture was developed to allow for
the mediation of access to protected resources. As before,
an application is placed in a sandbox environment and by
default denied access to any sensitive resources such as
system files and network ports. In order for an application

2

to access a protected resource, it must be granted a proper
permission over it; a permission is represented as a subclass
of java.security.Permission. JVM uses a security
policy file to determine if access to a resource requested
by an application should be granted or denied. An entry in
the policy file commonly includes, among other things, (1)
the name of the class or jar file the permission is granted
to, (2) the code base (i.e., location) from which the code
was downloaded, and (3) the creator of the code identified
by a digital signature. At runtime, when an application,
A, requests access to a protected resource, R, all classes
composing A that are located in the current execution call
stack must have been granted a permission, say P , to access
R. This checking process is known as stack inspection [11]
[12]. If any class in the current execution stack is found not
to be granted the required permission, P , then the access to
R is denied; otherwise, R can be accessed by A in the way
allowed by P , e.g., reading or writing a system file. Note that
for an application running outside the sandbox environment
the stack inspection procedure never takes place, and thus
all permissions requested by the components of such an
application are granted.

III. ACCESS CONTROL CONTRACTS

We propose to document the access control requirements
of a program module. Such documents, that we call access
control contracts, should be part of the module’s interface
along with the description of the module’s functional behav-
ior. The access control contract of a module define precisely
the access control constraints of the module, e.g, by listing
all the permissions needed to invoke the module success-
fully. We show that both the access control constraints and
the functional behavior of a program module can be specified
in the framework of Hoare-style pre and postconditions. If
an access control constraint appears in the precondition, it
is a client’s obligation in that the client has to invoke the
module in a state where the constraint is satisfied; otherwise,
nothing is guaranteed. On the other hand, if an access control
contract appears in the postcondition, it is an implementer’s
obligation in that the implementer has to guarantee for the
constraint to be satisfied when the module completes its
execution. Below we explain how one can write access
control contracts in JML.

A. Writing Access Control Contracts in JML

As explained in Section II-A, model methods can be
used to introduce an additional vocabulary for writing JML
assertions. Moreover, when an implementation of a model
method is provided, JML assertions written in terms of
model methods can be translated to runtime checks and
thus executed at runtime [9]. We can utilize model methods
to introduce a new vocabulary for writing access con-
trol contracts. For example, Figure 3 shows a refinement
of the JML specification shown in Figure 1 to include

public interface NetworkManager {
/*@ public model boolean hasPermission(Permission p) {

@ try {
@ AccessController.checkPermission(p);
@ } catch (AccessControlException) {
@ return false;
@ }
@ return true;
@ }

/*@ requires hasPermission(
@ new SocketPermission(host + ":" + port,
@ "connect"))
@ requires 1024 <= port && port <= 4096 &&
@ (* host is valid *);
@ ensures \fresh(\result)
@ && \result.isConnected()
@ && \result.getPort() == port
@ && \result.getHost().equals(host);
@*/
public Socket connect(String host, int port);

}

Figure 3. Access control contract written in JML using a model method

an access control constraint for the connect method.
It defines a model method named hasPermission
that takes a permission object and checks if the per-
mission can be granted. The model method was writ-
ten in terms of the checkPermission method of the
AccessController class. The checkPermission
method performs the stack inspection procedure to deter-
mines whether the access request indicated by the specified
permission should be allowed or denied, based on the current
access control context and security policy. It quietly returns
if the access request is permitted; otherwise, it throws an
access control exception. The connect method now has
an additional requires clause to state its access control
constraint. It states that a “connect” socket permission on
the given host and port number is required to execute the
method successfully; if a client calls the method without
the specified permission, nothing is guaranteed. By writing
explicitly the access control constraints of a program module
and making it part of the module’s interface, both the client
and the implementer are now better informed of potential
security concerns or consequence of using or implementing
the module.

