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Abstract. Planning is a very important AI problem, and it is also a
very time-consuming AI problem. To get an idea of how complex dif-
ferent planning problems are, it is useful to describe the computational
complexity of different general planning problems. This complexity has
been described for problems in which planning is based on the (complete
or partial) information about the current state of the system. In real-life
planning problems, we can often complement the incompleteness of our
ezplicit knowledge about the current state by using the implicit knowl-
edge about this state which is contained in the description of the system’s
past behavior. For example, the information about the system’s past fail-
ures is very important in planning diagnostic and repair. To describe
planning which can use the information about the past, a special lan-
guage £ was developed in 1997 by C. Baral, M. Gelfond and A. Provetti.
In this paper, we expand the known results about computational com-
plexity of planning (including our own previous results) to this more
general class of planning problems.

1 Introduction

1.1 Planning problems: towards a more realistic formulation

Planning problems: traditional approach, with complete information
about the initial state. Planning is one of the most important AI problems.
Traditional AI formulations of this problem mainly cover situations in which we
have a (complete or partial) information about the current state of the system,
and we must find an appropriate plan (sequence of actions) which would enable
us to achieve a certain goal.

Such situations are described, e.g., by the language A which was proposed
in [8].

In this language, we start with a finite set of properties (fluents) F =
{f1,--., fn} which describe possible properties of a state.



A state is then defined as a finite set of fluents, e.g., {} or {f1, f3}. We are
assuming that we have a complete knowledge about the initial state: e.g., { f1, f3}
means that in the initial state, properties fi and f3 are true, while all the other
properties fs, f4, ... are false. The properties of the initial state are described by
formulas of the type “initially F,” where F is a fluent literal, i.e., either a fluent
fi or its negation —f;.

There is also a finite set A of possible actions. At each moment of time, an
agent can execute an action. The results of different actions a € A are described
by rules of the type “a causes F' if Fy,...,F,”, where F, Fy,..., F,, are fluent
literals. A reasonably straightforward semantics describes how the state changes
after an action:

— If before the action a, the literals Fi,..., F,, were true, and the domain
description contains a rule according to which a causes F if Fy,..., Fp,,
then this rule is activated, and after the execution of action a, F' becomes
true. Thus, for some fluents f;, we will conclude f; and for some other, that
= fi holds in the resulting state.

— If for some fluent f;, no activated rule enables us to conclude that f; is true
or false, this means that the execution of action a does not change the truth
of this fluent. Therefore, f; is true in the resulting state if and only if it is
true in the old state. (This case represents inertia.)

Formally, a domain description D is a finite set of value propositions of the type
“initially f” (which describe the initial state), and a finite set of effect propositions
of the type “a causes f if f1,..., fm” (which describe results of actions). A state s
is a finite set of fluents. The initial state so consists of all the fluents f; for which
the corresponding value proposition “initially f;” is contained in the domain
description. (Here we are assuming that we have complete information about
the initial situation.) We say that a fluent f; holds in s if f; € s; otherwise, we
say that —f; holds in s.

The transition function res(a,s) which describes the effect of an action a on
a state s is defined as follows:

— we say that an effect proposition “a causes F'if Fi,...,F,,” is activated in a
state s if all m fluent literals Fi,..., F, hold in s;

— we define V1 (a,s) as the set of all fluents f; for which a rule “a causes f; if
Fi,...,F,,” is activated in s;

— similarly, we define V; (4, S) as the set of all fluents f; for which a rule “a
causes —f; if F1,...,F,,” is activated in s;

— if Vi (a,8) NV}, (a,8) # 0, we say that the result of the action a is undefined;
— if the result of the action a is not undefined in a state s (i.e., if V}(a,s) N
Vj (a, s) = 0), we define res(a, s) = (s UV (a,3)) \ Vj (a, s).

A plan a is a sequence of of actions @ = [a1,...,ay]; the result
res(an,res(an—1,...,res(a1,s)...)) of applying these actions to the state s is
denoted by res(a, s).



To complete the description of deterministic planning, we must formulate
possible objectives. In general, as an objective, we can take a complex combi-
nation of elementary properties (fluents) which characterize the final state; for
example, a typical objective of an assembling manufacture robot is to reach
the state of the world in which all manufactured items are fully assembled. To
simplify the description of the problem, we can always add this combination
as a new fluent; thus, without losing generality, it is sufficient to consider only
objectives of the type f € F.

