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Identi�cation and Classi�cation of Inconsistency

in Relationship to Software Maintenance�

Daniel Cooke�� Luqi�� and Vladik Kreinovich�

�Computer Science� University of Texas at El Paso� El Paso� TX �����
�Computer Science� Naval Postgraduate School� Monterey� CA �����

Abstract

This paper provides an overview of the relationship between recent work in logic programming and recent
developments in software engineering� The relationship to software engineering is more speci�cally concerned
with how formal speci�cations can be used to explain and represent the basis of software maintenance and
evolution� Some of the results reviewed here have appeared in ��� and ����� These previous results are
summarized	 extended	 and made more general in this paper�

� Introduction

Maintenance activities can be divided into three distinct classes� corrective� perfective� and adaptive� Corrective
maintenance largely re�ects the failure of software engineers to validate and verify software speci�cations and
programs with respect to software speci�cations� respectively� Perfective maintenance is traditionally viewed as
a form of maintenance necessary to improve or change the performance of a system� but not its functionality�
Adaptive software maintenance alters the functionality of a system to re�ect a changing software context� Even
if software is valid and veri�ed� adaptive changes continue to be necessary�

Currently� the need for software maintenance is detected by the software user� In the most general case� the
user detects that the system is not performing the way it should �i�e�� there is a need for perfective maintenance��
there is an error in a result �i�e�� there is a need for corrective maintenance�� or there has been some change
in the software environment or context that requires that the system be modi�ed �i�e�� there is a need for
adaptive maintenance�� In all of these cases the system is behaving in a manner that is inconsistent to the
user	s expectation� At the heart of the need for maintenance is the problem of inconsistency�

But what exactly is maintenance and what is software evolution
 Without a formalism it is di�cult to claim
that anything is truly understood� Without a formalism� one must rely on his�her instinct and intuition� In
this paper� we focus on how the maintenance activity can be understood using recent developments in Logic
Programming Research� These results and their relationship to software maintenance are key to understanding
what software maintenance actually entails� Logic programming results provide a formal backdrop to an expla

nation and understanding of software evolution and software maintenance� In this paper software evolution is
to be understood as the changing functionality of live and useful software� Consequently� the focus of this paper
will be on adaptive maintenance�
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C� � C� � C� � ��� � Cn

� � � �
S� S� S� ��� Sn
� � � �
P� P� P� ��� Pn

Figure �� Context Changes Trigger Software Changes�

� Adaptive Changes� Software Maintenance and Evolution

Adaptive changes result from a changing software context� By context �or software context�� we mean the parts
of the real world with which a speci�ed system is to interact� including people and organizations as well as other
programs� databases� and hardware devices� When valid� an initial speci�cation S� of a software system re�ects
the initial context C� as well as the appropriate ways in which the software system is to interact with C�� In an
ideal software development process� only those parts of the context which will truly a�ect the software system
should be represented by the software speci�cation 
 all irrelevant features of the context are abstracted out of
S�� The initial program P�� if correct with respect to S�� should operate correctly in C�� Whether or not a
speci�cation re�ects the context is a problem of validation� and the correctness of a program with respect to a
speci�cation is the problem of veri�cation�

In practice� one often �nds that S� does not correctly re�ect C� �i�e�� the speci�cation is invalid� and P� is
not correct with respect to S� �i�e�� the program does not completely satisfy the speci�cation�� In such cases�
corrective and�or perfective changes are needed�

In any event� the context of a typical system will change� Over the life of the system� we typically observe a
series of contexts Ci which should lead to a corresponding series of speci�cations Si and a corresponding series
of programs Pi� as shown in Fig� ��

In this ideal case� the need for adaptive change becomes more obvious� If the context is Ci �where i � �� and
the current version of the program is Pi��� then the program does not correspond to a valid speci�cation� It is
clear that each change in the software context requires an appropriate adaptation of the software� As Lehman	s
laws ���� indicate� for a software system to survive it must evolve� it must adapt to its everchanging context�
We call the change in context from Ci to Cj �where j � i� a context shift� denoted by Ci � Cj in Figure ��
Figure � also illustrates the notion of a mapping from a context to a speci�cation and from a speci�cation to
a program� denoted as� Ci � Si and Si � Pi� A context shift should result in maintenance activity where valid
changes are made to a speci�cation and correct changes are made to a program�

Software evolution should be viewed as a continual process of re
validation and re
veri�cation� When the
context changes� the old system is at best� correct with respect to an invalid speci�cation� The context shift
recommends the need to re
validate the speci�cation and then re
verify the program� In fact� the software
process model presented in �gure � indicates that software maintenance should not be viewed as an activity
distinct from software development� The di�erence between initial development and subsequent maintenance
is a matter of the degree to which speci�cations and associated software are reused� The maintenance process
suggested here is is similar to that found in Basili	s Full Reuse Maintenance Process ����

The contribution made in this paper is the use of a logic which can be used to formalize the causes of adaptive
maintenance� As a consequence of the foregoing discussion� one should realize that the logic is to indicate when
a speci�cation is no longer valid�

� Speci�cation Validation

In order to be valid a speci�cation must be complete� consistent� and precise ��� ��� A precise speci�cation
means that there is no ambiguity in the statement of the speci�cation� In order to satisfy this requirement� a
speci�cation must be expressed in a language for which there is a formal �or mathematical� semantic� Expressing
the speci�cation in logic satis�es this requirement�
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In order to be complete� a speci�cation must correctly express all of the functionality desired in the software
system� Consistency means that there are no con�icting de�nitions in the speci�cation� The reader shall see that
the extended logic programming semantic ��� provides for a clear representation of completeness and consistency�

� Modeling a System and its Context

A system speci�er attempts to make precise statements about the intended behavior of the system and its
context� There are two important classes of speci�cation in any system� those which are immutable and those
which are mutable� Immutable speci�cations are statements about the software and�or its context which remain
true for all time� A mutable speci�cation is a statement which is believed or assumed to be true� i�e�� an
assumption or a belief� Beliefs or assumptions are typically true in some contexts but not in all possible
contexts�

EXAMPLE �� Immutable Speci�cation� Bill and Sam Cooke are brothers�

EXAMPLE �� Mutable Speci�cation� It may be assumed�believed that Bill and Sam are kind to each other�

The knowledge that Bill and Sam are brothers is a known fact which is forever true �i�e�� immutable�� They
are now and will forever be brothers� However� it is a belief �i�e�� mutable� that Bill and Sam are kind to each
other� The validity of this belief can change with time� With alarming frequency� Sam and Bill may substantiate
or invalidate this statement through their behavior�

The notions of immutable and mutable speci�cations are analogous to Lehman	s S
 and E
type programs�
The types are based upon the character of the program	s speci�cation� An S
type program is a program which
is correct with respect to speci�cations which do not change over time while an E
type program is one which is
correct with respect to speci�cations which may indeed change over time� A large system is typically comprised
of some mixture of the program types�

An E
type program has to evolve because the validity of the assumptions coded into the program change
with time� The assumption in an E
type program is a mutable speci�cation� The mutable speci�cations serve
as the seed of adaptive maintenance� The mutable speci�cations correspond to the parts of the software context
which are susceptible to the changes which result in context shifts�

Results from the study of nonmonotonic logic serve as a basis for understanding the mutable speci�cation ����
��� ���� Nonmonotonic logics provide formalisms to handle beliefs �or assumptions�� Intuitively� nonmonotonic
logics allow the retraction of beliefs when new information� which contradicts those beliefs� is presented� In
contrast� in monotonic logics� once the truth of a statement is established� new information cannot invalidate
the justi�cation for believing the statement �i�e� its proof or derivation��

Consider the following de�nitions of monotonic and nonmonotonic� Let S and S� represent a speci�cation
and a changed speci�cation� respectively� In predicate logic� a speci�cation is a set of assertions �both extensional
and intensional�� Let f�S� and f�S�� represent the interpretations of S and S�� In other words� f�S� and f�S��
are speci�ed relations of S and S�� Speci�ed relations can be viewed as a listing of all possible stated and derived
assertions� For example� suppose a speci�cation S is given in Prolog as�

p������

p�N�X��	N 
 ��N� is N 	 ��p�N��Y�� X is N � Y�

p�N�error��	 N � ��

The speci�ed relation f�S� is�
f�S� � f���� p���� error�� p���� error�� p������ p��� ��� p������ p��� ��� p������� ���g

