
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

3-1-2008

Applications of 1-D Versions of Image Referencing
Techniques to Hydrology and to Patient
Rehabilitation
Roberto Araiza
University of Texas at El Paso, raraiza@miners.utep.edu

Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Naga Suman Kanagala

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Gang Xiang

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-08-12a
Published in Proceedings of the 27th International Conference of the North American Fuzzy Information
Processing Society NAFIPS'2008, New York, New York, May 19-22, 2008.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Araiza, Roberto; Ceberio, Martine; Kanagala, Naga Suman; Kreinovich, Vladik; and Xiang, Gang, "Applications of 1-D Versions of
Image Referencing Techniques to Hydrology and to Patient Rehabilitation" (2008). Departmental Technical Reports (CS). Paper 79.
http://digitalcommons.utep.edu/cs_techrep/79

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/79?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Applications of 1-D Versions of Image Referencing
Techniques to Hydrology and to Patient

Rehabilitation
Roberto Araiza, Martine Ceberio,

Naga Suman Kanagala,
and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968
Contact email vladik@utep.edu

Gang Xiang
Philips Healthcare Informatics

El Paso, TX 79912
Email: gxiang@acm.org

Abstract�In this paper, we consider two seemingly unrelated
problems: the hydrology problem of relation between groundwa-
ter and surface water, and a problem of identi�cation of human
gait in neuro-rehabilitation. It turns out that in both problems, we
can ef�ciently use soft computing-motivated algorithms originally
developed for image referencing.

I. FIRST PRACTICAL PROBLEM: RELATION BETWEEN
GROUNDWATER AND SURFACE WATER

Most of our water consumption comes from groundwater
reservoirs. Because of this, it is vitally important, for each
project � whether it is a new water-consuming manufacturing
plant or a new way of agriculture irrigation � to predict how
this project will affect the groundwater. One way groundwa-
ter is affected is through the surface water: contamination
of surface water can lead to an eventual contamination of
groundwater. The relation between groundwater and surface
water is often very complex. In some geographic areas, the
groundwater reservoirs are pretty secure; whatever surface
water seeps into these reservoirs, it takes a long time, during
which many contaminants are safely dissolved. In other areas,
the relation is more straightforward, and the contaminants in
the surface water take a very short time to propagate into the
groundwater reservoirs.

In view of this possible difference, it is desirable to de-
termine a delay t0 between the change in the surface water
and the resulting change in the groundwater. One way to �nd
this time delay is to measure the characteristics x(t) of the
surface water at different moments of time, and to measure
the characteristics x′(t) of the ground water. Because of the
delay, the characteristics of the groundwater x′(t) at a time t
are closely related with the state of the surface water at time
t− t0:

x′(t) ≈ x(t− t0).

The question is how to �nd the delay t0 once we know the
time series x(t) and x′(t); see, e.g., [5].

One possibility is to try all possible shifts t0 but this
is computationally very intensive. In this talk, we adjust
the known soft-computing-motivated fast image referencing
techniques (see, e.g., [4]) to design a fast algorithm that uses
Fast Fourier Transform for �nding the optimal shift.

II. SECOND PRACTICAL PROBLEM: IDENTIFICATION OF
HUMAN GAIT IN NEURO-REHABILITATION

Many neurological diseases such as stroke, traumatic body
injury, and spinal cord injury drastically decrease the pa-
tient's ability to walk without physical assistance. To re-
establish normal gait, patients undergo extensive rehabilitation.
At present, rehabilitation requires gait assessment by highly
quali�ed experienced clinicians. To make rehabilitations easier
to access and to decrease the rehabilitation cost, it is desirable
to automate gait assessment; see, e.g., [3].

In precise terms, a gait is measured by the dependence
x′(t) of some characteristic � e.g., the acceleration or the
angle between different parts of the foot. The gait assessment
means comparing the recorded patient's gait with a standard
(average) gait x(t) of healthy people of the same age, body
measurements, etc. One of the problems in this comparison is
that patients walk slower; so, to properly compare gaits, we
must �rst appropriately shift and �scale� the standard gait so
that it best matches the speed with which the patient walks,
i.e., to �nd the values t0 and λ for which

x′(t) ≈ x(λ · t− t0).