The main advantage of writing access control contracts
in this way is that it doesn’t require additional support from
JML or its tools. Access control contracts are just regular
JML assertions written using model methods, and thus can
be processed with existing JML tools such as the JML
compiler to produce runtime checks. However, there are also
several shortcomings. The assertions tend to be long and
verbose, as one has to introduce a model method. It also
has an imperative flavor because one has to write the body
of the model method for runtime checks. For this, one has to
be familiar with JSA and its particular implementation, e.g.,
the AccessController class and its methods. Another
problem is that there is no standard way of writing model

3

public interface NetworkManager {
/*@ requires \has_permission(SocketPermission,

@ host + ":" + port, "connect")
@ requires 1024 <= port && port <= 4096 &&
@ (* host is a valid host name *);
@ ensures \fresh(\result)
@ && \result.isConnected()
@ && \result.getPort() == port
@ && \result.getHost().equals(host);
@*/
public Socket connect(String host, int port);

}

Figure 4. Access control contract written using permission expression

methods for access control contracts, and thus different
programmers or specifiers can introduce model methods of
different styles, e.g., with different names, signatures, logics,
and bodies. The resulting assertions may be hard to read and
understand, especially when they are tangled with regular
assertions stating functional behaviors. The absence of a
standard way to define access control contracts also increases
the complexity of creating and integrating support tools.
Thus, it would be difficult to develop tools specifically for
access control contracts.

B. Extending JML for Access Control Contracts

We extended JML to provide built-in support for writing
access control contracts. One such a construct is a new
JML expression, \has_permission , that tells if the
current execution has the specified permission. A permis-
sion is denoted by specifying the name of a permission
class along with the arguments for creating an instance
of the permission class; a permission class is a subclass
of the java.security.Permission class. By using
this expression, one can write access control contracts
declaratively. For example, Figure 4 shows the specification
of the connect method rewritten using the permission
expression. As before, the first precondition states that a
client has to have a “connect” socket permission on the given
host and port number to execute the method successfully.
However, the specification is now more succinct and doesn’t
involve Java code.

The syntax of permission expression is given below.
<perm_expr> ::= \has_permission(<class_name> [, <args>])
<args> ::= <expr> | <expr> , <args>

The first argument should be the name of a permis-
sion class, any subclass of the java.lang.Permission
class, and the rest should be arguments appropriate for
invoking a constructor of the permission class. For example,
a socket permission denoting access to a network via sockets
can be denoted by the class SocketPermission along
with a host specification (e.g, “www.cs.utep.edu:80”) and a
set of actions (e.g., “connect, accept”) specifying ways to
connect to that host.

Informally, the meaning of the permission expression is
defined as follows. Each permission expression denotes a

permission object, p, and the current execution must be
granted the required security clearance with respect to p;
i.e., the execution must be granted p or another permission
q that implies p. In addition, the security clearance restriction
is extended to include all the callers that are present in
the execution call stack. Thus, operationally, the permission
expression denotes the stack inspection procedure explained
in Section II-B.

In addition to the permission expression, we intro-
duced another new expression to restrict the set of callers
based on their static declarations. This expression, called
\called_by expression, takes a class name or a method
signature and evaluates to true if the current execution is
originated from the given class or method. We found this
expression is useful for specifying the behavior of a module
that provides different services to different clients.

C. The jmlacc tool

In order to support the extension described in the previous
section, we developed a prototype tool called jmlacc using
Polyglot [13], an extensible compiler framework. The tool
supports a small subset of JML along with our extension
and is tailored to produce runtime assertion checking code
by translating JML specifications into Java bytecode in a
similar fashion as done by the JML compiler [14]. We also
used the wrapper method approach to wrap the original
method with assertion checking methods such as pre and
postcondition checking methods (see Figure 5 for sample
instrumented code). What is new is the treatment of the
permission expression. A permission expression is translated
to a call to a separate checking method that, if a security
manager is installed, triggers the stack inspection procedure
(refer to the checkPerm method in Figure 5).

IV. EVALUATION

In order to evaluate the effectiveness of our ap-
proach we inspected JML-annotated classes found in
the java.io and java.security packages. The
JML specifications for the I/O classes were obtained
from the JML distribution available at the JML website
(http://www.jmlspecs.org), and the specifications
for the security classes were from our earlier effort on
formalizing the behavior of Java security classes in JML
[15]. Our findings were surprising. Only few classes had
specifications of access control constraints, and the access
control-related properties were written informally. We be-
lieve that this was because JML doesn’t provide built-in
support for writing such specifications.

