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Abstract

Detecting arcing faults is an important but difficult-to-solve practical
problem. In this paper, we show how the Minimum Description Length
(MDL) Principle can help in solving this problem.
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1 Introduction: The Problem of Arc Detec-

tion and How It Is Currently Solved

Electrical systems sometimes start an unplanned “arcing”, i.e., producing an
electric connection in the normally nonconducting media (e.g., in the air).
Arcing can be a result of an unplanned connection between two wires, or the
result of an electric wire break down or a connector becoming loose.

Unplanned arcing not only disrupts the normal functioning of an electric
system, it can also produce damage. Arcing damage is especially dangerous
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in aerospace systems where an arc fault can cause the damage to the wiring
system causing an aircraft to crash. Because of this danger, it is extremely
important to be able to detect the arcing based on the observed electric current
or its rate of change; see, e.g., [10]. The corresponding signal will be denoted
by x(t).

Arcing is very difficult to detect because every individual arc is different.
The material makeup of the wires and of the insulation, air pressure, and arc
severity all affect the arc behavior. As a result, arcs are difficult to model,
difficult to predict, and difficult to detect.

The problem of detecting unplanned arcs is made even more complex by
the fact that in some practical systems such as brush motors, arc welders, and
arc discharge lamps, there are permissible arcs. Electric switches and relays
are also sources of permissible arcs. For such systems, we must be able to
distinguish between the effect of permissible and unplanned arcs.

There exist many different methods of arc detection; see, e.g., [2, 8, 9, 11].
Most of these methods are based on the analysis of the signal’s power spectrum.

A different idea was proposed and implemented in [1]. In this paper, arc
detection is based on the following idea:

• Without an arc, the behavior of the system is predictable – in the sense
that the future values of the signal x(t) can be reasonably well predicted
based on the past value x(t1), . . . , x(tn), t1 < t2 < . . . < tn < t, of this
signal.

• In contrast, an arc is unpredictable; so, in the presence of an arc, our
attempts to predict the value x(t) based on the past values x(ti), ti < t,
will be much less accurate.

In [1], this idea is implemented based on the usual assumption that the
electrical system is linear. Indeed, most components of an electrical system
are described by linear differential equations, for which a linear combination
of solutions is also a solution. For example, a resistor is described by the
equation Vr = R · I, a capacitor is described by the equation q = C · Vc(
hence Vc =

q

C

)
, and an inductance is described by an equation

dI

dt
=

Vc

L
,

hence Vc = L · dI
dt

. Thus, e.g., in a closed circuit with a battery of voltage V ,

we have V + Vr + Vc + Vi = 0 hence

R · I + q

C
+ L · dI

dt
= −V.

Taking into account that I =
dq

dt
, we get the usual second-order linear differ-

ential equation

R · dq
dt

+
q

C
+ L · d

2I

dt2
= −V.
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To avoid possible confusion between several different meaning of the word
“linearity”, it should be mentioned that

• while the equation is linear – in the sense that a linear combination of
solutions is also a solution;

• the solutions to this (and other) equations are usually not linear functions
of time.

For example:

• the above circuit usually leads to a sinusoidal signal,

• while, e.g., the discharge of a capacitor leads to a signal that exponen-
tially decreases with time.

For predictable linear systems, the predicted value x(t) is a linear combi-

nation of the previous values x(ti): x(t) ≈
n∑

i=1
ai ·x(ti). In accordance with this

idea, the method described in [1] tried to find the values ai which provide the
best prediction, and then makes a decision on whether the arc is present by
the amount of the discrepancy between the actual signal and its predictions.

The existing approaches lead to a reasonable arc detection, but sometimes,
they miss an arc or lead to a fault arc detection in a situation where there
is actually no arcing. It is therefore desirable to develop better arc detection
techniques.

2 Non-Linearity of Real-Life Electrical Circuits

The fact that a method from [1] based on the linearity assumption does not
always work well is a good indication that non-linearity needs to be taken into
account.

While standard components of an electrical system such as resistors, ca-
pacitor, and inductors are indeed described by linear equations, devices like
solid-state relays have a non-linear Volt-Ampere characteristic and therefore,
lead to non-linearity of the system’s reaction.

Also, while resistors are linear at low currents typical for electronic devices,
at high currents, resistors exhibit non-linear behavior: indeed, the temperature
of the resistor increase with the current, and the characteristic of most resistor
materials are temperature-dependent.

