
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

9-1997

Identification and Classification of Inconsistency in Relationship Identification and Classification of Inconsistency in Relationship

to Software Maintenance to Software Maintenance

Daniel Cooke

Luqi

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Engineering Commons

Comments:

Technical Report: UTEP-CS-97-15

Recommended Citation Recommended Citation
Cooke, Daniel; Luqi; and Kreinovich, Vladik, "Identification and Classification of Inconsistency in
Relationship to Software Maintenance" (1997). Departmental Technical Reports (CS). 535.
https://scholarworks.utep.edu/cs_techrep/535

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/535?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Identi�cation and Classi�cation of Inconsistency

in Relationship to Software Maintenance�

Daniel Cooke�� Luqi�� and Vladik Kreinovich�

�Computer Science� University of Texas at El Paso� El Paso� TX �����
�Computer Science� Naval Postgraduate School� Monterey� CA �����

Abstract

This paper provides an overview of the relationship between recent work in logic programming and recent
developments in software engineering� The relationship to software engineering is more speci�cally concerned
with how formal speci�cations can be used to explain and represent the basis of software maintenance and
evolution� Some of the results reviewed here have appeared in ��� and ����� These previous results are
summarized	 extended	 and made more general in this paper�

� Introduction

Maintenance activities can be divided into three distinct classes� corrective� perfective� and adaptive� Corrective
maintenance largely re�ects the failure of software engineers to validate and verify software speci�cations and
programs with respect to software speci�cations� respectively� Perfective maintenance is traditionally viewed as
a form of maintenance necessary to improve or change the performance of a system� but not its functionality�
Adaptive software maintenance alters the functionality of a system to re�ect a changing software context� Even
if software is valid and veri�ed� adaptive changes continue to be necessary�

Currently� the need for software maintenance is detected by the software user� In the most general case� the
user detects that the system is not performing the way it should �i�e�� there is a need for perfective maintenance��
there is an error in a result �i�e�� there is a need for corrective maintenance�� or there has been some change
in the software environment or context that requires that the system be modi�ed �i�e�� there is a need for
adaptive maintenance�� In all of these cases the system is behaving in a manner that is inconsistent to the
user	s expectation� At the heart of the need for maintenance is the problem of inconsistency�

But what exactly is maintenance and what is software evolution
 Without a formalism it is di�cult to claim
that anything is truly understood� Without a formalism� one must rely on his�her instinct and intuition� In
this paper� we focus on how the maintenance activity can be understood using recent developments in Logic
Programming Research� These results and their relationship to software maintenance are key to understanding
what software maintenance actually entails� Logic programming results provide a formal backdrop to an expla

nation and understanding of software evolution and software maintenance� In this paper software evolution is
to be understood as the changing functionality of live and useful software� Consequently� the focus of this paper
will be on adaptive maintenance�

�Research sponsored by the AFOSR under contracts F�������������	� and F�������	����	�
� by the NSF under grant numbers

CCR���	
�	�� CDA����	���� EEC������
�� and DUE��
	�
	
� by the ARO under grant number ARO���	���� and by NASA

under grant number NCCW ��
��

�

C� � C� � C� � ��� � Cn

� � � �
S� S� S� ��� Sn
� � � �
P� P� P� ��� Pn

Figure �� Context Changes Trigger Software Changes�

� Adaptive Changes� Software Maintenance and Evolution

Adaptive changes result from a changing software context� By context �or software context�� we mean the parts
of the real world with which a speci�ed system is to interact� including people and organizations as well as other
programs� databases� and hardware devices� When valid� an initial speci�cation S� of a software system re�ects
the initial context C� as well as the appropriate ways in which the software system is to interact with C�� In an
ideal software development process� only those parts of the context which will truly a�ect the software system
should be represented by the software speci�cation
 all irrelevant features of the context are abstracted out of
S�� The initial program P�� if correct with respect to S�� should operate correctly in C�� Whether or not a
speci�cation re�ects the context is a problem of validation� and the correctness of a program with respect to a
speci�cation is the problem of veri�cation�

In practice� one often �nds that S� does not correctly re�ect C� �i�e�� the speci�cation is invalid� and P� is
not correct with respect to S� �i�e�� the program does not completely satisfy the speci�cation�� In such cases�
corrective and�or perfective changes are needed�

In any event� the context of a typical system will change� Over the life of the system� we typically observe a
series of contexts Ci which should lead to a corresponding series of speci�cations Si and a corresponding series
of programs Pi� as shown in Fig� ��

In this ideal case� the need for adaptive change becomes more obvious� If the context is Ci �where i � �� and
the current version of the program is Pi��� then the program does not correspond to a valid speci�cation� It is
clear that each change in the software context requires an appropriate adaptation of the software� As Lehman	s
laws ���� indicate� for a software system to survive it must evolve� it must adapt to its everchanging context�
We call the change in context from Ci to Cj �where j � i� a context shift� denoted by Ci � Cj in Figure ��
Figure � also illustrates the notion of a mapping from a context to a speci�cation and from a speci�cation to
a program� denoted as� Ci � Si and Si � Pi� A context shift should result in maintenance activity where valid
changes are made to a speci�cation and correct changes are made to a program�

Software evolution should be viewed as a continual process of re
validation and re
veri�cation� When the
context changes� the old system is at best� correct with respect to an invalid speci�cation� The context shift
recommends the need to re
validate the speci�cation and then re
verify the program� In fact� the software
process model presented in �gure � indicates that software maintenance should not be viewed as an activity
distinct from software development� The di�erence between initial development and subsequent maintenance
is a matter of the degree to which speci�cations and associated software are reused� The maintenance process
suggested here is is similar to that found in Basili	s Full Reuse Maintenance Process ����

The contribution made in this paper is the use of a logic which can be used to formalize the causes of adaptive
maintenance� As a consequence of the foregoing discussion� one should realize that the logic is to indicate when
a speci�cation is no longer valid�

� Speci�cation Validation

In order to be valid a speci�cation must be complete� consistent� and precise ��� ��� A precise speci�cation
means that there is no ambiguity in the statement of the speci�cation� In order to satisfy this requirement� a
speci�cation must be expressed in a language for which there is a formal �or mathematical� semantic� Expressing
the speci�cation in logic satis�es this requirement�

�

In order to be complete� a speci�cation must correctly express all of the functionality desired in the software
system� Consistency means that there are no con�icting de�nitions in the speci�cation� The reader shall see that
the extended logic programming semantic ��� provides for a clear representation of completeness and consistency�

� Modeling a System and its Context

A system speci�er attempts to make precise statements about the intended behavior of the system and its
context� There are two important classes of speci�cation in any system� those which are immutable and those
which are mutable� Immutable speci�cations are statements about the software and�or its context which remain
true for all time� A mutable speci�cation is a statement which is believed or assumed to be true� i�e�� an
assumption or a belief� Beliefs or assumptions are typically true in some contexts but not in all possible
contexts�

EXAMPLE �� Immutable Speci�cation� Bill and Sam Cooke are brothers�

EXAMPLE �� Mutable Speci�cation� It may be assumed�believed that Bill and Sam are kind to each other�

The knowledge that Bill and Sam are brothers is a known fact which is forever true �i�e�� immutable�� They
are now and will forever be brothers� However� it is a belief �i�e�� mutable� that Bill and Sam are kind to each
other� The validity of this belief can change with time� With alarming frequency� Sam and Bill may substantiate
or invalidate this statement through their behavior�

The notions of immutable and mutable speci�cations are analogous to Lehman	s S
 and E
type programs�
The types are based upon the character of the program	s speci�cation� An S
type program is a program which
is correct with respect to speci�cations which do not change over time while an E
type program is one which is
correct with respect to speci�cations which may indeed change over time� A large system is typically comprised
of some mixture of the program types�

An E
type program has to evolve because the validity of the assumptions coded into the program change
with time� The assumption in an E
type program is a mutable speci�cation� The mutable speci�cations serve
as the seed of adaptive maintenance� The mutable speci�cations correspond to the parts of the software context
which are susceptible to the changes which result in context shifts�

Results from the study of nonmonotonic logic serve as a basis for understanding the mutable speci�cation ����
��� ���� Nonmonotonic logics provide formalisms to handle beliefs �or assumptions�� Intuitively� nonmonotonic
logics allow the retraction of beliefs when new information� which contradicts those beliefs� is presented� In
contrast� in monotonic logics� once the truth of a statement is established� new information cannot invalidate
the justi�cation for believing the statement �i�e� its proof or derivation��

Consider the following de�nitions of monotonic and nonmonotonic� Let S and S� represent a speci�cation
and a changed speci�cation� respectively� In predicate logic� a speci�cation is a set of assertions �both extensional
and intensional�� Let f�S� and f�S�� represent the interpretations of S and S�� In other words� f�S� and f�S��
are speci�ed relations of S and S�� Speci�ed relations can be viewed as a listing of all possible stated and derived
assertions� For example� suppose a speci�cation S is given in Prolog as�

p������

p�N�X��	N
 ��N� is N 	 ��p�N��Y�� X is N � Y�

p�N�error��	 N � ��

The speci�ed relation f�S� is�
f�S� � f���� p���� error�� p���� error�� p������ p��� ��� p������ p��� ��� p������� ���g

If the speci�cation is valid� the speci�ed relation relates each input of a program to all valid output values� The
most important observation to make is that f�S� is a model of the software context� Therefore� if S is valid�
then a change from f�S� to f�S�� represents a model of a software context shift� Ci � Ci���

Def� A function f is monotonic if and only if �S� S��S � S� � f�S� � f�S���� �Where � denotes
implication�� �

�

�
�

�
�

f�S��

�
�
�
�f�S�

f�S� � f�S��

�
�

�
�

f�S�

�
�
�
�f�S��

f�S� � f�S��

�
�

�
�

f�S�

�
�

�
�

f�S��

f�S� �� f�S�� 	 f�S� �� f�S��

Figure �� Relationships among speci�cations due to change�

The de�nition of nonmonotonic negates the formula above�

Def� f is nonmonotonic if and only if
S� S��S � S� 	 f�S� �� f�S���� �

The de�nition of nonmonotonic suggests a classi�cation of speci�cation changes where the classi�cation is
based on the fact that we can add to or delete from S� i�e�� S � S� or S � S�� There are exactly three
ways that the addition to or deletion from S impacts the speci�ed relation� The three ways are based upon
the possible relationships between f�S� and f�S�� due to Ci � Ci��� assuming that no change will result in
f�S�

T
f�S�� � ��

�� f�S� � f�S���

�� f�S� � f�S���

�� f�S� �� f�S�� 	 f�S� �� f�S���

Through these relationships one immediately sees the primitive e�ects of a context shift Ci �
Ci��� Observe that in all of the cases for change in the speci�ed relation� there will exist an
inconsistency between the old and the new speci�ed relation� Suppose it is possible to know the
information about both S and S�� This is actually what the software user possesses when he�she detects
an inconsistency� f�S� is what the software produces and f�S�� is what the user expects� Assuming p is an
input�output relation� a change to the speci�cation S �� S� is detectable through the detection of an inconsistency�

�� f�S� � f�S�� �and f�S� �� f�S��� means
p�p �� f�S� 	 p � f�S����

�� f�S� � f�S�� �and f�S� �� f�S��� means
p�p � f�S� 	 p �� f�S����

�� f�S� �� f�S�� 	 f�S� �� f�S�� means
p� p��p� �� p 	 �p �� f�S� 	 p � f�S��� 	 �p� � f�S� 	 p� �� f�S�����

Figure � presents the meanings of the three possible relationships between f�S� and its successor f�S�� in
terms of Venn Diagrams� Absent is a diagram for disjoint sets� f�S�

T
f�S�� � �� This is due to the fact that

disjoint sets represent completely di�erent systems�
The facility to have knowledge about S and S� requires the ability to monitor relevant aspects of the

corresponding software contexts� Implied by the foregoing is a framework for the detection of the need for
adaptive maintenance� The framework is as follows�

�� The speci�er of a problem solution must identify the speci�cations that are actually assumptions �i�e��
those speci�cations that are mutable��

�� The speci�er must determine how the assumptions can be contradicted or� in other words� lead to an
inconsistency �this leads to the rules by which it is possible to detect context shifts��

�� The speci�er must identify the additional inputs necessary to detect the context shifts� and

�� The system must have the facility to detect inconsistencies when they arise�

�

� Overview of Context Dependent Speci�cations

��� Extended logic programming as a natural basis for a speci�cation language

There is a need for a �formally de�ned� speci�cation language� In order to be able to automatically
check consistency and completeness of di�erent speci�cations� i�e�� to make a computer do this checking� we
must describe these speci�cations in a language that a computer can understand� In other words� we need a
formal language for describing speci�cations�

First attempt� the language of �rst order logic� Speci�cations �i�e�� properties that the designed software
must satisfy� can be arbitrarily complicated� In particular� these speci�cations may include terms like �and��
�or�� �not�� �if � � � then�� �for every x�� �there exists an x�� etc�� which are naturally formalized as logical
connectives and quanti�ers� Therefore� a natural idea is to allow� as speci�cations� arbitrary formulas that can
be obtained from some basic formulas by using these connectives 	�
� �� �� and quanti�ers �x and
x� The
resulting formulas are called formulas of �rst order logic�

The main drawback of using �rst order logic� First order logic describes arbitrarily complex speci�cations
very well� for example� it is the basic language used in the formalization of concepts in mathematics� If our goal
was simply to formalize knowledge� then �rst order logic would be a perfect solution�

However� our goal is not simply to formalize the speci�cations� but also to use these formalized speci�cations
as an input to a program that will check whether these speci�cations are consistent and�or complete� The
existence of such a program means that we must have an algorithm that would� e�g�� check whether a given set
of formalized speci�cations is consistent or inconsistent�

For this purpose� �rst order logic is not a very adequate language� because it is well known that no algorithm
is possible for checking consistency of �rst order formulas �this impossibility is a direct corollary of the famous
G�odel	s theorem��

Logic programming� a way to make logic formulas algorithmic� G�odel	s result shows that the main
drawback of �rst order logic as a speci�cation language is that the language of the �rst order logic is not
algorithmic� It is therefore desirable to modify this logical language and make it algorithmic� i�e�� make it
suitable for programming� Such logic
based programming languages have indeed been invented� the �rst and
most used of these languages is Prolog �this name is an abbreviation of Programming in Logic��

Basic logic programming� motivation and description� One of the main ideas behind making logic algo

rithmic is as follows� since allowing all logical connectives and quanti�ers makes the problems non
algorithmic�
we should allow only some of them� Which of the connectives and quanti�ers are the most important for
representing speci�cations

A typical speci�cation describes what the program should do in di�erent cases� e�g�� if something happens�
then it should perform a certain action� etc� Speci�cations are rarely formulated in terms of negative conclusions
or disjunctions �do this or that�� Therefore� the most important connective for knowledge representation is
an implication �if � then�� In view of this� basic logic programming only allows implications� Moreover� since
combinations of connectives �like �A� B�� C� can become extremely complicated and hard to understand� the
designers of the basic logic programming language allowed only single implications� but not their combinations�
As a result� a typical program in basic Prolog consists of statement of two types�

� facts A� i�e�� statements that do not contain any logical symbols at all� facts are also known as elementary
statements� or atoms� and

� simple �if�
�then� rules of the type

�if A�� � � � � and An� then B��

where Ai and B are atoms �elementary statements��

How can we formally describe these rules

�

It is possible to describe these rules in �rst order logic� where� e�g�� the above statement can be written as

�A�� � � ��An�� B�

However� speci�cations are not always given in terms of logic programming� we often start with speci�cations
written in �rst order logic� and then translate these speci�cations into the language of logic programming� In
view of this� it is desirable to distinguish between the original �non
algorithmic� statements from �rst order
logic and the resulting �algorithmic� statements which form the logic program� To make this distinction easier�
researchers in logic programming use a re
oriented arrow to denote implication� for example� for the above
�if�
�then� rules� they use the notation

B � A�� � � � � An�

For facts� the distinction is not that critical� but sometimes� we also need to distinguish between the elementary
statements from the original logical speci�cation and the facts from the resulting logic program� One of the
ways to make this distinction easier is to represent each fact A as a rule with an empty right
hand side� i�e�� as
a rule

A�

So� a basic logic program is simply a collection of rules and facts�

Basic logic programming� a natural choice of semantics� The main objective of our formal representation
of a speci�cation is to be able�
GIVEN�

� a speci�cation F and

� a property Q that we want to check� to

RETURN� an answer describing whether programs satisfying this speci�cation also satisfy the property Q�
The description of what answers the system should return for each formal speci�cation �and for each queried

property� is called the semantics of the speci�cation language�
For basic logic programs� semantics immediately follow from the fact that these programs are actually a

particular case of formulas of �rst order logic� In general� if speci�cations are described by an arbitrary �rst
order formula F � then for every queried property Q� we have one of the following three situations�

� The property Q follows from the speci�cations F � in this case� this property Q is true for every program
that satis�es these speci�cations �or� in logical terms� in all models of this formula F ��

� The negation �Q of the property Q follows from the speci�cations F � in this case� this property Q is false
for every program that satis�es these speci�cations �i�e�� in all models of the formula F ��

� Neither the property Q� nor its negation follow from the speci�cations F � in this case� this property is
true for some programs �models� that satisfy these speci�cations but false for the other programs �models�
that also satisfy the same speci�cations F �

For example� if we specify the results of a program but do not restrict its running time� and then take
as Q some time limitation �e�g�� that the program will take no longer than a minute to run�� then
it is quite possible that some program produces the correct result for an under
a
minute time� while
other programs� that also produce correct results �and thus� also satisfy the same speci�cations�� will
take much longer than a minute to run�

�Of course� theoretically� there is a fourth possibility� that the speci�cations F are inconsistent� so no program
can satisfy all the speci�cations that we have combined into a formula F ��

This classi�cation can be also applied to rules and facts that form a basic logic program� Fortunately� basic
logic programs are a particularly simple case of general �rst order formulas� and due to this simplicity� for �rst
order formulas� we get a simpli�cation of this classi�cation� Indeed� all facts and rules that form a basic logic
program remain true if we simply consider a model in which all elementary properties are true� Therefore�
whichever of these properties Q we ask about� it is always possible that this property is true� In other words�
for basic logic programs� instead of the above three possibilities� we have only two possibilities�

�

� First� it is possible that the property Q is true for all models of this logic program�

� Second� it is possible that in some models of the logic program F � this property Q is false�

The actual Prolog compiler� given a logic program F and a query Q� decides which of these two cases holds�
Of course� it makes no practical sense to let the compiler return either of these two long messages that describe
the corresponding cases� Therefore� only the shortened messages are returned�

� In the �rst case� the compiler returns the shortened message �true� �or� even shorter� �yes���

� in the second case� it returns a shortened message �false� �or� even shorter� �no���

Exception handling and generalized logic programs� Basic logic programs capture many important
speci�cations� but there is one important feature of speci�cations that these simple formulas have di�culty
capturing� exception handling�

Many speci�cations are described in terms of exceptional situations� e�g�� a natural speci�cation for a tax
program would describe all exceptions to normal taxes �disability� spending most of the year abroad� etc���
and then say that unless one of the exceptions applies� taxes should be computed using the given formula�
Exceptions themselves can be captured easily by simple implications of the type used in basic logic programs�
e�g�� �if a person has spent �� months abroad� then he or she does no pay any taxes�� The di�culty appears
when we try to describe a statement about a normal situation ��unless one of the exceptions applies ������

It is� of course� potentially possible to describe this statement as a normal if
then statement� by explicitly
enumerating all the exceptions in the conditions of this rule� However� there may be very many exceptions �and
moreover� many rules may have di�erent exceptions�� and the enumeration of these exceptions would drastically
increase the size of the logic program� and thus� inevitably increase the time that is necessary to answer queries�

To avoid these complications� researchers in logic programming proposed the notion of a generalized logic
program� also called logic program with negation as failure� The idea of negation as failure can be explained
using the above tax example� We have some rules that explain what an exception is� i�e�� several rules that
conclude� based on some assumption� that the given situation S is indeed exceptional� In logic programming
terms� these rules have the form

exc�S� � � � �

We also have a rule in which one of the conditions is �if none of the exceptions apply�� meaning �if none of the
other rules specify that this is an exceptional case�� or� in yet another form� �if we have failed to prove that this
is an exception�� This �not an exception� is denoted by not exc and� since this not actually indicates failure to
prove� it is called negation as failure�

By de�nition� negation as failure only occurs in the conditions of the rules� Thus� a generalized logic program
can be de�ned as a collection of facts and rules of the following type�

B � A�� � � � � An� not C�� � � � � not Cm�

where B� Ai� and Cj are elementary statements�

Semantics of generalized logic programs� For generalized logic programs� we also need to determine a
semantic� i�e�� we also need to be able to determine� for a given program F � whether a given query Q is true or
not�

Negation as failure is not a typical logical connective� and therefore� in contrast to the case of basic logic
programs� we cannot directly deduce the semantics of a generalized logic program from the known semantics
of �rst order logic� However� we can still deduce this semantic indirectly� by checking the consistency of the
resulting assignment of �true� and �false� to di�erent elementary statements from the program�

Indeed� let us assume that F is a generalized logic program� and that to every elementary statement from
this program� we somehow assign �true� or �false�� In mathematical terms� this means that we have selected�
in the set of all atoms of the original logic program� a subset T formed by those atoms that our semantic deems
�true��

�

This means� in particular� that we have assigned �true� or �false� to every statement about exceptions� i�e��
that we know about each situation and each rule� whether this situation is an exception to this rule or not�
which means� for each statement C that occurs under negation as failure� we know whether this statement is
true or not� In this case� we can determine which rules are applicable and which are not and thus� transform
the original rules into new rules that do not contain negation as failure� This transformation can be done as
follows�

� If one of the conditions of a rule is not C for some atom C that is true� then this rule is not applicable�
and we can safely delete it� �Informally� the presence of the condition not C means that this rule is only
applicable in normal situations� in which there is no way to prove C� the fact that C is true means that
we have an exceptional situation� and thus� the rule is not applicable��

� If for all exception
type conditions not Ci of a rule� Ci is not true �i�e�� Ci �� T �� then this rule is
indeed applicable and therefore� we can simply delete these conditions not Ci from the list of conditions�
�Informally� this situation is indeed non�exceptional� so the rule is applicable��

As a result of this transformation� we get a new logic program without negation as failure� For this new basic
logic program� we can use the above
described semantics and �nd the resulting set Tres of true atoms �i�e�� of
elementary statements that are true according to this transformed logic program�� This set should� of course�
coincide with the original set T �

This consistency requirement Tres � T only holds for some sets of atoms T � Sets of atoms for which T � Tres�
i�e�� sets that remain stable �do not change� under this transformation from T to Tres� are called stable models
of the original logic program�

The natural consistency requirement eliminates some possible models T � this elimination is very e�cient� to
the extent that for many important classes of logic programs� there is only one stable model� For example�

� A program that does not contain negation as failure at all is guaranteed to have a unique stable model�

� Furthermore� a program may contain negation as failure but as long as these negations do not form a
loop� the program is guaranteed to have a unique stable model�

� Since strati�able programs ��� do not contain negative cycles� strati�able programs also have unique stable
models ����

There are many other classes of programs with unique stable models �see� e�g�� ������ However� there are also
logic programs which have two or more stable sets� For example� one can easily check that a simple logic
program

p� not q�

q� not p�

has exactly two di�erent stable models� fpg and fqg� �This program does not fall into one of the above classes
because it has a loop of negations� the rule for p contains a negation of q� and the rule for q contains a negation
of p��

Such logic programs with multiple stable models usually describe incomplete speci�cations�

E�g�� in the above example� the information described by these two rules� basically� says that if p is false�
then q must be true� and vice versa� In other words� this information says that either p or q must be true�
but it does not specify which of these two atoms is true� Naturally� we have two possible stable models
here� one in which p is true� and another in which q is true�

We believe that for all speci�cations� that are su�ciently complete to be considered for the purposes of a software
development project� the corresponding logic program has a unique stable model� For such logic programs� the
answer to the query Q is �true� if Q belongs to the unique stable model� and �false� if Q does not belong to
this unique stable model T �

Comments� Ideally� we should have complete speci�cations and thus� a logic program with a unique stable
model� However� realistically� it is quite possible that speci�cations are incomplete �especially on the initial
stages of software design�� In this case� we face two problems�

� de�ning the semantics� i�e�� what is �true� and what is �false�� and

� �nding ways to complete the incomplete speci�cation�

Semantics are relatively easy to de�ne� if a generalized logic program has several possible stable models� then
it is natural to return �true� if Q holds in all stable models� and �false� otherwise�

On the other hand� completion is often a di�cult task� A generic automatic completion mechanism would
be useful in practice for diagnosing incompleteness and helping developers understand what choices have to be
made in order to make their speci�cations complete�

Extended logic programs� Generalized logic programs represent positive knowledge� i�e�� facts �e�g�� �an atom
A is true��� and �if���then� rules ��if A�� � � � � An are true� then B is true��� In addition to positive facts and
rules� our speci�cation sometimes include negative facts and rules� we know that some elementary statement
should not be true� or that under some conditions A�� � � � � An� a fact B should not be true� In other words�
we must be able to describe negation in its classical sense �i�e�� not as negation as failure�� Generalized logic
program do not allow us to describe this type of knowledge� they do have negation� but what they have is a
non
standard �negation as failure�� So� to describe such negative knowledge� we must be able to add a more
traditional� �classical� negation � to the generalized logic programs� In logic programs extended thus� a general
rule is still of the type

B � A�� � � � � An� not C�� � � � � not Cm�

but now B� Ai� and Cj are no longer always atoms� they may be also �classical� negations of atoms� i�e��
statements of the type �E for some atom E�

In general� atoms and their classical negations are called literals� so� we can say that A� Bi� and Cj are
literals�

Semantics of extended logic programs� When we move from generalized to extended logic programs� we
replace each original atom E with two literals� A and �A� If we were still in classical logic� then there would
be no need to consider �A separately� because in classical logic� the truth value of �E is uniquely determined
by the truth value of E �namely� it is exactly the opposite truth value�� However� in logic programming� where
knowledge may be incomplete� it is quite possible that an atom A is not true� but this does not necessarily mean
that its negation is necessarily false� it may simply mean that we do not know whether A is true or not � it is
true in some models and false in others�

So� in an extended logic program� even if we know the truth values of all the atoms� this does not automati

cally enable us to determine the truth values of their classical negations� in this sense� atoms and their classical
negations can be viewed as di�erent elementary formulas� This fact leads to the following natural semantics of
an extended logic programs�

� We treat each atom and its classical negation as two di�erent atoms� as a result� we get a generalized logic
program �with possibly twice as many atoms as before��

� We then use the above stable model semantics to determine which of the new atoms are true and which
are false�

In this semantic� each new atom �i�e�� each literal� is either true or false� As a result� for every original atom A�
we have four di�erent options�

� The atom A is true� while its classical negation �A is not true� in this case� we conclude that A is true�

� The atom A is not true� while its classical negation �A is true� in this case� we conclude that A is false�

� Neither the atom A nor its classical negation �A are true� in this case� we conclude that the truth value
of A is unknown �i�e�� that our information about A is incomplete��

� There is also a possibility that both the atom A and its classical negation �A are true� in this case� we
conclude that our information about A is inconsistent�

!

This semantic can be described by the following de�nition�

Def� Let " be an extended logic program �i�e�� a logic program with both negation as failure and classical
negation�� By an s�answer set for "� we mean a stable model of a generalized logic program that is obtained if
we treat all literals from " as di�erent atoms� �

Comment� This semantics for extended logic programs was proposed by M� Gelfond and V� Lifschitz in their
pioneering papers � � !�� with the following minor di�erence�

� In many real
life problems� errors are absolutely intolerable� and therefore� we must eliminate all inconsis

tencies before we can use the knowledge base� In view of this� the original de�nition from � � !� required
that we discard stable models that are inconsistent �i�e�� that contain both an atom A and its negation
�A�� and that if such a stable model is impossible� then we should take the set of all literals as an answer
set� As a result of this approach� even when all the rules and facts that describe some property are� by
themselves� quite consistent� if we add unrelated inconsistent rules that describe some other property� we
will not be able to deduce anything meaningful about the original property as well�

� In the ever
changing world of software speci�cations� however� minor changes are very frequent� and
minor inconsistencies are inevitable� Of course� it is desirable to eliminate all inconsistencies� but at the
intermediate stages� we would like to have a tool that neglects unrelated inconsistencies and provides
correct answers for those properties whose description is consistent� Therefore� for our purposes� we use
the modi�ed version of the original semantics that allow such �localized� inconsistency�

Closed World Assumption� In some cases� the information describes potentially open knowledge� e�g�� we
have listed some exceptions to the general rule� but additional exceptions may follow�

In many cases� in addition to the knowledge described by the rules �and representable by an extended
logic program�� we have additional information � that this knowledge is complete �closed�� i�e�� that we have
enumerated all rules and all exceptions� and if something is not explicitly de�ned by these rules as an exception�
then it is de�nitely not an exception� This additional information� that the knowledge is closed to further
changes� is called a Closed World Assumption �CWA��

CWA is drastically di�erent from the pieces of information that we have considered before� At �rst glance� it
may therefore seem that formalizing CWA would require a further extension of logic programming� Fortunately�
it turns out that CWA can be formalized already in terms of extended logic programming� Namely� CWA states
that� for every literal A� if we cannot prove that A is true� then A is false� The condition that we cannot prove
that A is true is exactly the condition expressed by negation as failure �not A�� thus� CWA can be expressed
by the following rule

�A� not A

for every literal A� i�e�� in other words� by two rules

�E � not E�

E � not �E�

for every atom E�

��� How to implement the theoretical concepts of extended logic programming
with the existing Prolog compilers

The problem� In the previous section� we have argued that classical negation is important for representing
speci�cations� Therefore� it is desirable that we describe knowledge in terms of extended logic programs� i�e��
logic program that allow both negation as failure and classical negation�

However� most practically available Prolog compilers only allow generalized logic programs� i�e�� logic pro

grams that may contain negation as failure but not classical negation� In other words� the useful notion of an
extended logic program remains largely a theoretical notion�

��

It is� therefore� desirable to implement this theoretical concept of an extended logic program by using a
standard logic compiler �that can only handle generalized logic programs��

Main idea� The possibility of this implementation follows from the fact that the semantics of an extended
logic program were actually de�ned in terms of the semantics of the auxiliary generalized logic program� Thus�
according to this semantic� if we have a logic program "� and we want to �nd an answer to the query Q� then
we�

� re
formulate " as a generalized logic program�

� ask two queries� Q and �Q� to this re
formulated program� and then

� combine these two answer into the answer about the original query�

Two problems with this idea� There are two problems with this idea� one minor and one more major�
The minor problem is that most Prolog compilers use only ASCII symbols� so we cannot directly implement

the symbol �Q for classical negation� This type of a problem is not new for Prolog� the symbol � that we
use to describe Prolog rules is also not an ASCII symbol� so Prolog compilers usually use a similar
looking
combination of ASCII symbols ����� Instead of a non
ASCII expression �Q for classical negation� we can use
the ASCII combination neg�Q��

The second problem is more disturbing� the above idea seems to require processing on top of the Prolog
compiler� It is de�nitely preferable to somehow express this additional processing within Prolog itself� We will
show that this is a quite doable�

Solution to the problem� To incorporate the answering mechanism for extended logic programs into Prolog�
we propose to introduce a new binary predicate ans��� �� and add� to the transformed program� the following
general rules�

ans�P� true�� P� not �P �

ans�P� false� � �P� not P � �E�

ans�P� incomplete� � not P� not �P �

ans�P� inconsistent� � P��P �

where P stands for an arbitrary atom �we follow a usual Prolog tradition of using capitalized names to describe
variables� and names starting with small letters to describe constants�� Then� to get an answer for a query
Q� we pose the following query to the resulting Prolog program� �ask�Q� Truth�
�� When faced with a query
that has a variable in it� Prolog compilers return the value of the variable that makes this formula true� and a
special message �e�g�� �false�� if there is no such value� We claim that if the underlying Prolog compiler correctly
handles generalized logic programs� then for this enlarged program� it will return the correct truth value for
every query�

Proposition 	� Let " be an extended logic program� Let "� be a generalized logic program that is obtained
from " as follows�

� First� we interpret all literals from the program " as new atoms�

� Then� we add a new predicate symbol ans��� �� and new rules �E� for every atom P from the original
program "�

Then� for every atom Q from the original program "� and for each of the four possible truth values t� ans�Q� t�
is true for "� if and only if the query Q has a truth value t in the original logic program "�

Comment �� For the reader	s convenience� we have placed the proofs of this and following propositions into a
special appendix at the end of this paper�

Comment �� If the logic program contains the Closed World Assumption� then the value �incomplete� is
impossible� and therefore� we can omit the rule that describes this truth value from �E��

��

Comment �� In actual Prolog� the system �E� will take the following form�

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

��� Applications to software maintenance

Formulation of the problem� In software maintenance� we want to analyze the relationship between the
original and the modi�ed speci�cations S and S�� Since� as we have already mentioned� extended logic program

ming is a natural language for describing these speci�cations� we can thus assume that we have two di�erent
extended logic programs " and "� that describe� correspondingly� the old and the new speci�cations� Notice
that S and S� correspond to " and "� and that the models of " and "� correspond to the speci�ed relations
f�S� and f�S��� We want to investigate� for every query Q� whether the answer to this query has changed when
we replace the old speci�cations with the new ones�

Given system �E�� for each query Q� each of the extended programs " and "� can give us four di�erent
answers� so we have �� � � �� possible combinations of answers� true
to
true� true
to
false� etc� For example�

� true
to
true means that the statement Q is true in both speci�cations and is� therefore� consistently true�

� true
to
false means that the statement Q was originally true and is now false� i�e�� that there is an
inconsistency between these two speci�cations�

� incomplete
to
true means that the new speci�cation completed the knowledge expressed in the original
speci�cations� etc�

The simple solution and its drawbacks� As in the last subsection� we can solve this problem if we ask the
same query to two di�erent programs and compare the answers� However� it is desirable to have this comparison
done by the Prolog program itself�

Solution� We cannot directly merge the facts and the rules from the programs " and "�� because if we did
we would lose the information concerning which rules corresponded to the old speci�cations and which rules
corresponded to the new ones� However� we can still merge the logic programs indirectly� Namely� in e�ect�
since we have two di�erent logic programs� we thus have two di�erent description of each atom P � i�e�� in e�ect�
two di�erent atoms� �P according to the old speci�cation� and �P according to the new speci�cation�� Some
atoms are described by the basic facts� so we do not need to duplicate them� but for every other atom P � we
can keep this notation for �P in the original speci�cation "�� and use a di�erent notation �the natural one is
P �� to describe this same atom according to the new program "��

Since the new program "� describes the new atoms� we have to replace� in every rule from "�� every atom P

that is not a basic fact by the corresponding atom P �� Then� we can merge these programs� add the predicate
ans��� �� to describe the answers to each of them� and add a new predicate to describe comparison�

compare�P� T�� T��� ans�P� T��� ans�P �� T��� �C�

Our claim is similar to the one made in the previous subsection� If the underlying Prolog compiler correctly
handles generalized logic programs� then for the thus combined program� will get the correct comparison for
every query�

��

Proposition
� Let " and "� be extended logic programs with the same alphabet 	i�e�� with the same atoms
�
and let "� be a set of facts 	called basic
 common to both programs� Let "� be a generalized logic program that
is obtained from " and "� as follows�

� First� we introduce� for every atom P that does not belong to "�� a new atom P �� and replace each
occurrence of this atom P in the program "� by the corresponding atom P ��

� Second� we combine the rules and facts from the program " and from the replaced program "��

� Third� we interpret all literals from the combined program as new atoms�

� Fourth� we add a new predicate symbol ans��� �� and new rules �E� for every atom P that either occurs in
the original program "� or has the form P � for one of such atoms�

� Finally� we add the rule �C��

Then� for every atom Q� and for each pair of possible truth values ht�� t�i� compare�Q� t�� t�� is true for "� if
and only if the query Q has a truth value t� in the original logic program "� and a truth value t� in the original
logic program "��

Comment� In the actual Prolog� we cannot use the notation A� to denote a new atom that corresponds to A�
therefore� we will use the ASCII notation new�A�� In these new notations� the rule �C� takes the following form�

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

� An Example

The original speci�cation� Suppose we have a simple speci�cation S to indicate� based upon salary and
marital status� when a person is to pay income taxes�

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary

�����

Furthermore suppose that the complete domain of the problem is�

person�bill�������married��

person�sam�������married��

person�bob�������single��

person�joe�������married��

person�lyle�
�����married��

person�john�
�����married��

person�sal�������single��

person�bart�������married��

For such a small domain� the speci�ed relation is feasible to compute�

pay�taxes��lyle�
�����married���

pay�taxes��john�
�����married���

pay�taxes��sal�������single���

pay�taxes��bart�������married���

Let us abbreviate the speci�ed relations in the following way�
f�S� � fpt�lyle�� pt�john�� pt�sal�� pt�bart�g

��

First modi�cation� Now suppose� a change is made resulting in S��

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary
 ������

The speci�ed relation appears as�
f�S�� � fpt�bill�� pt�sam�� pt�bob�� pt�joe�� pt�lyle�� pt�john�� pt�sal�� pt�bart�g

Notice that this change is an example of the leftmost Venn Diagram in Figure �� where f�S� � f�S��

Second modi�cation� Now suppose the change is made to S� resulting in S���

pay�taxes��Name�Salary�married���	Salary

�����

The speci�ed relation appears as�
f�S��� � fpt�sal�� pt�bart�g

In this case� the change is re�ected in the middle Venn Diagram of Figure �� where f�S� � f�S����

Third modi�cation� Finally consider the change from S to S����

pay�taxes��Name�Salary�single���	person�Name�Salary�single�� Salary
 ������

pay�taxes��Name�Salary�married���	person�Name�Salary�married�� Salary

�����

The speci�ed relation appears as�
f�S���� � fpt�sal�� pt�bart�� pt�bob�g

In this case� the third Venn Diagram is represented� wheref�S� �� f�S���� 	 f�S� �� f�S�����

Applying logic programming techniques to these speci�cations� general idea� For any problem
of reasonable size it is not feasible to compute the speci�ed relations to determine the nature of the change�
Therefore� one must hope for a mechanism to detect the need for change �on the �y�� The extended logic
programming mechanism indeed allows for this form of detection� It turns out that if S is paired with each of
the changed speci�cations S�� S��� and S���� the extended logic programming answering mechanism can detect
the inconsistencies that result� In other words� when changes to S are combined with S and the extended logic
programming answering mechanism is employed� the comparison query will result in inconsistent answers for
data a�ected by a change�

Comparing S and S�� For example� when combining S and S��

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary

�����

new�pay�taxes��Name�Salary�Marital����	person�Name�Salary�Marital��Salary
 ������

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

neg�P��	not P�

Inconsistencies are detected for queries� involving bob� bill� sam� and joe� This is because in f�S� these individuals
do not pay taxes and in f�S�� they do pay taxes� For all remaining people� taxes are paid in f�S� and f�S��
and the query mechanism answers that it is true that they pay taxes�

��

Comparing S and S��� When given S and S���

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary

�����

pay�taxes��Name�Salary�married���	person�Name�Salary�married��Salary

�����

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

neg�P��	not P�

Inconsistencies are detected for queries� involving john and lyle� This is because in f�S� these individuals do
pay taxes and in f�S��� they do not pay taxes� For all remaining people� taxes are paid or not paid in both f�S�
and f�S��� and the query mechanism answers consistently�

Comparing S and S���� Finally consider S and S����

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary

�����

pay�taxes��Name�Salary�single���	person�Name�salary�single��Salary
 ������

pay�taxes��Name�Salary�married���	person�Name�Salary�married��Salary

�����

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

neg�P��	not P�

Inconsistencies are detected for queries� involving john� bob and lyle� For john and lyle� this is because in f�S�
they do pay taxes and in f�S���� they do not pay taxes� For bob� in f�S� he does NOT pay taxes and in f�S����
he does� For all remaining people� taxes are paid or not paid in both f�S� and f�S���� and the query mechanism
answers appropriately�

	 Conclusion

It is our belief that the potential for understanding software evolution and software maintenance is greatly
improved through the use of recent results in Logic Programming research� The advantage of this approach
is that one can extend Prolog with the simple rules and conventions presented here and actually execute a
speci�cation and observe the impact of change�

 Acknowledgments

Thanks to friends and colleagues� Valdis Berzins� Michael Gelfond� Joseph Goguen� Olga Kosheleva� Vladimir
Lifschitz� and Alessandro Provetti for extensive comments and suggestions� Thanks also to the excellent re

viewers who gave prompt and excellent guidance�

��

References

��� K� Apt and H� Blair� �Arithmetic Classi�cation of Perfect Models of Strati�ed Programs�� Fundamenta
Informaticae� �!!�� Vol� ��� pp� ��� �

��� V�R� Basili� �Viewing Maintenance as Reuse
Oriented Software Development�� IEEE Software� �!!�� Vol�
�� No� �� pp� �!����

��� C� Baral and M� Gelfond� �Logic Programming and Knowledge Representation�� Journal of Logic Pro�
gramming� �!!�� Vol� �!� No� ��� pp� ����� �

��� D� Cooke� A� Gates� E� Demirors� O� Demirors� M� Tanik� and B� Kraemer� �Languages for the Speci�cation
of Software�� Journal of Systems and Software� �!!�� Vol� ��� pp� ��!��� �

��� D� Cooke and Luqi� �Logic Programming and Software Maintenance�� Annals of Mathematics and Arti�cial
Intelligence 	AMAI
� A Special Issue on Logic Programming� Nonmonotonic Reasoning� and Action� edited
by C� Baral� V� Kreinovich� and V� Lifschitz� �!!� �to appear��

��� A� M� Davis� �A Comparison of Techniques for the Speci�cation of External System Behavior�� Commu�
nications of the ACM� �! � Vol� ��� No� !� pp� ��! ������

��� M� Gelfond and V� Lifschitz� �The Stable Model Semantics for Logic Programming� In� R� Kowalski and
K� Bowen� editors� Proc� �th International Conference and Symposium on Logic Programming� Seattle�
Washington� August ����!� �! � pp� ������� ��

� � M� Gelfond and V� Lifschitz� �Logic Programs with Classical Negation�� Proceedings of �th International
Conference on Logic Programming� Jerusalem� �!!�� pp� ��!��!��

�!� M� Gelfond and V� Lifschitz� �Classical Negation in Logic Programs and Deductive Databases�� Journal of
New Generation Computing� �!!�� Vol� !� Nos� ���� pp� ����� ��

���� M� Gelfond and H� Przymusninska� �Strati�ed Extended Logic Programs�� draft copy of a paper in prepa

ration�

���� M� Lehman� �Programs� Life Cycles� and Laws of Software Evolution�� Proceedings of the IEEE� �! �� Vol�
� � No� !� pp� ����������

���� V� Lifschitz and H� Turner� �Splitting a Logic Program�� In� Pascal van Hentenryck �ed��� Logic Program�
ming� Proceedings of the Eleventh International Conference on Logic Programming� MIT Press� Cambridge�
MA� �!!�� pp� ������

���� Luqi and D�E� Cooke� �How to Combine Nonmonotonic Logic and Rapid Prototyping to Help Maintain
Software�� International Journal of Software Engineering and Knowledge Engineering� �!!�� Vol� �� No� ��
pp� !��� �

���� C�V� Ramamoorthy and D� Cooke� �The Correspondence Between Methods of Arti�cial Intelligence and
the Production and Maintenance of Evolutionary Software�� Proceedings of the Third International IEEE
Conference on Tools for Arti�cial Intelligence� November� �!!�� pp� ������ �

���� C�V� Ramamoorthy� D� Cooke� and C� Baral� �Maintaining the Truth of Speci�cations in Evolutionary
Software�� International Journal of Arti�cial Intelligence Tools� �!!�� Vol� �� No� �� pp� ������

���� J�
P� Tsai and T� Weigert� �A Knowledge
Based Approach for Checking Software Information Using a
Non
Monotonic Reasoning System�� Knowledge�Based Systems� �!!�� Vol� �� No� �� pp� ������ �

��

Appendix A� Proofs

A��� Proof of Proposition �

This proof follows from the general result about splittings of logic programs� Proposition � follows
from the general theory of stable models of split logic programs� developed by V� Lifschitz and H� Turner in the
paper �����

In that paper� this notion was de�ned for class of logic programs that is more general than we have allowed�
namely� for the so
called disjunctive logic programs that allow an additional connective �or� in the conclusion
of �if���then� rules� i�e�� which allows rules of the type

B�j � � � jBd � A�� � � � � An� not C�� � � � � not Cm�

where �B�j � � � jBd� means �B� or � � � or Bd�� Since in Proposition �� we only consider logic programs without
disjunction� a reader who is not interested in this general result can simply assume that we have a regular logic
program� �We will return to the general case in Appendix B��

In Appendix B� we will propose a generalization of the result from ����� To make this generalization easier
to describe� and also to simplify the result	s understanding by the reader who may not be well trained in logic
programming� we will slightly modify the original notations and expositions �while preserving the construction
from ���� intact��

Splitting� main de�nitions� The main de�nition from ���� can be reformulated as follows� for every two
literals a and b from a logic program� let us denote a � b if in one of the rules� a appears in the head �i�e�� in the
conclusion part of the rule�� and b appears elsewhere in this rule� i�e�� either in its head �as one of the possible
rule	s conclusions� or in its body �as one of the conditions of the rule�� By a splitting of the program� we mean
a mapping s from the set of all literals into a linearly well
ordered set �i�e�� into the set of all ordinal numbers
that are smaller than some ordinal number �� for which a � b implies s�a� � s�b�� In other words� to every
literal a� we assign a level s�a��

Comment� For Propositions � and �� we do not need in�nite ordinal numbers� since �nite ordinal numbers are
exactly natural numbers �� �� �� �� � � �� a reader who does not feel comfortable with general ordinal numbers can
use natural numbers instead� In this case� instead of a trans�nite recursion� i�e�� recursion over ordinal numbers�
the reader can substitute normal recursion� i�e�� recursion over natural numbers�

Answer sets for split logic programs� intuitive description� Intuitively� the existence of a splitting
sequence means that rules that de�ne literals from level � only use literals from this and lower levels� Thus�
e�g�� rules that de�ne literals of level � only use literals from the same level and thus� these rules are self
su�cient
to de�ne which of the literals of level � are true and which are not�

As soon as we have de�ned the truth values of all literals of level �� we can de�ne the truth values of literals
of level �� etc�

Answer sets for split logic programs� a formal description� Formally� this process corresponds to
trans�nite recursion� i�e�� recursion over all possible levels �in our case� over all ordinal numbers � �� if � is
�nite� this becomes a simple recursion��

� First� we take all the rules whose heads are of level �� By de�nition of a splitting� all conditions from these
rules are also of level �� Then� we �nd an answer set A� for the the corresponding logic program�

� If for some level �� we have already described the answer sets A� for all levels � � �� then we can de�ne
the answer set A� corresponding to this level � as follows�

��

� consider the union A�� of all already de�ned sets A� �

� select all the rules whose heads contain only literals of levels � and lower�

� delete all the rules in which one of conclusions in the head is a literal from the set A�� �because
these rules are automatically true��

� if one of the conclusions of a rule is a literal of level � � that does not belong to A��� we delete this
literal from the conclusion �because this literal cannot be true��

� delete all the rules in which one of the conditions is not p for some literal p included inA�� �intuitively�
since p � A��� the condition p is true and thus� the opposite condition not p is not satis�ed��

� delete all the rules in which one of the conditions is p for some literal p of level � � that is not
included in A�� �intuitively� since p �� A��� the condition p is not true and thus� the rule is not
applicable��

� from each of the remaining rules� delete all conditions p and not p that are literals of levels � � �after
our previous deletions� all these conditions are automatically true��

As a result� we get a logic program which only contains literals of level �� If this logic program has an
answer set� we add all literals from this answer set to A�� and get A�� �If this logic program turns out
to be empty� we take simply A�� as A���

As a result of this procedure� we get a set A��

The main result about split logic programs� The main theorem from ���� consists of the following two
statements�

� if this set A� is consistent� then it is an answer set of the original logic program�

� vice versa� every consistent answer set A to the original logic program can be obtained by this trans�nite
recursive procedure�

For stable models �and� correspondingly� for s
answer sets�� similar results are true without requiring consistency�

Proof of Proposition 	� To apply this general result to our program "�� we can take a splitting into two
levels� at the top level� we have all literals ans��� ��� and at the bottom level� all other literals� Since we only
have two levels� we only have to consider A� and A�� Here� " consists exactly of all the rules whose heads are
of level �� when we have found an s
answer set for this program� then� according to the recursive procedure�
for every rules with the conclusion ans��� ��� either the rule itself will be eliminated� or all its conditions will be
eliminated� It is easy to check that as a result� we get exactly the literals ans��� �� that we want� Proposition �
is proven�

A��� Proof of Proposition �

Proposition � can be proven by a similar use of a theorem about split logic programs� the main di�erence is
that� in contrast to the proof of Proposition �� where two layers were su�cient� here� we need �ve di�erent
layers� The corresponding splitting map s�p� is as follows�

� to all literals p from the set "�� we assign the lowest level �s�p� � ���

� to all literals from the program "� we assign level ��

� to all literals from the program "�� we assign level ��

� to all literals of the type ans�P� ��� we assign level ��

� �nally� to all literals of the type compare��� �� ��� we assign level ��

�

Then�

� On level �� we will have all facts from "� true�

� On level �� we will have an answer set for "�

� On level �� we will have an answer set for "��

� On level �� we will have the correct answers for ans��� ���

� Finally� on level �� we will have correct answers for compare��� �� ���

Comment� This proof is technically correct� but somewhat un
natural� In the next appendix� we will show how
the theorem about split logic programs can be generalized in such a way that results like Proposition � become
more naturally provable�

Appendix B� A New Result about Splittings of Logic Programs

B��� Motivations

In the proof of Proposition �� there was a de�nite logic in the relative levels from "�� "� ans��� ��� and
compare��� �� ��� but there was no particular logical reason why literals from "� were assigned a higher level
than literals from "� it could be done the other way around� There is no logical relation between " and "��
and the only reason why we placed one above another was technical� we had to somehow order them simply
because the theorem about split logic programs �that we were using� requires that the levels are linearly ordered�
Natural logical relations between the di�erent di�erent parts of the program "� lead only to a partial order
between di�erent parts�

compare��� �� ��
�

ans��� ��
� �

" "�

� �
"�

It is� therefore� desirable to generalize Lifschitz	s and Turner	s result to logic programs for which the splitting
map maps literals into a partially ordered set�

B��� Formulation of the new result

Fortunately� this generalization can be obtained by a simple modi�cation of the original proof� As in the proof
of Proposition �� for every two literals a and b from a logic program� we use the denotation a � b to indicate
that in one of the rules� a appears in the head �i�e�� in the conclusion part of the rule�� and b in the body of this
rule�

Let us recall that a �partially� ordered setM is called well�ordered if it does not have an in�nite monotonically
decreasing sequence m� � m� � � � � � mn � � � �

Def� By a generalized splitting of a logic program� we mean a mapping s from the set of all literals into a
well
ordered set �not necessarily linearly ordered� for which a � b implies s�a� � s�b�� �

For a program that allows a generalized splitting� we can� almost literally� repeat the construction described
in the proof of Proposition �� and get the following result�

�!

Theorem� If a logic program allows a generalized splitting� then�

� if a set A� obtained by the above�described trans�nite recursion is consistent� then it is an answer set of
the original logic program�

� vice versa� every consistent answer set A to the original logic program can be obtained by the above
trans�nite recursive procedure�

B��� Proof of the new result� main idea

There are two main possibilities to prove this result�

� One possibility is to simply repeat the proof from �����

� Another possibility is to take into consideration the fact that every well
ordering can be extended to a
linear well ordering and therefore� we can apply the original theorem from ���� to prove our result� From
the recursive construction� it easily follows that if in the original ordering� levels � and 	 were unrelated
by the ordering relation� then the corresponding reduced logic programs on stages � and 	 do not depend
on each other �similarly to levels corresponding to " and "� in the proof of Proposition ���

��

	Identification and Classification of Inconsistency in Relationship to Software Maintenance
	Recommended Citation

	cooke2.dvi