In these terms, the planning problem can be formulated as follows: given a
set of fluents F, a goal f € F, a set of actions A and a set of rules D describing
how these actions affect the state of the world, to find a sequence of actions
a = [a1, ..., a] that, when executed from the initial state of the world sq, makes
f true. The problem of plan checking is, given F, A, a goal, and a sequence of
actions «, to check whether the goal becomes true after execution of a in the
initial state.

Next step: planning in case of incomplete information about the initial
state. The language A describes allows planning in the situations with complete
information, when we know exactly which fluents hold in the initial state and
which don’t. In real life, we often have only partial information about the initial
state: about some fluents, we know that they are true in the initial state, about
some other fluents, we know that they are false in the initial state; and it is also
possible that about some fluents, we do not know whether they are initially true
or false.

For example, when we want a mobile robot to reach a certain point, we
often do not have a complete information about the state of the world; this is
especially true in space applications, when the goal of the robot is to explore
new environments whose state is initially unknown. When we plan a diagnostic
and repair of a complex object, be it a computer, a car, etc., we do not know
which parts are functioning correctly and which parts are not — this is exactly
what we are trying to find out. In terms of fluents, this means that we do not
know the initial values of the fluents which describe the correct functionality of
the system’s parts.

Such situations can also be easily described by a simple modification of the
above language A. Namely, if for some fluent f, neither the statement “initially
f7, not the statement “initially —f” are given, we assume that two different
initial situations are possible: when f if initially true, and when —f is false in
the initial state. As a result, instead of a single initial state so, we may have
several different initial states which are consistent with our knowledge about the
system.

In this case, the notion of a successful plan becomes slightly more complex:
namely, we say that a plan is successful if for every initial state s which is
consistent with our knowledge, after we apply the plan «, the desired fluent g
holds in the resulting state res(a, s).

Adding sensing actions. In real-life planning problems like the above-
mentioned problems of robotic motion or system diagnostic, a reasonable plan



involves using sensors to find the missing information. Even in simple real-life
planning situations, it is often necessary to determine the missing information.
For example, if we want the door closed, the required action depends on whether
the door was initially open (then we close it), or it was already closed (then we
do nothing). Therefore, if we do not know whether the door was initially closed
or not, we better somehow find it out, and then, depending on the result of this
investigation, perform the corresponding action.

To describe such activities, we must include sensing actions — e.g., an action
check; which checks whether the fluent f; holds in a given state — to our list of
actions, and allow conditional plans, i.e., plans in which the next action depends
on the result of the previous sensing action.

To describe such actions, the language A was enriched by rules of the type “a
determines f”, meaning that after the action a is performed, we know whether
f is true or not. At any given moment of time, we have the actual state s of the
system (which may be not completely known to the agent), plus a set X of all
possible states which are consistent with the agent’s knowledge; the pair (s, X)
is called a k-state. A sensing action does not change the actual state s, but it
does decrease the set X.

Since we will now be dealing with incompleteness of information about the
real world, we will need to reason with the agent’s knowledge about the world.
A k-state is defined as pair (s, X), where s is the actual state, and X' is the set
of all possible states where the agent thinks it may be in. Initially, the set X
consists of all the states s for which:

— afluent f; is true (f; € s) if the domain description D contains the proposi-
tion “initially f;”;

— a fluent f; is false (f; & s) if the domain description D contains the propo-
sition “initially —f;”.

If neither the proposition “initially f;”, nor the proposition “initially =f;” are in
the domain description, then Y, contains some states with f; true and others
with f; false. The actual initial state sy can be any state from the set Y. The
transition function due to action execution is defined as follows:

— for proper (non-sensing) actions, {s, X') is mapped into
(res(a, s),res(a, X)), where:
e res(a, s) is defined as in the case of complete information, and
o res(a, X)) = {res(a,s") |s' € X}.
— for a sensing action a which senses fluents fi,..., fr — i.e., for which sensing
propositions “a determines f;” belong to the domain D — the actual state
s remains unchanged while X' is down to only those states which have the
same values of f; as s: (s, X) = (s, X'), where

Y ={seX|Vil<i<k—=(fics & fi€s)}

In the presence of sensing, an action plan may no longer be a pre-determined
sequence of actions: if one of these actions is sensing, then the next action may



depend on the result of that sensing. In general, the choice of a next action may
depend on the results of all previous sensing actions. Such an action plan is
called a conditional plan.