To some extent, the same effect holds for capacitors as well. Indeed,

• first, the capacitor is often heated up by a nearby resistor;

• second, since capacitors also have resistance, they also change their tem-
perature with the current.
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Since the electrical characteristics of most capacitors are temperature-dependent,
these capacitors thus also exhibit non-linearity.

This non-linearity explains why the linearity-based method [1] may miss
an arc or lead to a false arc detection.

For example, when a linearity-based method from [1] pick up a non-linearity,
this non-linearity may not be necessarily an indication of an arc, it may be
caused by non-linearity of solid-state switches and other electrical components.
In this case, we have a false arc detection.

On the other hand, when the linearity-based method does not detect any
change in the level of prediction inaccuracy, it does not necessarily may simply
mean that there is no arc, it may simply mean that the increase in non-linearity
cased by the presence of the arc is masked by the larger nonlinearity solid-state
switches. In this case, the detection method misses the arc.

It should be mentioned that in arc detection, it is important to detect an
arc as early as possible, in the earliest moment of time when the signal start
exhibiting unpredictable behavior typical of an arc. From this viewpoint, the
non-linearity exhibited by resistors and capacitors is a relatively “long-term”
effect, since the temperature takes time to rise; thus, it is of a lesser effect on
the arc detection. In contrast, the non-linear Volt-Ampere characteristics of
semiconductor devices such as solid-state relays are intrinsic, so they produce
non-linearity from the very beginning. Thus, the non-linearity of solid-state
devices is the main reason why linearized arc detection methods are not always
working.

3 Extending the Idea of Detecting Arcs as Un-

predictable Behavior to Non-Linear Systems:

Main Idea

In view of the non-linear character of the actual electrical systems, we need to
extend the above idea of detecting arcs as unpredictable behavior to non-linear
systems.

If there is no arc, then the electrical system is deterministic, in the sense
that once we know the parameters of the electrical system and the initial values
of the currents and charges, we can use the corresponding differential equations
to predict the electrical signal x(t) at all moments of time t. In [1], the fact was
used for linear differential equations, but the same prediction possibility holds
also for differential equations that take the non-linear character of electrical
components into account.

For example, to take into account the dependence of the resistance on the
temperature, we replace the term I · R with a constant R by a terms that
describes this dependence, such as I · (R0 + R1 · (T − T0)), and we add extra
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differential equations that describe how the resistor’s temperature T changes
with time.

So, in the absence of the arcs, once we know a reasonably small num-
ber of parameters and the equations, we can predict all the measured values
x(t1), . . . , x(tn) of the observed electrical signal. In the computer, storing a real
number takes a few bytes (usually, 4 or 8 bytes), so storing all the parameters
and the equations takes a very small number of bytes.

In contrast, to detect an arc, we perform measurements at tens to hundreds
of KHz and above, and keep it for at least a few milliseconds. Usually, thou-
sands of numbers are stored, so storing all the measured values x(t1), . . . , x(tn)
requires a few Kilobytes.

The arc bring un-predictability to the system; in the presence of the arc, it
is no longer possible to predict the future values of the signal: we can predict
the “non-arc” component, but the unpredictable arcs contributes unpredictable
additions ∆x(ti) to the corresponding signals. Thus, in the presence of the arc,
to be able to predict all the values x(11), . . . , x(tn), it is no longer sufficient to
only know a few parameters of the electrical system, we also need to know the
values ∆x(ti) for all the moments of time at which the arcing occurred.

Let us summarize this situation:

• in the absence of an arc, to predict the observed sequence of measurement
results x(t1), . . . , x(tn), it is sufficient to use a few values and a reasonably
simple program;

• in the presence of the arc, to predict this sequence, we need a large
number of values.

When described in these terms, such a difference becomes not specific to arcing,
it is a phenomenon well-studied in computational sciences by Kolmogorov and
others, and it is known as Algorithmic Information Theory, or Kolmogorov
Complexity; see, e.g., [7].

Kolmogorov complexity does not deal specifically with real numbers ot
differential equations, it deals with general information as it is represented in
the computer. Inside the computer, everything is represented as a sequence of
0s and 1s, so every object – be it a real number or a sequence of real numbers
(or an image) – can be described as a binary sequence s (i.e., as a sequence of
0s and 1s).