One possibility is to try all possible shifts and scalings but
this is computationally very intensive. In this talk, we adjust
the known image referencing techniques to design an ef�cient
algorithm that uses Fast Fourier Transform for �nding the
optimal combination of a shift and a scaling.
III. IMAGE REFERENCING (REGISTRATION) PROBLEM: A

BRIEF REMINDER

In geosciences, we often need to combine two (or more)
images of the same area:



• different images bring different information; so, to get
a better understanding, we must fuse the corresponding
data; e.g., we must combine a satellite image with a radar
image;

• comparison of two images � e.g., images made at differ-
ent moments of time � can also give us information about
the changes: e.g., by comparing pre- and post-earthquake
images, we can determine the effect of the earthquake.

Compared images are often obtained from slightly different
angles, from slightly different positions. Therefore, in order
to compare these images, we must �rst reference (register)
them, i.e., �nd the shift, rotation, and scaling after which
these images match as much as possible, and then apply these
transformations to the original images.

IV. IMAGE REGISTRATION ALGORITHMS: BRIEF
OVERVIEW

There exist many methods for image registration; see, e.g.,
[1], [6]. Among the most widely used methods are methods of
point matching, where we �nd the matching points in the two
images, and then the most appropriate transformation (rotation
and/or shift) which maps the points from one image into the
corresponding points from the other image.

Point matching methods work well when the images have
clearly identi�able matching points, and when we know the
images with a high accuracy � so that we can identify and
match these matching points with a reasonable accuracy. For
example, in satellite images, we often have clear matching
points representing special landmarks such as landmark city
areas, landmark bridges, or tips of peninsulas. Such landmarks
can usually be easily found in highly populated areas or in
special terrains in which the area is highly non-homogeneous:
e.g., there may be a clear shore line with a clear landmark
point, or there may be a large clearly distinguishable river
with a clear landmark turn.

However, there are many homogenous areas where it is
not easy to �nd landmarks. For example, in the desert areas
of the U.S. Southwest, the only visible landmarks are road
intersections, and there are usually several similar-looking road
intersections in the same image, so it is dif�cult to �nd the
matching points between the two images. Similarly, in the
mountain areas, there are many landmarks like summits and
ridges, but usually, there are several similar-looking summits
and ridges in each image, so it is dif�cult to match points in
the two images.

For images known with very low accuracy, we may still �nd
landmarks. However, since we only know the images with
a very low accuracy, we may only be able to locate these
landmarks with a very low accuracy, too low to enable us to
adequately register the two images.

Sometimes, instead of landmark points, we have landmark
features. For example, we may not have a landmark bridge,
but we may have a clearly distinguishable river. In such
situations, instead of matching points, we can match features.
Such feature-matching algorithms are also ef�ciently used in
image registration. However, in homogenous terrains and/or in

situations when we only know the images with low accuracy,
we may only be able to locate these features with a very low
accuracy, too low to enable us to adequately register the two
images.

In some cases, e.g., in many astronomical images, we have
an image surrounded by an empty space. In this case, even
when we cannot �nd the landmark points in the two images,
we can match these images by comparing, e.g., the centers of
gravity of these images. Alas, this is not the case in images
like satellite images or radar images.

As an example of low accuracy images for which regis-
tration is practically important, we will actually consider low
accuracy satellite images. So, in order to come up with an
algorithm for registering low accuracy images, an algorithm
which should be applicable for satellite images, we must
place our emphasis on image registration techniques which go
beyond point matching, feature matching, or simple geometric
transformations in the image domain. Many such algorithms
are based on the use of the Fast Fourier Transform (FFT).

Before we start describing these methods and adjusting them
to the signal, let us provide a motivation for using FFT in such
problems.

V. WHY FOURIER-BASED METHODS

Let us start with a hydrology-motivated problem. We have
two functions x(t) and x′(t), and we must �nd the shift t0
for which the signal x′(t) will be, in some reasonable sense,
the closest to the shifted signal x(t − t0). A reasonable way
to describe the closeness between the two signals is to require
that for every moment of time t, the corresponding intensities
are close to each other. We can use, e.g., the squared difference
(x′(t)−x(t−t0))2 between these values as the measure of the
similarity at t, and we can use the sum (integral)

∫
(x′(t) −

x(t− t0))2 dt of these square differences over all moments t
as the measure of overall similarity between the two signals.

The problem of �nding the shift t0 that minimizes the above
integral takes the following form: �nd t0 for which the integral∫

(x′(t)−x(t− t0))2 dt attains the smallest possible value. By
representing the square of the difference (x′−x)2 as the sum
of three terms (x′)2 + x2 − 2 · x′ · x, we can represent the
above scoring function as

∫
(x′(t))2 dt +

∫
x(t− t0)2 dt− 2

∫
x′(t) · x(t− t0) dt.