Possibility of knowledge about the past. In the situations when we only
have a partial information about the current (present) state, the additional in-
formation can be deduced from knowing the history of the system’s behavior.
This additional information about the past is extremely important in diagnostic
problems: if we know what types of faulty behavior the system exhibited in the
past, it helps in diagnostics (sometimes this information about the past is even
sufficient for a successful repair, and no additional sensing is necessary). Sim-
ilarly, when a medical doctor plans a cure, information about past diseases is
as important (and sometimes even more important) than the results of different
tests (“sensing actions”).

Since this additional information is very important in many practical plan-
ning problems, it is desirable to include this information into the corresponding
AT formalisms.

To describe the use of knowledge about the past in planning problems, in [1,
2], the language A was extended to a new language £. In this new language, to
describe the history of the system, first of all, the current state sy is separated
from the initial state sg, so we may have statements about what is true at sq (“F
at so”) and statements about what is true at sy (“F at sy”). In addition, we
may have information about other states in the past; to describe this information,
language L allows to use several constants s; to describe past moments of time,
and allows:

— statements of the type “s; precedes s2” which order past moments of time;
— statements of the type “F at s;” which describe the properties of the system
at the past moments of time, and
— statements which describe past actions:
e “a between s1,s5” means that a sequence of actions « was performed at
some point between the moments s; and sz, and
e “a occurs_at s” means that the sequence of actions o was implemented
at s.

The semantics of this history description is as follows:

— a history is defined as a triple consisting of an initial state sg, a sequence of
actions a = [aq, . ..,an], and a mapping ¢ which maps each constant s; from
the history description into an integer t(s;) < m (meaning the moment of
time when this constant actually happened, so t(sg) = 0 and ¢(s) = m); for
this history, we have, at moments of time 0,1, ..., m, states s(0) = sq, s(1) =
res(ay,s(0)), s(2) = res(az, s(1)), etc., and s; is identified with s(¢(s;));

— we say that the history is consistent with the given knowledge if all the
statements from this knowledge become true under this interpretation;

— we say that the history is possible if it is consistent and minimal in the sense
that no history with a proper subsequence of « is consistent.



In this more realistic situation, we can also ask about the existence of a plan, i.e.,
a sequence (or tree) of actions with a feasible execution time which guarantees
that for all possible current states, after this plan, the objective g € F will be
satisfied.

Let us give an example of such a situation. If a lamp is not broken, then,
when we switch it on, the light bulb should be switched on. If in the past, we
applied the action turn-on but the lamp did not go on, this means that the
lamp was broken at that time, and, if we know of no repair actions performed in
the past, we can therefore conclude that the lamp is still broken. This narrative
can be described by the following rules: “switch_on causes lamp_on if —broken”
“switch_on occurs_at s1”, “s1 precedes s3”, “=lamp_on at s3”. From these rules,
we can conclude that the lamp is currently broken.

1.2 Computational complexity of planning problem: why it is
important, what is known, and what we are planning to do

It is important to analyze computational complexity of planning prob-
lems. Planning is one of the most important AI problems, but it is also known
to be one of the most difficult ones. While often in practical applications, we
need the planning problems to be solved within a reasonable time, the actual
application of planning algorithms may take an extremely long time. It is there-
fore desirable to estimate the potential computation time which is necessary
to solve different planning problems, i.e., to estimate the computational com-
plexity of different classes of planning problems. Even “negative” results, which
show that the problem belongs to one of the high-level complexity classes (e.g.,
that it is PSPACE-hard) are potentially useful: first, they prevent researchers
from wasting their time on trying to design a general efficient algorithm; second,
they enable the researchers to concentrate on either finding a feasible sub-class
of the original class of planning problems, or on finding (and/or justifying) an
approximate planning algorithm.

Known computational complexity results: in brief. There have been sev-
eral results on computational complexity of planning problems. These results
mainly cover the situations in which we have a (complete or partial) information
about the current state of the system, and we must find an appropriate plan
(sequence of actions) which would enable us to achieve a certain goal. As we
have mentioned earlier, such situations are described, e.g., by the language A
which was proposed in [8]. The complexity of planning in A was analyzed in our
earlier paper [3].