Kolmogorov complexity K(s) of a binary sequence s is defined as the small-
est size of a the code (program + data) that enables to computer to generate
this sequence s. The size of a program is defined, e.g., as the number of bytes
that are needed to store this program in the computer. (Strictly speaking, the
above definition depends on the choice of a programming language, but it is
know that asymptotically, this does not matter much [7].)
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From this viewpoint, a sequence s0 consisting of 1,000,000 zeros is easy to
generate: it is sufficient to write a simple loop

for(i = 0; i < 1000000; i++)

printf("0");

This program is very short (even if we add all the needed headers etc.). Thus,
the Kolmogorov complexity of the regular sequence s0 is, by defintion, very
small, a few dozen bytes.

On the other hand, if we take a sequence s1 containing 1,000,000 bits gener-
ated by a truly random process, then the only way to reproduce this sequence is
to store this sequence in the program – which would require 1,000,000 bits, i.e.,
125,000 bytes. There may be a few places where accidentally, there is some or-
der, and which can, therefore, be compressed, but asymptotically, this will not
significantly decrease the size of the needed program. Thus, the Kolmogorov
complexity of the truly random sequence s1 is approximately 125,000 bytes.
(It is important to make sure that we have a truly random physical process,
because random number generators in many computer systems often produce
deterministic results, uniquely determined by the seed; the Kolmogorov com-
plexity of such a pseudo-random sequence is thus equal to the size of the seed
+ the size of the program, and is very small.)

The notion of Kolmogorov complexity allows us to reformulate the above
observation about the arcs in the following terms:

• When there is no arc, the sequence s = x(t1) . . . x(tn) containing all the
observed signals can be reproduced by using a short program with a few
parameters. So, the Kolmogorov complexity of this sequence is small.

• In contrast, when there is an arc, we have unpredictable additions to
each value x(ti) and thus, the shortest way to describe this sequence
is to store all these additions. Thus, in the presence of the arc, the
Kolmogorov complexity of the signal s is large.

This leads to the following natural idea of detecting an arc:

• we measure the Kolmogorov complexity K(s) of the signal

s = x(t1) . . . x(tn);

• if this value is small – e.g., smaller than a certain threshold K0 – then
we conclude that there is no arc; if K(s) > K0, then we conclude that
there is an arc.

This idea, unfortunately, cannot be implemented “as is”, because it has
been proven that, in general, Kolmogorov complexity of a given sequence can-
not be algorithmically computed; see, e.g., [7]. Since we cannot algorithmically
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compute the Kolmogorov complexity exactly, we therefore have to use algo-
rithms for computing approximate values of Kolmogorov complexity.

These algorithm exist – although they were not originally designed to esti-
mate Kolmogorov complexity, they were originally designed for data and signal
compression, and only later, the relation between compression and Kolmogorov
complexity because known – and efficiently utilized (see, e.g., [4, 5]; see also
[6], Slides 65–74).

The relation between compression and Kolmogorov complexity is rather
straighforward. Indeed, suppose that we have a large image, or a large video,
or a large data file. As we have mentioned, in the computer, the image (video,
data file) is represented simply as a sequence s of 0s and 1s. Compression
means that instead of storing the image bit-by-bit, we store some shorter-size
information (compressed file) and a program (decompressor) that enables us
to reconstruct the original image. The smaller the size of the compressed file,
the better. Thus, an ideal compression of a binary string s would mean that
we have found the shortest possible program + data that would enable us to
reconstruct s. This is exactly the definition of Kolmogorov complexity.

The fact that Kolmogorov complexity is not algorithmically computable
means that we are not able to find the shortest (best) compression. However,
nowadays, there are many reasonable compression algorithms that lead to very
good quality compression. Therefore,

• since we cannot compute the exact values of the Kolmogorov complex-
ity K(s) – i.e., the size of the compressed string s under ideal (best)
compression,

• a natural idea is to use the size K̃(s) of the compressed string under a
good compression algorithm.

This idea has been efficiently use in many applications [4, 5, 6].

Our proposal is to use it for arc detection. Specifically, to detect an arc:

• we apply a good compression algorithm to the binary sequence s =
x(t1) . . . x(tn) representing the signal x(t), and find the size K̃(s) of the
compression result;

• if this size is small – e.g., smaller than a certain threshold K0 – then we
conclude that there is no arc; if K̃(s) > K0, then we conclude that there
is an arc.