If the speci�cation is valid� the speci�ed relation relates each input of a program to all valid output values� The
most important observation to make is that f�S� is a model of the software context� Therefore� if S is valid�
then a change from f�S� to f�S�� represents a model of a software context shift� Ci � Ci���

Def� A function f is monotonic if and only if �S� S��S � S� � f�S� � f�S���� �Where � denotes
implication�� �
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Figure �� Relationships among speci�cations due to change�

The de�nition of nonmonotonic negates the formula above�

Def� f is nonmonotonic if and only if 
S� S��S � S� 	 f�S� �� f�S���� �

The de�nition of nonmonotonic suggests a classi�cation of speci�cation changes where the classi�cation is
based on the fact that we can add to or delete from S� i�e�� S � S� or S � S�� There are exactly three
ways that the addition to or deletion from S impacts the speci�ed relation� The three ways are based upon
the possible relationships between f�S� and f�S�� due to Ci � Ci��� assuming that no change will result in
f�S�

T
f�S�� � ��

�� f�S� � f�S���

�� f�S� � f�S���

�� f�S� �� f�S�� 	 f�S� �� f�S���

Through these relationships one immediately sees the primitive e�ects of a context shift Ci �
Ci��� Observe that in all of the cases for change in the speci�ed relation� there will exist an
inconsistency between the old and the new speci�ed relation� Suppose it is possible to know the
information about both S and S�� This is actually what the software user possesses when he�she detects
an inconsistency� f�S� is what the software produces and f�S�� is what the user expects� Assuming p is an
input�output relation� a change to the speci�cation S �� S� is detectable through the detection of an inconsistency�

�� f�S� � f�S�� �and f�S� �� f�S��� means 
p�p �� f�S� 	 p � f�S����

�� f�S� � f�S�� �and f�S� �� f�S��� means 
p�p � f�S� 	 p �� f�S����

�� f�S� �� f�S�� 	 f�S� �� f�S�� means 
p� p��p� �� p 	 �p �� f�S� 	 p � f�S��� 	 �p� � f�S� 	 p� �� f�S�����

Figure � presents the meanings of the three possible relationships between f�S� and its successor f�S�� in
terms of Venn Diagrams� Absent is a diagram for disjoint sets� f�S�

T
f�S�� � �� This is due to the fact that

disjoint sets represent completely di�erent systems�
The facility to have knowledge about S and S� requires the ability to monitor relevant aspects of the

corresponding software contexts� Implied by the foregoing is a framework for the detection of the need for
adaptive maintenance� The framework is as follows�

�� The speci�er of a problem solution must identify the speci�cations that are actually assumptions �i�e��
those speci�cations that are mutable��

�� The speci�er must determine how the assumptions can be contradicted or� in other words� lead to an
inconsistency �this leads to the rules by which it is possible to detect context shifts��

�� The speci�er must identify the additional inputs necessary to detect the context shifts� and

�� The system must have the facility to detect inconsistencies when they arise�
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� Overview of Context Dependent Speci�cations

��� Extended logic programming as a natural basis for a speci�cation language

There is a need for a �formally de�ned� speci�cation language� In order to be able to automatically
check consistency and completeness of di�erent speci�cations� i�e�� to make a computer do this checking� we
must describe these speci�cations in a language that a computer can understand� In other words� we need a
formal language for describing speci�cations�

First attempt� the language of �rst order logic� Speci�cations �i�e�� properties that the designed software
must satisfy� can be arbitrarily complicated� In particular� these speci�cations may include terms like �and��
�or�� �not�� �if � � � then�� �for every x�� �there exists an x�� etc�� which are naturally formalized as logical
connectives and quanti�ers� Therefore� a natural idea is to allow� as speci�cations� arbitrary formulas that can
be obtained from some basic formulas by using these connectives 	� 
� �� �� and quanti�ers �x and 
x� The
resulting formulas are called formulas of �rst order logic�

The main drawback of using �rst order logic� First order logic describes arbitrarily complex speci�cations
very well� for example� it is the basic language used in the formalization of concepts in mathematics� If our goal
was simply to formalize knowledge� then �rst order logic would be a perfect solution�

However� our goal is not simply to formalize the speci�cations� but also to use these formalized speci�cations
as an input to a program that will check whether these speci�cations are consistent and�or complete� The
existence of such a program means that we must have an algorithm that would� e�g�� check whether a given set
of formalized speci�cations is consistent or inconsistent�

For this purpose� �rst order logic is not a very adequate language� because it is well known that no algorithm
is possible for checking consistency of �rst order formulas �this impossibility is a direct corollary of the famous
G�odel	s theorem��

Logic programming� a way to make logic formulas algorithmic� G�odel	s result shows that the main
drawback of �rst order logic as a speci�cation language is that the language of the �rst order logic is not
algorithmic� It is therefore desirable to modify this logical language and make it algorithmic� i�e�� make it
suitable for programming� Such logic
based programming languages have indeed been invented� the �rst and
most used of these languages is Prolog �this name is an abbreviation of Programming in Logic��

Basic logic programming� motivation and description� One of the main ideas behind making logic algo

rithmic is as follows� since allowing all logical connectives and quanti�ers makes the problems non
algorithmic�
we should allow only some of them� Which of the connectives and quanti�ers are the most important for
representing speci�cations


A typical speci�cation describes what the program should do in di�erent cases� e�g�� if something happens�
then it should perform a certain action� etc� Speci�cations are rarely formulated in terms of negative conclusions
or disjunctions �do this or that�� Therefore� the most important connective for knowledge representation is
an implication �if � then�� In view of this� basic logic programming only allows implications� Moreover� since
combinations of connectives �like �A� B�� C� can become extremely complicated and hard to understand� the
designers of the basic logic programming language allowed only single implications� but not their combinations�
As a result� a typical program in basic Prolog consists of statement of two types�

� facts A� i�e�� statements that do not contain any logical symbols at all� facts are also known as elementary
statements� or atoms� and

� simple �if�
�then� rules of the type

�if A�� � � � � and An� then B��

where Ai and B are atoms �elementary statements��

How can we formally describe these rules
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It is possible to describe these rules in �rst order logic� where� e�g�� the above statement can be written as

�A�� � � ��An�� B�

However� speci�cations are not always given in terms of logic programming� we often start with speci�cations
written in �rst order logic� and then translate these speci�cations into the language of logic programming� In
view of this� it is desirable to distinguish between the original �non
algorithmic� statements from �rst order
logic and the resulting �algorithmic� statements which form the logic program� To make this distinction easier�
researchers in logic programming use a re
oriented arrow to denote implication� for example� for the above
�if�
�then� rules� they use the notation

B � A�� � � � � An�

For facts� the distinction is not that critical� but sometimes� we also need to distinguish between the elementary
statements from the original logical speci�cation and the facts from the resulting logic program� One of the
ways to make this distinction easier is to represent each fact A as a rule with an empty right
hand side� i�e�� as
a rule

A�

So� a basic logic program is simply a collection of rules and facts�

Basic logic programming� a natural choice of semantics� The main objective of our formal representation
of a speci�cation is to be able�
GIVEN�

� a speci�cation F and

� a property Q that we want to check� to

RETURN� an answer describing whether programs satisfying this speci�cation also satisfy the property Q�
The description of what answers the system should return for each formal speci�cation �and for each queried

property� is called the semantics of the speci�cation language�
For basic logic programs� semantics immediately follow from the fact that these programs are actually a

particular case of formulas of �rst order logic� In general� if speci�cations are described by an arbitrary �rst
order formula F � then for every queried property Q� we have one of the following three situations�

� The property Q follows from the speci�cations F � in this case� this property Q is true for every program
that satis�es these speci�cations �or� in logical terms� in all models of this formula F ��

� The negation �Q of the property Q follows from the speci�cations F � in this case� this property Q is false
for every program that satis�es these speci�cations �i�e�� in all models of the formula F ��

� Neither the property Q� nor its negation follow from the speci�cations F � in this case� this property is
true for some programs �models� that satisfy these speci�cations but false for the other programs �models�
that also satisfy the same speci�cations F �

For example� if we specify the results of a program but do not restrict its running time� and then take
as Q some time limitation �e�g�� that the program will take no longer than a minute to run�� then
it is quite possible that some program produces the correct result for an under
a
minute time� while
other programs� that also produce correct results �and thus� also satisfy the same speci�cations�� will
take much longer than a minute to run�

�Of course� theoretically� there is a fourth possibility� that the speci�cations F are inconsistent� so no program
can satisfy all the speci�cations that we have combined into a formula F ��

This classi�cation can be also applied to rules and facts that form a basic logic program� Fortunately� basic
logic programs are a particularly simple case of general �rst order formulas� and due to this simplicity� for �rst
order formulas� we get a simpli�cation of this classi�cation� Indeed� all facts and rules that form a basic logic
program remain true if we simply consider a model in which all elementary properties are true� Therefore�
whichever of these properties Q we ask about� it is always possible that this property is true� In other words�
for basic logic programs� instead of the above three possibilities� we have only two possibilities�
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� First� it is possible that the property Q is true for all models of this logic program�

� Second� it is possible that in some models of the logic program F � this property Q is false�

The actual Prolog compiler� given a logic program F and a query Q� decides which of these two cases holds�
Of course� it makes no practical sense to let the compiler return either of these two long messages that describe
the corresponding cases� Therefore� only the shortened messages are returned�

� In the �rst case� the compiler returns the shortened message �true� �or� even shorter� �yes���

� in the second case� it returns a shortened message �false� �or� even shorter� �no���

Exception handling and generalized logic programs� Basic logic programs capture many important
speci�cations� but there is one important feature of speci�cations that these simple formulas have di�culty
capturing� exception handling�

Many speci�cations are described in terms of exceptional situations� e�g�� a natural speci�cation for a tax
program would describe all exceptions to normal taxes �disability� spending most of the year abroad� etc���
and then say that unless one of the exceptions applies� taxes should be computed using the given formula�
Exceptions themselves can be captured easily by simple implications of the type used in basic logic programs�
e�g�� �if a person has spent �� months abroad� then he or she does no pay any taxes�� The di�culty appears
when we try to describe a statement about a normal situation ��unless one of the exceptions applies ������

It is� of course� potentially possible to describe this statement as a normal if
then statement� by explicitly
enumerating all the exceptions in the conditions of this rule� However� there may be very many exceptions �and
moreover� many rules may have di�erent exceptions�� and the enumeration of these exceptions would drastically
increase the size of the logic program� and thus� inevitably increase the time that is necessary to answer queries�

To avoid these complications� researchers in logic programming proposed the notion of a generalized logic
program� also called logic program with negation as failure� The idea of negation as failure can be explained
using the above tax example� We have some rules that explain what an exception is� i�e�� several rules that
conclude� based on some assumption� that the given situation S is indeed exceptional� In logic programming
terms� these rules have the form

exc�S� � � � �

We also have a rule in which one of the conditions is �if none of the exceptions apply�� meaning �if none of the
other rules specify that this is an exceptional case�� or� in yet another form� �if we have failed to prove that this
is an exception�� This �not an exception� is denoted by not exc and� since this not actually indicates failure to
prove� it is called negation as failure�

By de�nition� negation as failure only occurs in the conditions of the rules� Thus� a generalized logic program
can be de�ned as a collection of facts and rules of the following type�

B � A�� � � � � An� not C�� � � � � not Cm�

where B� Ai� and Cj are elementary statements�

Semantics of generalized logic programs� For generalized logic programs� we also need to determine a
semantic� i�e�� we also need to be able to determine� for a given program F � whether a given query Q is true or
not�

Negation as failure is not a typical logical connective� and therefore� in contrast to the case of basic logic
programs� we cannot directly deduce the semantics of a generalized logic program from the known semantics
of �rst order logic� However� we can still deduce this semantic indirectly� by checking the consistency of the
resulting assignment of �true� and �false� to di�erent elementary statements from the program�

Indeed� let us assume that F is a generalized logic program� and that to every elementary statement from
this program� we somehow assign �true� or �false�� In mathematical terms� this means that we have selected�
in the set of all atoms of the original logic program� a subset T formed by those atoms that our semantic deems
�true��

�



This means� in particular� that we have assigned �true� or �false� to every statement about exceptions� i�e��
that we know about each situation and each rule� whether this situation is an exception to this rule or not�
which means� for each statement C that occurs under negation as failure� we know whether this statement is
true or not� In this case� we can determine which rules are applicable and which are not and thus� transform
the original rules into new rules that do not contain negation as failure� This transformation can be done as
follows�

� If one of the conditions of a rule is not C for some atom C that is true� then this rule is not applicable�
and we can safely delete it� �Informally� the presence of the condition not C means that this rule is only
applicable in normal situations� in which there is no way to prove C� the fact that C is true means that
we have an exceptional situation� and thus� the rule is not applicable��

� If for all exception
type conditions not Ci of a rule� Ci is not true �i�e�� Ci �� T �� then this rule is
indeed applicable and therefore� we can simply delete these conditions not Ci from the list of conditions�
�Informally� this situation is indeed non�exceptional� so the rule is applicable��

As a result of this transformation� we get a new logic program without negation as failure� For this new basic
logic program� we can use the above
described semantics and �nd the resulting set Tres of true atoms �i�e�� of
elementary statements that are true according to this transformed logic program�� This set should� of course�
coincide with the original set T �

This consistency requirement Tres � T only holds for some sets of atoms T � Sets of atoms for which T � Tres�
i�e�� sets that remain stable �do not change� under this transformation from T to Tres� are called stable models
of the original logic program�

The natural consistency requirement eliminates some possible models T � this elimination is very e�cient� to
the extent that for many important classes of logic programs� there is only one stable model� For example�

� A program that does not contain negation as failure at all is guaranteed to have a unique stable model�

� Furthermore� a program may contain negation as failure but as long as these negations do not form a
loop� the program is guaranteed to have a unique stable model�

� Since strati�able programs ��� do not contain negative cycles� strati�able programs also have unique stable
models ����

There are many other classes of programs with unique stable models �see� e�g�� ������ However� there are also
logic programs which have two or more stable sets� For example� one can easily check that a simple logic
program

p� not q�

q� not p�

has exactly two di�erent stable models� fpg and fqg� �This program does not fall into one of the above classes
because it has a loop of negations� the rule for p contains a negation of q� and the rule for q contains a negation
of p��

Such logic programs with multiple stable models usually describe incomplete speci�cations�

E�g�� in the above example� the information described by these two rules� basically� says that if p is false�
then q must be true� and vice versa� In other words� this information says that either p or q must be true�
but it does not specify which of these two atoms is true� Naturally� we have two possible stable models
here� one in which p is true� and another in which q is true�

We believe that for all speci�cations� that are su�ciently complete to be considered for the purposes of a software
development project� the corresponding logic program has a unique stable model� For such logic programs� the
answer to the query Q is �true� if Q belongs to the unique stable model� and �false� if Q does not belong to
this unique stable model T �

Comments� Ideally� we should have complete speci�cations and thus� a logic program with a unique stable
model� However� realistically� it is quite possible that speci�cations are incomplete �especially on the initial
stages of software design�� In this case� we face two problems�

 



� de�ning the semantics� i�e�� what is �true� and what is �false�� and

� �nding ways to complete the incomplete speci�cation�

Semantics are relatively easy to de�ne� if a generalized logic program has several possible stable models� then
it is natural to return �true� if Q holds in all stable models� and �false� otherwise�

On the other hand� completion is often a di�cult task� A generic automatic completion mechanism would
be useful in practice for diagnosing incompleteness and helping developers understand what choices have to be
made in order to make their speci�cations complete�

Extended logic programs� Generalized logic programs represent positive knowledge� i�e�� facts �e�g�� �an atom
A is true��� and �if���then� rules ��if A�� � � � � An are true� then B is true��� In addition to positive facts and
rules� our speci�cation sometimes include negative facts and rules� we know that some elementary statement
should not be true� or that under some conditions A�� � � � � An� a fact B should not be true� In other words�
we must be able to describe negation in its classical sense �i�e�� not as negation as failure�� Generalized logic
program do not allow us to describe this type of knowledge� they do have negation� but what they have is a
non
standard �negation as failure�� So� to describe such negative knowledge� we must be able to add a more
traditional� �classical� negation � to the generalized logic programs� In logic programs extended thus� a general
rule is still of the type