Ideally, we want to find cases in which the planning problem can be solved by
a feasible algorithm, i.e., by an algorithm U/ whose computational time t;;(w) on
each input w is bounded by a polynomial p(|w|) of the length |w| of the input w:
ty(z) < p(|w|) (this length can be measured bit-wise or symbol-wise). Since, in
practice, we are operating in a time-bounded environment, we should worry not
only about the time for computing the plan, but we should also worry about the
time that it takes to actually implement the plan. If an action plan consists of a



sequence of 22" actions, then this plan is not feasible. It is therefore reasonable
to restrict ourselves to feasible plans, i.e., by plans v whose length m (= number
of actions in it) is bounded by a given polynomial p(Jw|) of the length |w| of the
input w. For each such polynomial p, we can formulate the following planning
problem: given a domain description D (i.e., the description of the initial state
and of possible consequences of different actions) and a goal g (i.e., a fluent
which we want to be true), determine whether it is possible to feasibly achieve
this goal, i.e., whether there exists a feasible plan a (with m < p(|D|)) which
achieves this goal.

By solving this problem, we do not yet get the desired plan, we only check
whether a plan exists. However, intuitively, the complexity of this problem also
represents the complexity of actually finding a plan, in the following sense: if
we have an algorithm which solves the above planning problem in reasonable
time, then we can also find this plan. Indeed, suppose that we are looking for
a plan of length m < Fy, and an algorithm has told us that such a plan exists.
Then, to find the first action of the desired plan, we check (by applying the
same algorithm), for each action a € A, whether from the corresponding state
res(a, s) the desired goal g can be achieved in < Py — 1 steps. Since a plan of
length < Py does exist, there is such an action, and we can take this action as
ay. After this, we repeat the same procedure to find as, etc. As a result, we will
be able to find a plan of length < Py by applying the algorithm which checks the
existence of the plan < Py = p(|D|) times; so, if the existence-checking algorithm
is feasible, the resulting plan-construction algorithm is feasible as well.

General results on computational complexity of planning are given, e.g., in [5,
7,11]. For the language A, computational complexity of planning was first stud-
ied in [10]; the results about the computational complexity of different planning
problems in 4 are overviewed in [3,15].

When sensing is allowed, a plan is not a sequence, but rather a tree: every
sensing action means that we branch into two possible branches (depending on
whether the sensed fluent is true or false), and we execute different actions on
different branches. Similarly to the case of the linear plan, we are only interested
in plans whose execution time is (guaranteed to be) bounded by a given poly-
nomial p(|D]) of the length of the input. (In other words, we require that for
every possible branch, the total number of actions on this branch is bounded by
p(ID)).)

For such planning situations, the computational complexity was also surveyed

in [3].
What we are planning to do. We have mentioned that a more realistic de-
scription of a planning problem involves the use of history (information about the
past) in planning. In this paper, we answer the following natural question: How
does the addition of history change the computational complexity of different
planning problems?

Comment. In addition to the possibility of describing history, the language A
can also be extended by adding static causal laws, which can make the results
of an action non-deterministic. This non-determinism may further increase the



complexity of the corresponding planning problem; we are planning to analyze
this increase in our future work.

Useful complexity notions. Most papers on computational complexity of
planning problems classify these problems to different levels of the polynomial hi-
erarchy. For precise definitions of the polynomial hierarchy, see, e.g., [12]. Crudely
speaking, a decision problem is a problem of deciding whether a given input w
satisfies a certain property P (i.e., in set-theoretic terms, whether it belongs to
the corresponding set S = {w | P(w)}).

A decision problem belongs to the class P if there is a feasible (polynomial-
time) algorithm for solving this problem.

A problem belongs to the class NP if the checked formula w € S (equiv-
alently, P(w)) can be represented as FuP(u,w), where P(u,w) is a feasible
property, and the quantifier runs over words of feasible length (i.e., of length
limited by some given polynomial of the length of the input). The class NP is
also denoted by X1 P to indicate that formulas from this class can be defined by
adding 1 existential quantifier (hence X' and 1) to a polynomial predicate (P).