The �rst integral in the sum does not depend on the shift at
all. By using the new variable s = t−t0, we can show that the
second integral is equal to

∫
x(s)2 ds and thus, also does not

depend on the shift. So, �nding the shift for which the sum
is the smallest possible is equivalent to �nding the shift for
which the cross-correlation term

∫
x′(t) · x(t− t0) dt attains

the largest possible value.
For signals described by values at n moments of time,

a straightforward approach would require that we compute
the value of the scoring function for all n possible shifts t0.
Computing each integral requires time O(n), so overall, we
need time O(n) ·O(n) = O(n2).



This computation can be performed much faster if we take
into account that the cross-correlation term is a convolution
between the signals x(t) and x′(t). Convolution is one of the
main techniques in signal processing, and it is well known that
we can compute convolution faster (in time O(n · log(n))) by
using Fast Fourier Transform (FFT); see, e.g., [2]. Speci�cally,
to compute the convolution, we need the following steps:
• �rst, we apply FFT to the original signals, resulting in

functions F (ω) and F ′(ω);
• then, for each frequency ω, we compute the product

R(ω) def= F (ω) · (F ′)∗(ω)

(where F ∗ means complex conjugation);
• �nally, we apply the inverse Fourier transform to the

resulting function R(ω), and get the desired auto-
correlation function.

We can now �nd the shift as the value t0 for which the cross-
correlation attains the largest possible value.

The FFT of a signal of size n requires O(n · log(n)) steps.
Multiplication of the two Fourier transforms and the �nal
search for the largest value both require processing each value
ω and t0 once, so both require time O(n). As a result, we
can �nd the desired shift t0 in time O(n · log(n)) + O(n) =
O(n · log(n)).

VI. THE SIMPLEST CASE: SHIFT DETECTION IN THE
ABSENCE OF NOISE

Let us �rst consider the above case when two signals differ
only by shift. It is known that if two signals x(t) and x′(t)
differ only by shift, i.e., if x′(t) = x(t − t0) for some
(unknown) shift t0, then their Fourier transforms

F (ω) =
1√
2π

·
∫

x(t) · e−2π·i·(t·ω) dt,

F ′(ω) =
1√
2π

·
∫

x′(t) · e−2π·i·(t·ω) dt,

where i def=
√−1, are related by the following formula:

F ′(ω) = e2π·i·(−ω·t0) · F (ω). (1)

Let us explain this formula. Since x′(t) = x(t−t0), the Fourier
transform F ′(ω) of the image x′(t) takes the form

F ′(ω) =
1√
2π

·
∫

x(t− t0) · e−2π·i·(t·ω) dt.

We can simplify this expression if we introduce a new
variable s

def= t − t0, so that t = s + t0. Here, ds = dt,
so

F ′(ω) =
1√
2π

·
∫

x(s) · e−2π·i·((s+t0)·ω) ds.

Here, ((s + t0) · ω) = (s · ω) + (t0 · ω), hence

e−2π·i·((s+t0)·ω) = e−2π·i·(s·ω) · e−2π·i·(t0·ω).

The second factor does not depend on s, so we can move it
outside the integral and conclude that

F ′(ω) = e−2π·i·(t0·ω) ·
(

1√
2π

·
∫

x(s) · e−2π·i·(s·ω) ds

)
.

The expression in parentheses is exactly F (ω), so indeed the
formula (1) is true.

It is known that the magnitude |e−2π·i·(t0·ω)| (also known
as the modulus or the absolute value) of the complex value

e−2π·i·(ω·t0) = cos(−2π · (ω · t0)) + i · sin(−2π · (ω · t0))
is equal to 1. Therefore, if the images are indeed obtained
from each other by shift, then their Fourier transforms have
the same magnitude:

M ′(ω) = M(ω), (2)

where we denoted

M(ω) = |F (ω)|, M ′(ω) = |F ′(ω)|. (3)

The actual value of the shift t0 can be obtained if we use
the formula (1) to compute the value of the following ratio:

R0(ω) =
F ′(ω)
F (ω)

. (4)

Substituting (1) into (4), we get

R0(ω) = e−2π·i·(ω·t0). (5)

Therefore, the inverse Fourier transform P0(t) of this ratio is
equal to the delta-function δ(t + t0).

