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Continuous If-Then Statements Are Computable

Martine Ceberio and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA,

mceberio@utep.edu, vladik@utep.edu

Abstract. In many practical situations, we must compute the value of
an if-then expression f(x) defined as “if c(x) ≥ 0 then f+(x) else f−(x)”,
where f+(x), f−(x), and c(x) are computable functions. The value f(x)
cannot be computed directly, since in general, it is not possible to check
whether a given real number c(x) is non-negative or non-positive. Sim-
ilarly, it is not possible to compute the value f(x) if the if-then func-
tion is discontinuous, i.e., when f+(x0) 6= f−(x0) for some x0 for which
c(x0) = 0.

In this paper, we show that if the if-then expression is continuous, then
we can effectively compute f(x).

Practical need for if-then statements. In many practical situations, we have dif-
ferent models for describing a phenomenon:

– a model f+(x) corresponding to the case when a certain constraint c(x) ≥ 0
is satisfied, and

– a model f−(x) corresponding to the case when this constraint is not satisfied,
i.e., when c(x) < 0 (usually, the second model is also applicable when
c(x) ≤ 0).

For example, in Newton’s gravitation theory, when we are interested in the
gravitation force generated by a celestial body – i.e., approximately, a sphere of
a certain radius R – we end up with two different formulas:

– a formula f+(x) that describes the force outside the sphere, i.e., where

c(x) def= ‖r‖ −R ≥ 0,

and
– a different formula f−(x) that describes the force inside the sphere, i.e.,

where

c(x) = ‖r‖ −R ≤ 0.



Towards a precise formulation of the computational problem. In such situations,
we have the following problem:

– we know how to compute the functions f+(x), f−(x), and c(x);
– we want to be able to compute the corresponding “if-then” function

f(x) def= if c(x) ≥ 0 then f+(x) else f−(x).

In general, we say that a function f(x) is computable if there is an algorithm
that, given an input x and a rational number ε > 0, produces a rational number
r for which |f(x)− r| ≤ ε.

In the above formulation, we assume that the function c(x) is computable
for all possible values x from a given set X, and that:

– the function f+(x) is computable for all values x ∈ X for which c(x) ≥ 0;
and

– the function f−(x) is computable for all values x ∈ X for which c(x) ≤ 0.

Why this problem is non-trivial. The value f(x) cannot be computed directly,
since in general, it is not possible to check whether a given real number c(x) is
non-negative or non-positive; see, e.g., [2, 3].

Discontinuous if-then statements are not computable. It is known that every
computable function is everywhere continuous; see, e.g., [3].

Thus, when the if-then function f(x) is not continuous, i.e., when f+(x0) 6=
f−(x0) for some x0 for which c(x0) = 0, then the function f(x) is not computable.

Our main result. In this paper, we show that in all other cases, i.e., when the
if-then function f(x) is continuous, it is computable.

Algorithm: main idea. The main idea behind our algorithm is that in reality, we
have one of the three possible cases:

– case of c(x) > 0, when f(x) = f+(x);
– case of c(x) < 0, when f(x) = f−(x); and
– case of c(x) = 0, when f(x) = f+(x) = f−(x).

Let us analyze these three cases one by one.
In the first case, let us compute c(x) with higher and higher accuracy ε =

2−k, k = 1, 2, . . . As soon as we reach the accuracy 2−k <
c(x)
2

, for which

c(x) > 2 · 2−k, we get an approximation rk for which |c(x)− rk| ≤ 2−k, i.e., for
which

rk > c(x)− 2−k ≥ 2 · 2−k − 2−k = 2−k

and thus, rk > 2−k. Since we know that c(x) ≥ rk − 2−k, we thus conclude that
c(x) > 0.



Similarly, in the second case, if we compute c(x) with higher and higher ac-

curacy 2−k, we will reach an accuracy 2−k <
|c(x)|

2
, for which the corresponding

approximate value rk satisfy the inequality rk < −2−k and thus, we can conclude
that c(x) < 0.

In the third case, since f+(x) = f−(x), if we compute f+(x) and f−(x) with
accuracy ε > 0, then the resulting approximate values r+ and r− satisfy the
inequalities |f(x) − r+| = |f+(x) − r+| ≤ ε and |f(x) − r−| = |f−(x) − r−| ≤ ε
and therefore,

|r+ − r−| ≤ |r+ − f(x)|+ |f(x)− r−| ≤ ε + ε = 2ε.

Vice versa, if the inequality |r+ − r−| ≤ 2ε is satisfied (even if we know
nothing about c(x)), then in reality, the value f(x) coincides wither with f+(x)
or with f−(x).

In the first subcase, when f(x) = f+(x), we have

|f(x)− r+| = |f+(x)− r+| ≤ ε

and

|f(x)− r−| = |f+(x)− r−| ≤ |f+(x)− r+|+ |r+ − r−| ≤ ε + 2ε = 3ε.

Thus, due to convexity of the absolute value, we have

|f(x)− r| ≤ 1
2
· (|f(x)− r+|+ |f(x)− r−|) ≤ ε + 3ε

2
= 2ε.

In the second subcase, when f(x) = f−(x), we have

|f(x)− r−| = |f−(x)− r−| ≤ ε

and

|f(x)− r+| = |f−(x)− r+| ≤ |f−(x)− r−|+ |r− − r+| ≤ ε + 2ε = 3ε.

Thus, due to convexity of the absolute value, we have

|f(x)− r| ≤ 1
2
· (|f(x)− r−|+ |f(x)− r+|) ≤ ε + 3ε

2
= 2ε.

In both case, we have |f(x) − r| ≤ 2ε. So, if we want to compute f(x) with
a given accuracy α > 0, it is sufficient to find

α

2
-approximations r− and r+ to

f−(x) and f+(x) for which |r+ − r−| ≤ α

Thus, we arrive at the following algorithm for computing the if-then func-
tion f(x).



Resulting algorithm. To compute f(x) with a given accuracy α, we simultane-
ously run the following three processes:

– computing c(x) with higher and higher accuracy ε = 2−k, k = 1, 2, . . .;
– computing f−(x) with accuracy

α

2
; and

– computing f+(x) with accuracy
α

2
.

Let us denote:

– the result of computing c(x) with accuracy 2−k by r,
– the result of the second process by r−, and
– the result of the third process by r+.

As we have mentioned in our analysis, eventually, one of the following three
events will happen:

– either we find out that rk > 2−k; in this case we know that (c(x) > 0 and
hence) the third process will finish, so we finish it and return r+ as the
desired α-approximation to f(x);

– or we find out that rk < −2−k; in this case we know that (c(x) < 0 and
hence) the second process will finish, so we finish it and return r− as the
desired α-approximation to f(x);

– or we find out that |r+− ri| ≤ α; in this case, we return r =
r− + r+

2
as the

desired α-approximation to f(x).

Historical comment. Our proof is a simplified version of the proofs described, in
a more general setting, in [3]; see also [1].
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