A problem belongs to the class coNP if the checked formula w € S (equiva-
lently, P(w)) can be represented as YuP(u,w), where P(u,w) is a feasible prop-
erty, and the quantifier runs over words of feasible length (i.e., of length limited
by some given polynomial of the length of the input). The class coNP is also de-
noted by II; P to indicate that formulas from this class can be defined by adding
1 universal quantifier (hence IT and 1) to a polynomial predicate (hence P).

For every positive integer k, a problem belongs to the class X P if
the checked formula w € S (equivalently, P(w)) can be represented as
JuiVus .. . P(ui,us, - .., ug,w), where P(uq,...,ux,w) is a feasible property, and
all k quantifiers run over words of feasible length (i.e., of length limited by some
given polynomial of the length of the input).

Similarly, for every positive integer k, a problem belongs to the class ITyP
if the checked formula w € S (equivalently, P(w)) can be represented as
YuiJus ... P(u1,us,. .., u,, w), where P(uy,...,ur,w) is a feasible property, and
all k quantifiers run over words of feasible length (i.e., of length limited by some
given polynomial of the length of the input).

All these classes X P and II;P are subclasses of a larger class PSPACE
formed by problems which can be solved by a polynomial-space algorithm. It is
known (see, e.g., [12]) that this class can be equivalently reformulated as a class
of problems for which the checked formula w € S (equivalently, P(w)) can be
represented as VYuiJusg ... P(ui,us,...,u, w), where the number of quantifiers
k is bounded by a polynomial of the length of the input, P(u1,...,ur, w) is a
feasible property, and all k quantifiers run over words of feasible length (i.e., of
length limited by some given polynomial of the length of the input).

A problem is called complete in a certain class if, crudely speaking, this is
the toughest problem in this class (so that any other general problem from this
class can be reduced to it by a feasible-time reduction).

It is still not known (2000) whether we can solve any problem from the class
NP in polynomial time (i.e., in precise terms, whether NP=P). However, it is



widely believed that we cannot, i.e., that NP#P. It is also believed that to solve
a NP-complete or a coNP-complete problem, we need exponential time ~ 27,
and that solving a complete problem from one of the second-level classes Y>P or
I1,P requires more computation time than solving NP-complete problems (and
solving complete problems from the class PSPACE takes even longer).

2 Results

In accordance with the above text and with [3], we will consider the following
four main groups of planning situations:

— complete information about the initial state, no sensing actions allowed;

— possibly incomplete information about the initial state, no sensing actions
allowed;

— possibly incomplete information about the initial state, sensing actions al-
lowed;

— possibly incomplete information about the initial state, full sensing (i.e.,
every fluent can be sensed).

For comparison, we will also mention the results corresponding to the language
A, when neither history nor static causal laws are allowed.

2.1 Complexity of plan checking

Before we describe the computational complexity of checking the existence of a
plan, let us consider a simpler problem: if, through some heuristic method, we
have a plan, how can we check that this plan works?

This plan checking problem makes perfect sense only for the case of no sens-
ing: indeed, if sensing actions are possible, then we can have a branching at every
step; as a result, the size of the tree can grow exponentially with the plan’s ex-
ecution time, and even if we can check this tree plan in time polynomial in its
size, it will still take un-realistically long.

For the language A, the complexity of this problem depends on whether we
have complete information of the initial state or not:

Theorem 1. (language 4, no sensing)

— For situations with complete information, the plan checking problem is fea-
sible.

— For situations with incomplete information, the plan checking problem is
coNP-complete.

Comment. For readers’ convenience, all the proofs are placed in the special (last)
section.
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Theorem 2. (language £, no sensing)

— For situations with complete information about the initial state, the plan
checking problem is II;P-complete.

— For situations with incomplete information about the initial state, the plan
checking problem is ITsP-complete.

Comment. The problem remains IT,P-complete even if we only consider situa-
tions with two possible actions. If we only have one action, then for complete
information, plan checking is feasible; for incomplete information, it is coNP-
hard.

2.2 Complexity of planning

Now, we are ready to describe complexity of planning. In the framework of the
language A (i.e., without history), most planning problems turn out to be com-
plete in one of the classes of the polynomial hierarchy; see, e.g., [3]. However, it
turns out that when we allow history, i.e., when we move from language A to the
language £, we get a planning problem that does not seem to be complete within
any of the classes from the polynomial hierarchy. To describe the complexity of
this program, we therefore had to search for appropriate intermediate classes.