In other words, in the ideal no-noise situation, this inverse
Fourier transform P0(t) is equal to 0 everywhere except for
the point t = −t0; so, from P0(t), we can easily determine
the desired shift by using the following algorithm:

1) we apply FFT to the original signals x(t)
and x′(t) and compute their Fourier
transforms F (ω) and F ′(ω);

2) we compute the ratio R0(ω);
3) we apply the inverse FFT to the ratio

R0(ω) and compute its inverse
Fourier transform P0(t);

4) we determine the desired shift t0 as the
only value t0 for which P0(−t0) 6= 0.

VII. SHIFT DETECTION IN THE PRESENCE OF NOISE

The above simpli�ed algorithm assumes that the signals x(t)
and x′(t) are exactly the same signal, differing only by a shift:
x′(t) = x(t − t0). In real life, e.g., the measured intensity
of the groundwater values do not depend only on the surface
water levels, so the corresponding intensity values will be only
approximately equal: x′(t) ≈ x(t− t0).

In the ideal non-noise case, the inverse Fourier transform
P0(t) of the ratio (4) is equal to the delta-function

δ(t + t0),



i.e., equal to 0 everywhere except for the point t = −t0. In the
presence of noise, the values of P0(t) will be slightly different
from the delta-function. It seems reasonable to expect that still,
the value |P0(−t0)| should be much larger than all the other
values of this function. Thus, in principle, it may seem that
the value of the shift can be determined as the value at which
|P0(−t0)| is the largest.

In practice, however, due to noise, for some frequencies ω,
the value of the Fourier transform F (ω) corresponding to the
signal x(t) may be close to 0, while the value of the Fourier
transform F ′(ω) corresponding to the signal x′(t) may be non-
zero. For such frequencies, the ratio (4) can be very high.
These high values dominate the ratio R0(ω) and thus, distort
the inverse Fourier transform P0(t). To avoid this distortion,
it is desirable to replace the formula (4) with a more noise-
resistant one.

In general, one of the general techniques for making a
data processing algorithm more noise-resistant is to take into
account constraints on the input data. In the ideal case, the
magnitude |R0(ω)| of the complex ratio R0(ω) (as described
by the expression (4)) is equal to 1. In the presence of noise,
the observed values of the intensities may differ from the
actual values; as a result, their Fourier transforms also differ
from the values and hence, the magnitude of the ratio (4) may
be different from 1.

Let us therefore describe how we can improve the ac-
curacy of this method if, instead of simply processing the
measurement results, we take into consideration the additional
knowledge that the magnitude of the actual ratio (4) is exactly
equal to 1.

Let us denote the actual (unknown) value of the value
e−2π·i·(ω·t0) by r. Then, in the absence of noise, the equation
(1) takes the form

F ′(ω) = r · F (ω). (5)

In the presence of noise, the computed values F (ω) and
F ′(ω) of the Fourier transforms can be slightly different
from the actual values, and therefore, the equality (5) is only
approximately true:

F ′(ω) ≈ r · F (ω). (6)

In addition to the equation (6), we know that the magnitude
of r is equal to 1, i.e., that

|r|2 = r · r∗ = 1, (7)

where r∗ denotes a complex conjugate to r.
As a result, we know two things about the unknown value

r:
• that r satis�es the approximate equation (6), and
• that r satis�es the additional constraint (7).

We would like to get the best estimate for r among all
estimates that satisfy the condition (7). To get the optimal
estimate, we can use the Least Squares Method (LSM).
According to this method, for each estimate r, we de�ne the
error

E = F ′(ω)− r · F (ω) (8)

with which the condition (6) is satis�ed. Then, we �nd among
all estimates which satisfy the additional condition (7), a value
r for which the square |E|2 = E · E∗ of this error is the
smallest possible.

The square |E|2 of the error E can be reformulated as
follows:

E · E∗ = (F ′(ω)− r · F (ω)) · (F ′∗(ω)− r∗ · F ∗(ω)
)

=

F ′(ω) · F ′∗(ω)− r∗ · F ∗(ω) · F ′(ω)− r · F (ω) · F ′∗(ω)+

r · r∗ · F (ω) · F ∗(ω). (9)

We need to minimize this expression under condition (7).
For conditional minimization, there is a known technique of

Lagrange multipliers, according to which the minimum of a
function f(x) under the condition g(x) = 0 is attained when
for some real number λ, the auxiliary function f(x)+λ ·g(x)
attains its unconditional minimum; this value λ is called a
Lagrange multiplier.