Our preliminary experiments have shown that this idea indeed leads to a good
arc detection.
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4 Important Technical Details

In the current definition of Kolmogorov complexity, we want to reproduce
the string s exactly. In other words, the notion of Kolmogorov complexity
corresponds to lossless compression.

In many practical situations, we do not really need the exact reproduction.
For example, in arc detection, the values x(ti) are obtained by measurement.
Measurement is never 100% accurate; there are always measurement inaccura-
cies (= measurement errors), as a result of which the measured values x̃(ti) are,
in general, slightly (up to a few percents) different from the actual (unknown)
values of the corresponding current. An important part of the measurement
error is a random error component, unpredictable (white-noise-type) additions
to the measured values.

When we say that we are able to reconstruct the measured values

x(11), . . . , x(tn),

what we mean is that we can predict the actual values of the current – and thus,
we can predict the measurement result with the accuracy of the corresponding
measurements.

From this viewpoint, instead of the original Kolmogorov complexity, it is
reasonable to use a modification that takes the accuracy into account. Since
we only know the string s only approximately (with some acquisition error ε),
there is no need to reproduce the string exactly – it is sufficient to reproduce
the string s with the accuracy with which it was acquired.

For example, if the know the standard deviation σ of the measurement
error, then for the sequence s̃ = x̃(t1) . . . x̃(tn) of the actual measurement
results and the sequence s = x(t1) . . . x(tn) of actual (unknown) values, we
have a relation

d(s̃, s)
def
=

1

n
·

n∑
i=1

(x̃(ti)− x(ti))
2 ≈ σ2.

In general, we may have different descriptions of the measurement error, but
one thing remains the same: there is a function d(s, )̃ that describes how close
two strings are, and there is a value ε that describes the accuracy of the original
string acquisition.

In there terms, the modified definition of Kolmogorov complexity takes the
following form: under the distance function d, an ε-Kolmogorov complexity
Kε(s) of a string s can be described as the smallest size of a program + data
that generates a string s̃ which is ε-close to s – i.e., for which d(s̃, s) ≤ ε.

We have already mentioned that since we cannot compute the exact val-
ues of the Kolmogorov complexity, we have to use compression. The above
modification means that instead of the lossless compression (that reproduced
the signal exactly), we can use a lossy compression, i.e., a compression that
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reproduces the signal with a given accuracy. So, to detect an arc based on the
signal s = x(t1) . . . x(tn), we do the following:

• we apply a good lossy compression algorithm to the binary sequence
s = x(t1) . . . x(tn) representing the signal x(t), with the reconstruction
accuracy equal to the acquisition accuracy ε, and find the size K̃ε(s) of
the compression result;

• if this size is small – e.g., smaller than a certain threshold K0 – then we
conclude that there is no arc; if K̃ε(s) > K0, then we conclude that there
is an arc.

Lossy compressions are usually faster and easier to implement in hardware;
thus, the possibility to use a lossy compression enables us to save time on arc
detection.

There is an additional potential positive effect of using a lossy compression:
when we set this accuracy threshold right, the lossy modification will enable
us to filter out (at least some) effects of the measurement noise and thus, lead
to a (somewhat) more accurate arc detection.
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[7] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its
Applications, Springer Verlag, New York, 1997.

[8] P. Meckler, K.J. Eichhorn, and W. Ho, Detecting and extinguishing of
arcs in aircraft electrical systems, Proc. of the 2001 Aerospace Congress,
Seattle, Washington, September 10–14, 2001, paper # SAE-2001-01-2657.

[9] B.D. Russell and B.M. Aucoin, Arc Spectral Analysis System, U.S. Patent
5,578,931, November 26, 1996.

[10] Underwriters Laboratories, UL1699 Standard for Arc Fault Circuit Inter-
rupters, April 2006.

[11] J.J. Zuercher and C.J. Tennies, Arc Detection Using Current Variation,
U.S. Patent 5,452,223, September 19, 1995.

Received: Month xx, 200x


	University of Texas at El Paso
	DigitalCommons@UTEP
	6-1-2010

	Minimum Description Length (MDL) Principle as a Possible Approach to Arc Detection
	Jan Beck
	David Nemir
	Vladik Kreinovich
	Recommended Citation