In this search, we were guided by the example of intermediate classes which
have been already analyzed in complexity theory: namely, the classes belong-
ing to the so-called Boolean hierarchy (see, e.g., [6,12]). This hierarchy started
with the discovery of the first such class — the class DP [13,14]. The original
description of these classes uses a language which is slightly different from the
language that we used to describe the polynomial hierarchy: namely, we de-
scribed these classes in terms of the corresponding logical formulas, while the
standard description of Boolean hierarchy uses oracles or sets. Therefore, before
we explain the new intermediate complexity class which turned out just right for
planning, let us first reformulate the notion of the Boolean hierarchy in terms of
the corresponding logical formulas.

After NP=X1P and coNP=II,P, the next classes in the polynomial hier-
archy are X>P and II,P. In particular, X>P is a class of problems for which
the checked formula P(w) can be represented as Ju;VusP(uy, us2, w) for some
feasible property P(u1,us,w). For each given w, to check whether w satisfies the
desired property, we must therefore check whether the following formula holds:
FuyVusQ(u1,us), where by Q(u1,us), we denoted P(uy,us,w). In the general
definition of this class, for each w, Q(u1,us) can be an arbitrary (feasible) bi-
nary predicate. Therefore, in order to find a subclass of this general class ;P
for which decision problem is easier than in the general case, we must look for
predicates which are simpler than the general binary predicates.

Which predicates are simpler than binary? A natural answer is: unary pred-
icates. Tt is therefore natural to consider the formulas in which Q(u1,us) is
actually a unary predicate, i.e., formulas in which Q(u1,us) depends only on
one of its variables. In other words, we have either Q(u1,u2) = Q2(u1) (here,
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the subscript 2 in ()2 means that the predicate does not depend on wus), or
Q(u1,u2) = Q1(u2). Both these classes of “simpler” binary predicates do lead
to simpler complexity classes, but these classes are still within the polynomial
hierarchy. Indeed:

— the formula Ju;Vus@Qs(u1) is equivalent to Ju;Q2(u1) and therefore, the
corresponding complexity class is exactly X1 P (= NP);

— the formula Ju;Vu2Q1(us) is equivalent to Yua@q(u2) and therefore, the
corresponding complexity class is exactly II; P (= coNP).

We get non-trivial intermediate classes if we slightly modify the above idea:
namely, if instead of restricting ourselves to binary predicates @ (uy,u2) which are
actually unary, we consider binary predicates which are Boolean combinations
of unary predicates.

For example, we can consider the case when Q(ui,u2) is a con-
junction of two unary predicates, i.e., when @Q(ui,us) is equivalent to
Q1 (u2)&Q2(u1). In this case, the formula Jui Vua(Q1(u2)&Q2(u1)) is equivalent
to JuyQ2(u1)&VuaQ1(us). If we explicitly mention the variable w, we conclude
that w € S is equivalent to Juj Py (uy,w)&Vus Py (uz,w), i.e., that the set S is
equal to the intersection of a set Sy = {w | Ju; P2(u1,w)} from the class NP and
a set Sy = {w |Yua P (uz,w)} from the class coNP, i.e., equivalently, to the dif-
ference S; — (—S2) between two sets S; and —Ss (a complement to S2) from the
class NP. Such sets represent the difference class DP, the first complexity class
from the Boolean hierarchy. If we allow more complex Boolean combinations of
unary predicates, we get other complexity classes from this hierarchy.

For planning, we need a simpler subclass within the class X3P of all formulas
P(w) of the type JuiVusJuz P(u1,us, us, w). Similarly to the above description
of the Boolean hierarchy, it is natural to consider the cases when, for every w, the
corresponding ternary predicate P(uq,us,us,w) (for fixed w) can be represented
as a Boolean combination of binary predicates P; (uz,us3,w), Py(u1,us,w), and
Ps(uq, uz,w). Let us give a formal definition of such classes.

Definition. Let k > 1 be an integer. By a k-marked propositional variable, we
mean an expression of the type v/, where v is a variable and j is an integer
from 1 to k. By a k-Boolean expression B, we mean a propositional formula
B(v{*,...,vlm) in which all variables are k-marked.