We were able to complete and refine existing specifi-
cations using our extension to JML. In some cases, we
decomposed the expected behavior of a method based on the
access control requirements. For example, Figure 6(a) shows
the original JML specification for the canRead method
of class java.io.File. The signals only clause states

4

public class MyManager implements NetworkManager {

public Socket connect(String host, int port){
checkPre$$connect(host, port);
Socket result = connect$$orig(host, port);
checkPost$$connect(host, port, result);
return result;
}

private Socket connect$$orig(String host, int port) {
// original code for connect

}

private void checkPre$$connect(String host, int port) {
if (!(checkPerm(new SocketPermission(host + ":" + port,

"connect"))
&& 1024 <= port && port <= 4096))

throw new JMLPreconditionError();
}

private void checkPost$$connect(String host, int port,
Socket result) {
if (!(result.isConnected()

&& result.getPort() == port
&& result.getHost().equals(host)))

throw new JMLPostconditionError();
}

private boolean checkPerm(Permission p) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {

try { sm.checkPermission(p); }
catch (AccessControlException e) {

return false;
}

}
return true;

}
}

Figure 5. Skeletal runtime checking code

that the method may terminate abruptly by throwing only
a security exception; however, the specification doesn’t say
when it may throw such an exception. According to its API
documentation, the canRead method requires its clients to
be granted a file permission to access the denoted file. Figure
6(b) shows a revised specification written using the new
permission expression. The old clause introduces a name for
an expression. The revised specification now clearly says
that the method may throw a security exception only if
the caller doesn’t have a “read” file permission on the file;
otherwise, the method should return normally.

V. RELATED WORK

The use of formal languages for specifying security
constraints of software modules has received considerable
attention lately, and there were several attempts to extend
JML to specify security constraints. Groslambert et al.
studied the specification and verification of liveness and
safety properties for Java classes using JML [16]. Huisman
and Tamalet recently proposed to specify security properties
in JML by making use of security automata [17]. We believe
that our approach for using JML to write security proper-
ties and check them at runtime provides a complementary
technique to these approaches.

/*@ ensures (* true iff the file has read access *);
@ signals_only SecurityException;
@*/

public boolean canRead();

(a) Original specification

/*@ old boolean perm = \has_permission(FilePermission,
@ getPath(), "read");
@ {|
@ requires perm;
@ ensures \result == this.exists()
@ && (* the file can be read *);
@ also
@ requires !perm;
@ signals_only SecurityException;
@ |}
@*/

public /*@ pure @*/ boolean canRead();

(b) Revised specification

Figure 6. JML specification for the File.canRead method

Smans et al. discussed specification of access control
constraints in .NET CLR framework [18]. They proposed to
use the Spec# specification language to define access control
constraints for C# modules. As in JSA, the CLR framework
makes use of the stack inspection mechanism to enforce
the constraints at runtime. In principle, their approach is
similar to ours in that special language constructs were
introduced for specifying the runtime permissions needed to
use a component. However, our approach makes a stronger
connection between access control contracts and functional
behavior specifications of a module and allows the behavior
of the module be defined in terms of access control contracts.
We also showed how to leverage existing facilities such as
model methods to write access control contracts.

Hussein and Zulkernine proposed an approach for speci-
fying intrusion detection scenarios by using an extension to
UML [19]. Their approach focuses on describing possible
misuse cases of software components—i.e., cases that mali-
cious parties could implement to use software components in
ways not intended by their original developers—to identify
possible security breaches. On the other hand, our approach
focuses on specifying the correct or expected behavior.

Pistoia et al. provided a comprehensive description of
potential vulnerabilities that can lead to security holes in
Java applications [4]. Interestingly they pointed out that
the lack of correct and complete specifications of access
control constraints is an important problem that can indeed
compromise the overall security of a software system being
built from heterogeneous components. They also described
current techniques for static enforcement of access control
constraints.

VI. CONCLUSION

We introduced the notion of access control contracts to
document the access control constraints of Java program

5

modules. We showed how to write access control contracts
formally in JML, a formal interface specification language
for Java. Our technique is to introduce a specification-
only method, called a model method, that performs the
stack inspection procedure and to refer to it in method pre
and postconditions. We also extended the JML language to
provide built-in language support for writing access control
contracts. In particular, we introduced a new permission
expression that tests whether the current execution can be
granted the required security clearance with respect to a
given permission. To prove the feasibility of our approach,
we developed a prototype tool that translates the permission
expression to a runtime check. Our case study, though
limited in scope, showed a very promising result, and we
next plan to incorporate our extension into the JML language
by extending its support tools.