For our problem, the Lagrange multiplier technique leads
to the following unconditional minimization problem:

MinimizeF ′(ω) · F ′∗(ω)− r∗ · F ∗(ω) · F ′(ω)−
r · F (ω) · F ′∗(ω) + r · r∗ · F (ω) · F ∗(ω)+

λ · (r · r∗ − 1). (10)

We want to �nd the value of the complex variable r for
which this expression takes the smallest possible value. A
complex variable is, in effect, a pair of two real variables,
so the minimum can be found as a point at which the partial
derivatives with respect to each of these variables are both
equal to 0. Alternatively, we can represent this equality by
computing the partial derivative of the expression (10) relative
to r and r∗. If we differentiate (10) relative to r∗, we get the
following linear equation:

−F ∗(ω) · F ′(ω) + r · F (ω) · F ∗(ω) + λ · r = 0. (11)

From this equation, we conclude that

r =
F ∗(ω) · F ′(ω)

F (ω) · F ∗(ω) + λ
. (12)

The coef�cient λ can now be determined from the condition
that the resulting value r should satisfy the equation (7). In
other words, we must have

|F ∗(ω) · F ′(ω)|
|F (ω) · F ∗(ω) + λ| = 1,

i.e., equivalently, that

|F ∗(ω) · F ′(ω)| = |F (ω) · F ∗(ω) + λ|. (13)

The expression F (ω) · F ∗(ω) + λ is a real number, so �
depending on the sign � its magnitude (absolute value) is equal
either to this same number or to its opposite, i.e.,

F (ω) · F ∗(ω) + λ = ±|F (ω) · F ∗(ω) + λ|. (14)



Due to (13) and (14), we thus have

F (ω) · F ∗(ω) + λ = ±|F ∗(ω)| · |F ′(ω)|. (15)

Substituting the expression (15) into the formula (11), we
conclude that

r = ± F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| .

In principle, the sign can depend on the frequency ω. However,
since the observed signals x(t) and x′(t) are functions which
are different from 0 only in a bounded area, their Fourier
transforms are continuous. It is therefore reasonable to con-
sider expressions which are continuously depending on the
frequency ω. To make the above expression continuous, we
must use the same sign for all frequencies. If we use the
positive sign for all the frequencies, then we arrive at the
following ratio:

r =
F ∗(ω) · F ′(~ω)
|F ∗(~ω)| · |F ′(~ω)| . (16)

(One can check that if we select a negative sign for all the
frequencies, we will end up with the exact same algorithm.)

So, in the presence of noise, instead of using the ratio (4),
we should compute, for every ω, the optimal approximation

R(ω) =
F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| . (17)

This expression is known in signal and image processing; it
is called a �cross-correlation power spectrum� (see, e.g., [1],
[6]). What we have just shown is that this expression provides
an optimal estimate for the desired value e−2π·i·(ω·t0).

How can we use this ratio in registration? In the ideal non-
noise case, when x′(t) = x(t− t0), the ratio (17) also equals
to e−2π·i·(ω·t0). Hence, in the ideal no-noise case, the inverse
Fourier transform P (t) of this ratio is equal to the delta-
function δ(t + t0), i.e., it is equal to 0 everywhere except
for the point t = −t0. In the presence of noise, we expect the
values of P (t) to be slightly different from the delta-function,
but still, the value |P (−t0)| should be much larger than all the
other values of this function. Thus, the value of the shift can
be determined as the value at which |P (−t0)| is the largest.
We arrive at the following algorithm:

1) we apply FFT to the original signals x(t)
and x′(t) and compute their Fourier
transforms F (ω) and F ′(ω);

2) we compute the ratio R0(ω);
3) we apply the inverse FFT to the ratio

R0(ω) and compute its inverse
Fourier transform P0(t);

4) we determine the desired shift t0 as the
only value t0 for which the magnitude
|P (−t0)| attains the largest possible value.

VIII. THE ROLE OF SOFT COMPUTING: A COMMENT

In the above explanation of why FFT-based techniques are
useful in shift detection, we started with the need to describe
the degree with which the signals x′(t) and x(t − t0) are
similar, and ended up with an integral expression

∫
(x′(t)− x(t− t0))2 dt.

To come up with this expression, we simply made a heuristic
transition. A more justi�ed way would be to use a formalism
which is speci�cally designed to translate natural-language
expressions like �close� and �similar� to explicit expressions
� the formalism of fuzzy logic.

For example, to describe the function �similar�, we can use
a Gaussian membership function

µ(x′ − x) = exp(−c · (x′ − x)2),

for some real number c > 0. In this case, for each moment of
time t, the degree with which the corresponding values x′(t)
and x(t− t0) are similar is equal to

exp(−c · (x′(t)− x(t− t0))2).