— For every k-Boolean expression B, by a class Xy (B)P, we mean the class
of all problems for which the checked formula P(w) can be represented as

JuiVus ... P(ug,uy, - . ., u, w), where P(uy, ..., uy,w) is equal to the result
B(Py,..., Py) of substituting, into the Boolean expression B(vi', ... vlm),

instead of each variable vf", a feasible predicate P; which does not depend
on the variable u;;.

— For every k-Boolean expression B, by a class Il (B)P, we mean the class
of all problems for which the checked formula P(w) can be represented as
YuiJus . .. P(u1,us, .. ., uk, w), where P(u1, ... ,ug,w) = B(Py,...,Py,) and
for each i, the corresponding predicate P; is feasible and does not depend on
the variable u;;.
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For example, the above class DP can be represented as Xs(v!&v?)P.

Theorem 3. (language L, no sensing) For situations with complete informa-
tion about the initial state and with no sensing, the computational complexity of
planning is X3(v! V v3)P-complete.

Comments.

— In other words, the corresponding planning problem is complete for the
class of all problems in which P(w) is equivalent to JuiVusJus (P (us, us) V
P3(u1,uz)).

— The fact that the planning problem is complete for an intermediate com-
plexity class is not surprising: e.g., in [9], it is shown that several planning
problems are indeed complete in some classes intermediate between standard
classes of polynomial hierarchy.

— The problem remains X3(v! V v3)P-complete even if we only consider situa-
tions with two possible actions. If we only have one action, then for complete
information, planning is feasible; for incomplete information, it is coNP-
hard.

— For A, the corresponding planning problem is NP-complete.

Theorem 4. (language £, no sensing) For situations with incomplete informa-
tion about the initial state and with no sensing, the computational complexity of
planning is X3(v! V v3)P-complete.

For A, this problem is YyP-complete.

Theorem 5. (language £, with sensing) For situations with incomplete infor-
mation about the initial state and with sensing, the computational complexity of
planning is PSPACE-complete.

For A, this problem is also PSPACE-complete.

Theorem 6. (language £, full sensing) For situations with incomplete informa-
tion about the initial state and with full sensing, the computational complexity
of planning is II;P-complete.

For A, this problem is also IToP-complete.

What do these complexity results mean in practical terms? At first glance,
they may sound gloomy: even NP-complete problems are extremely difficult to
solve, and the most realistic formulations of the planning problem (with sens-
ing) lead to PSPACE-complete problems, i.e., problems at the high end of the
polynomial hierarchy. However, they do not sound so gloomy if we take into
consideration that these results are about the worst-case complexity, and the
high worst-case complexity of the problem does not mean that we cannot have
good algorithm for many (or even for most) practical instances of this problem.

In plain words, no matter how good a feasible planning algorithm may be,
there will always be cases when this algorithm will fail. Qur goal is therefore,
to design feasible algorithms which will succeed on as many practical planning
problems as possible.
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Even the traditional planning problem, with no sensing and complete infor-
mation about the initial state, is known to be NP-hard; this complexity result
does not prevent us from having successful planners which help in solving many
practical planning problems. For situations with incomplete information about
the initial state, several ideas of approximate planning were proposed in [4];
the corresponding simplified algorithms are much faster than the algorithms for
solving the original planning problem (and the complexity of the corresponding
approximate planning problem is indeed smaller; see, e.g., [3]) — the downside
being, of course, that sometimes, these approximate algorithms fail to find a
plan.

It is desirable to extend these (and other) heuristic planning algorithms to
situations when some information about the current state comes in the form of
the knowledge about the system’s past behavior.

3 Proofs

Proof of Theorem 1. Theorem 1 is, in effect, proven in [3].

Proof of Theorem 2: main idea. Let us first show that the plan check-
ing problem belongs to the class IToP. Indeed, a given plan w is successful if
it succeeds for every possible history u;. For every given history w;, checking
whether a given plan w succeeds is feasible; we will denote the corresponding
predicate by S(uy,w). The condition that the history u; is possible means that
it is consistent and that none of its sub-histories us is consistent. Checking con-
sistency is feasible (we will denote the corresponding predicate by C(u)), and
checking whether wuy is a consistent sub-history of the history u; is also feasi-
ble; we will denote this other predicate by H(u1,us2). So, the possibility of a
history u; can be expressed as C(uq)&—JusH (u1,us), which is equivalent to
Vua(C(u1)&—H (u1,us2)). Hence, the success of the plan w can be expressed as

Vur (Vuz(C(ur)&—H (u1,u2)) = S(u1,w)), i-e., as a formula YuiJus(—C(u1) V
H(uy,uz)V S(uy,w)) from the class ITsP. So, the plan checking problem indeed
belongs to the class II,P.