ACKNOWLEDGMENT

Rubio’s work was supported in part by NSF grant CNS-
0509229 and a Graduate Fellowship awarded by the Mexican
Chihuahua State Government. Cheon’s work was supported
in part by NSF grants CNS-0509299 and CNS-0707874.

REFERENCES

[1] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten, “Bridg-
ing the gap between web application firewalls and web
applications,” in FMSE ’06: Proceedings of the fourth ACM
workshop on formal methods in security. New York, NY,
USA: ACM, 2006, pp. 67–77.

[2] W. G. J. Halfond and A. Orso, “Amnesia: analysis and
monitoring for neutralizing sql-injection attacks,” in ASE ’05:
Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. New York, NY, USA:
ACM, 2005, pp. 174–183.

[3] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers,
“Going beyond the sandbox: an overview of the new security
architecture in the java development kit 1.2,” in USITS’97:
Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems on USENIX Symposium on Internet
Technologies and Systems. Berkeley, CA, USA: USENIX
Association, December 1997, pp. 10–10.

[4] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav, “A survey of
static analysis methods for identifying security vulnerabilities
in software systems,” IBM Systems Journal, vol. 46, no. 2, pp.
265–288, 2007.

[5] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design
of JML: A behavioral interface specification language for
Java,” ACM SIGSOFT Software Engineering Notes, vol. 31,
no. 3, pp. 1–38, Mar. 2006.

[6] A. Banerjee and D. A. Naumann, “Stack-based access control
and secure information flow,” Journal of Functional Program-
ming, vol. 15, no. 2, pp. 131–177, 2005.

[7] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML
tools and applications,” International Journal on Software
Tools for Technology Transfer, vol. 7, no. 3, pp. 212–232,
Jun. 2005.

[8] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 12, no. 10, pp. 576–
580, 1969.

[9] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards,
“Model variables: Cleanly supporting abstraction in design by
contract,” Software—Practice & Experience, vol. 35, no. 6,
pp. 583–599, May 2005.

[10] L. Gong, “Java security: Present and near future,” IEEE
Micro, vol. 17, no. 3, pp. 14–19, 1997.

[11] D. S. Wallach and E. W. Felten, “Understanding Java stack in-
spection,” Security and Privacy, IEEE Symposium on, vol. 0,
pp. 52–63, 1998.

[12] C. Fournet and A. D. Gordon, “Stack inspection: Theory and
variants,” ACM Transactions on Programming Languages and
Systems, vol. 25, no. 3, pp. 360–399, 2003.

[13] N. Nystrom, M. Clarkson, and A. Myers, “Polyglot: An ex-
tensible compiler framework for Java,” in 12th International
Conference on Compiler Construction. Springer-Verlag,
2003.

[14] Y. Cheon and G. T. Leavens, “A runtime assertion checker for
the Java Modeling Language (JML),” in Proceedings of the
International Conference on Software Engineering Research
and Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-
27, 2002, H. R. Arabnia and Y. Mun, Eds. CSREA Press,
Jun. 2002, pp. 322–328.

[15] P. Agarwal, C. E. Rubio-Medrano, Y. Cheon, and P. J. Teller,
“A formal specification in JML of the Java security package,”
in Advances and Innovations in Systems, Computing Science,
and Software Engineering, K. Elleithy, Ed. Springer, 2007,
pp. 363–368.

[16] J. Groslambert, J. Julliand, and K. Olga, “JML-based verifica-
tion of liveness properties on a class,” in Fifth International
Workshop on Specification and Verification of Component-
Based Systems (SAVCBS 2006), November 2006, pp. 41–48.

[17] M. Huisman and A. Tamalet, “A formal connection be-
tween security automata and JML annotations,” Fundamental
Approaches to Sofware Engineering (FASE), vol. 5503 of
Lecture Notes in Computer Science, pp. 340–354, 2009.

[18] J. Smans, B. Jacobs, and F. Piessens, “Static verification of
code access security policy compliance of .NET applications,”
Journal of Object Technology, vol. 5, no. 3, pp. 35–58, May-
June 2006.

[19] M. Hussein and M. Zulkernine, “Intrusion detection aware
component-based systems: A specification-based framework,”
Journal of Systems and Software, vol. 80, no. 5, pp. 700–710,
2007.

6

	University of Texas at El Paso
	DigitalCommons@UTEP
	4-1-2010

	Access Control Contracts for Java Program Modules
	Carlos E. Rubio-Medrano
	Yoonsik Cheon
	Recommended Citation