We want to �nd the degree to which the corresponding
values are similar for the �rst moment of time t(1), and the
corresponding values are similar for the second pixel t(2), etc.

If we use the algebraic product a ·b to describe �and� � one
of the choices proposed in Zadeh's original papers � then the
resulting degree that the images x′(t) and x(t−t0) are similar
is equal to the product

∏
t

exp(−c · (x′(t)− x(t− t0))2).

Since the product of the exponents is equal to the exponent
of the sum, this degree is equal to exp(−c · S), where

S
def=

∑
t

(x′(t)− x(t− t0))2.

Since the degree of similarity exp(−c · S) is a monotonically
decreasing function of S, to �nd the shift t0 for which the
degree of similarity between the signal x′(t) and the shifted
signal x(t− t0) is the largest, we must �nd the shift for which
the sum S is the smallest. This sum is, in effect, the desired
integral

∫
(x′(t)− x(t− t0))2 dt.

We have selected this quadratic expression simply to explain
that, even in this simple setting, we need to use FFT to make
shift determination more ef�cient. If this quadratic integral
was the most adequate expression of the degree of similarity
between the two images, then we would be able to argue that,
since this expression is an example of least square expressions
used in statistical data processing, we could probably use the
traditional statistical techniques to derive this expression.

However, it is known that in many practical problems, the
above more sophisticated FFT-based algorithm works much
better than the minimization of the quadratic integral (see, e.g.,
[1]) � which shows that the quadratic integral is, in general, not
necessarily the most adequate description of image matching.



Intuitively, it is reasonably clear why the more sophisticated
algorithm is often better: in the ideal case of the exact shift,
this algorithm returns an impulse function, which has 0 values
everywhere except for the desired shift point −t0, and which
has a high value at −t0. In contrast, the value of the cross-
correlation function is slowly decreasing around t = −t0. Not
surprisingly, in the presence of a reasonable noise, the new
algorithm leads to a more accurate reconstruction of the shift
than the method based on the minimization of the quadratic
integral.

The fact that a more sophisticated expression for the degree
of similarity is needed is a good indication that soft computing
techniques are needed here: for soft computing, if we select
more complex membership functions and more complex �and�
operations (t-norms), we would end up with more complex
expression for the degree of similarity between the two images.

IX. REDUCING SCALING TO SHIFT

Let us now consider a more complex problem, in which we
must �nd a shift t0 and scaling λ for which

x′(t) ≈ x(λ · t− t0).

Since, in addition to shift, we also have scaling, the mag-
nitudes M(ω) and M ′(ω) of the corresponding Fourier trans-
forms are not equal, but differ from each by the corresponding
scaling:

M ′(ω) ≈ 1
λ
·M

(ω

λ

)
.

If we go to log frequencies ρ = log(ω) (for which ω =
exp(ρ)), then scaling becomes shift-like: ρ → ρ − b, where
b = log(λ). So, in log frequencies, scaling is described by a
shift.

In view of the above reduction, in order to determine the
scaling between M and M ′, we can do the following:

• transform both images from the original frequencies to
log frequencies;

• use the above FFT-based algorithm to determine the
corresponding shift log(λ);

• from the corresponding �shift� values, reconstruct the
scaling coef�cient λ.

Comment. The main computational problem with the trans-
formation to log frequencies is that we need values M(ξ) on
a rectangular grid in log frequencies space, but computing
log(ω) for the original grid points leads to points outside that
grid. So, we need interpolation to �nd the values M(ξ) on the
desired grid. One possibility is to use linear interpolation.

X. FINAL ALGORITHM: DETERMINING SHIFT AND
SCALING

1) we apply FFT to the original signals x(t)
and x′(t) and compute their Fourier
transforms F (ω) and F ′(ω);

2) we compute the magnitudes M(ω) = |F (ω)|
and M ′(ω) = |F ′(ω)| of these Fourier
transforms;

3) we apply the above scaling detection
algorithm to the functions M(ω) and
M ′(ω), and determine the scaling
coef�cient λ;

4) we apply the corresponding scaling to x(t);
as a result, we get a new signal x̃(t);

5) the signals x̃(t) and x′(t) are
already aligned in terms of scaling, the only
difference between them is in an (unknown)
shift; so, we again apply the above described
FFT-based algorithm for determining shift:
this time, actually to determine shift.

As a result, we get the desired values of shift and scaling.
This algorithm also requires the time O(n · log(n)). hence, we
get the desired registration.
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