To complete the proof, we must prove that the plan checking problem is
II,P-complete. To show it, we prove that the known IT;P-complete problem —
namely, the problem of checking, for a given propositional formula F', whether
a formula Vzq ...V, 3xmes ... 32, F(21,...,2,) is true — can be reduced to
plan checking. It is sufficient to do this reduction for the case when we have
a complete information about the initial state; then, it will automatically fol-
low that a more general problem — corresponding to a case when we may only
have partial information about the initial state — is also II;P-complete. This
reduction is done similarly to the proofs from [3] (a detailed proof is posted at
http:/ /www.cs.utep.edu/vladik/2000/tr00-13.ps.gz).

Proof of Theorems 3 and 4. Let us first show that the corresponding planning
problem indeed belongs to the desired class. The existence of a plan means that
there exists a plan u; such that for every possible history us, either the history
ug is consistent with our knowledge and the plan w; succeeds on the current
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state corresponding to us (we will denote this by S(u1,us2)); or the history us
is not minimal, i.e., there exists a different history usg for which the sequence of
actions is a subsequence of the sequence of actions corresponding to us, and ug is
also consistent with our knowledge (we will denote this property by M (uz,u3)).

Both binary predicates S(uy,u2) and M (u2,us) are feasible to check. There-
fore, the existence of a plan is equivalent to a formula JuiVua(S(u1,us) V
Juz M (ug,u3)) with feasible predicates S and M, ie., to the formula
Fuy VusJus (S (u1,us) V M(usz,u3)) of the desired type.

The fact that the planning problem is complete in this class can be shown
by a reduction to a propositional formula, a reduction which is similar to the
one from the proofs from [3] and the proof of Theorem 2; the only difference
is that in addition to the above reduction — which, crudely speaking, simulates,
during the period between the initial and the current state, the computation of
the propositional expression corresponding to M (us,u3) — we must also, after
the current state, simulate the computation of the expression corresponding to
the formula S(u1, us).

Proof of Theorem 5. Let us first show that the corresponding planning prob-
lem belongs to the class PSPACE. Indeed, the existence of a plan means that
there exists an action u; such that for every possible sensing result (if any) ug of
this action, there exists a second action us, etc., such that for every history hy
which is consistent with our initial knowledge and with the follow-up measure-
ments, either we get success, or there exists a “sub”-history hs. Both success and
“sub-history”-ness are feasible to check; thus, the existence of a plan is equivalent
to a formula of the type Ju;Vus.. ., i.e., to a formula from the class PSPACE.

As we have shown in [3], this problem is PSPACE-complete even for A,
i.e., when no history is allowed. Thus, a more general problem from this class
PSPACE should also be PSPACE-hard.

Proof of Theorem 6. Let us first show that the corresponding planning prob-
lem belongs to the class II,P. Since we have unlimited sensing abilities, we do
not change our planning abilities if, before we start any planning actions, we
first sense the values of all the fluents. We may waste some time on unnecessary
sensing, but the total execution time of a plan remains feasible if it was originally
feasible; therefore, the existence of a feasible plan is equivalent to the existence of
a feasible plan which starts with full sensing. The existence of such a plan means
that for every consistent history wui, either there is a plan us which succeeds
for the current state corresponding to uy, or there exists a sub-history ug which
is also consistent (which makes u; impossible). Checking whether a given plan
succeeds for a given history is feasible, and checking whether u3 is a consistent
sub-history is also feasible, so the existence of a plan is equivalent to the for-
mula Vug (Jus Py (uy, uz) V Jug Ps(uy,u3)) for some feasible predicates Py and Ps.
This formula can be reformulated as YuiJuaP(u1,us) with P(ui,us) denoting
Py (uy,u2) V Py(u1,usz). Therefore, the problem belongs to the class IIoP.

As we have shown in [3], this problem is IT,P-complete even for A, i.e., when
no history is allowed. Thus, a more general problem from this class I7oP should
also be II,P-hard.
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