B � A�� � � � � An� not C�� � � � � not Cm�

but now B� Ai� and Cj are no longer always atoms� they may be also �classical� negations of atoms� i�e��
statements of the type �E for some atom E�

In general� atoms and their classical negations are called literals� so� we can say that A� Bi� and Cj are
literals�

Semantics of extended logic programs� When we move from generalized to extended logic programs� we
replace each original atom E with two literals� A and �A� If we were still in classical logic� then there would
be no need to consider �A separately� because in classical logic� the truth value of �E is uniquely determined
by the truth value of E �namely� it is exactly the opposite truth value�� However� in logic programming� where
knowledge may be incomplete� it is quite possible that an atom A is not true� but this does not necessarily mean
that its negation is necessarily false� it may simply mean that we do not know whether A is true or not � it is
true in some models and false in others�

So� in an extended logic program� even if we know the truth values of all the atoms� this does not automati

cally enable us to determine the truth values of their classical negations� in this sense� atoms and their classical
negations can be viewed as di�erent elementary formulas� This fact leads to the following natural semantics of
an extended logic programs�

� We treat each atom and its classical negation as two di�erent atoms� as a result� we get a generalized logic
program �with possibly twice as many atoms as before��

� We then use the above stable model semantics to determine which of the new atoms are true and which
are false�

In this semantic� each new atom �i�e�� each literal� is either true or false� As a result� for every original atom A�
we have four di�erent options�

� The atom A is true� while its classical negation �A is not true� in this case� we conclude that A is true�

� The atom A is not true� while its classical negation �A is true� in this case� we conclude that A is false�

� Neither the atom A nor its classical negation �A are true� in this case� we conclude that the truth value
of A is unknown �i�e�� that our information about A is incomplete��

� There is also a possibility that both the atom A and its classical negation �A are true� in this case� we
conclude that our information about A is inconsistent�

!



This semantic can be described by the following de�nition�

Def� Let " be an extended logic program �i�e�� a logic program with both negation as failure and classical
negation�� By an s�answer set for "� we mean a stable model of a generalized logic program that is obtained if
we treat all literals from " as di�erent atoms� �

Comment� This semantics for extended logic programs was proposed by M� Gelfond and V� Lifschitz in their
pioneering papers � � !�� with the following minor di�erence�

� In many real
life problems� errors are absolutely intolerable� and therefore� we must eliminate all inconsis

tencies before we can use the knowledge base� In view of this� the original de�nition from � � !� required
that we discard stable models that are inconsistent �i�e�� that contain both an atom A and its negation
�A�� and that if such a stable model is impossible� then we should take the set of all literals as an answer
set� As a result of this approach� even when all the rules and facts that describe some property are� by
themselves� quite consistent� if we add unrelated inconsistent rules that describe some other property� we
will not be able to deduce anything meaningful about the original property as well�

� In the ever
changing world of software speci�cations� however� minor changes are very frequent� and
minor inconsistencies are inevitable� Of course� it is desirable to eliminate all inconsistencies� but at the
intermediate stages� we would like to have a tool that neglects unrelated inconsistencies and provides
correct answers for those properties whose description is consistent� Therefore� for our purposes� we use
the modi�ed version of the original semantics that allow such �localized� inconsistency�

Closed World Assumption� In some cases� the information describes potentially open knowledge� e�g�� we
have listed some exceptions to the general rule� but additional exceptions may follow�

In many cases� in addition to the knowledge described by the rules �and representable by an extended
logic program�� we have additional information � that this knowledge is complete �closed�� i�e�� that we have
enumerated all rules and all exceptions� and if something is not explicitly de�ned by these rules as an exception�
then it is de�nitely not an exception� This additional information� that the knowledge is closed to further
changes� is called a Closed World Assumption �CWA��

CWA is drastically di�erent from the pieces of information that we have considered before� At �rst glance� it
may therefore seem that formalizing CWA would require a further extension of logic programming� Fortunately�
it turns out that CWA can be formalized already in terms of extended logic programming� Namely� CWA states
that� for every literal A� if we cannot prove that A is true� then A is false� The condition that we cannot prove
that A is true is exactly the condition expressed by negation as failure �not A�� thus� CWA can be expressed
by the following rule

�A� not A

for every literal A� i�e�� in other words� by two rules

�E � not E�

E � not �E�

for every atom E�

��� How to implement the theoretical concepts of extended logic programming
with the existing Prolog compilers

The problem� In the previous section� we have argued that classical negation is important for representing
speci�cations� Therefore� it is desirable that we describe knowledge in terms of extended logic programs� i�e��
logic program that allow both negation as failure and classical negation�

However� most practically available Prolog compilers only allow generalized logic programs� i�e�� logic pro

grams that may contain negation as failure but not classical negation� In other words� the useful notion of an
extended logic program remains largely a theoretical notion�
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It is� therefore� desirable to implement this theoretical concept of an extended logic program by using a
standard logic compiler �that can only handle generalized logic programs��

Main idea� The possibility of this implementation follows from the fact that the semantics of an extended
logic program were actually de�ned in terms of the semantics of the auxiliary generalized logic program� Thus�
according to this semantic� if we have a logic program "� and we want to �nd an answer to the query Q� then
we�

� re
formulate " as a generalized logic program�

� ask two queries� Q and �Q� to this re
formulated program� and then

� combine these two answer into the answer about the original query�

Two problems with this idea� There are two problems with this idea� one minor and one more major�
The minor problem is that most Prolog compilers use only ASCII symbols� so we cannot directly implement

the symbol �Q for classical negation� This type of a problem is not new for Prolog� the symbol � that we
use to describe Prolog rules is also not an ASCII symbol� so Prolog compilers usually use a similar
looking
combination of ASCII symbols ����� Instead of a non
ASCII expression �Q for classical negation� we can use
the ASCII combination neg�Q��

The second problem is more disturbing� the above idea seems to require processing on top of the Prolog
compiler� It is de�nitely preferable to somehow express this additional processing within Prolog itself� We will
show that this is a quite doable�

Solution to the problem� To incorporate the answering mechanism for extended logic programs into Prolog�
we propose to introduce a new binary predicate ans��� �� and add� to the transformed program� the following
general rules�

ans�P� true�� P� not �P �

ans�P� false� � �P� not P � �E�

ans�P� incomplete� � not P� not �P �

ans�P� inconsistent� � P��P �

where P stands for an arbitrary atom �we follow a usual Prolog tradition of using capitalized names to describe
variables� and names starting with small letters to describe constants�� Then� to get an answer for a query
Q� we pose the following query to the resulting Prolog program� �ask�Q� Truth�
�� When faced with a query
that has a variable in it� Prolog compilers return the value of the variable that makes this formula true� and a
special message �e�g�� �false�� if there is no such value� We claim that if the underlying Prolog compiler correctly
handles generalized logic programs� then for this enlarged program� it will return the correct truth value for
every query�

Proposition 	� Let " be an extended logic program� Let "� be a generalized logic program that is obtained
from " as follows�

� First� we interpret all literals from the program " as new atoms�

� Then� we add a new predicate symbol ans��� �� and new rules �E� for every atom P from the original
program "�

Then� for every atom Q from the original program "� and for each of the four possible truth values t� ans�Q� t�
is true for "� if and only if the query Q has a truth value t in the original logic program "�

Comment �� For the reader	s convenience� we have placed the proofs of this and following propositions into a
special appendix at the end of this paper�

Comment �� If the logic program contains the Closed World Assumption� then the value �incomplete� is
impossible� and therefore� we can omit the rule that describes this truth value from �E��
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Comment �� In actual Prolog� the system �E� will take the following form�

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

��� Applications to software maintenance

Formulation of the problem� In software maintenance� we want to analyze the relationship between the
original and the modi�ed speci�cations S and S�� Since� as we have already mentioned� extended logic program

ming is a natural language for describing these speci�cations� we can thus assume that we have two di�erent
extended logic programs " and "� that describe� correspondingly� the old and the new speci�cations� Notice
that S and S� correspond to " and "� and that the models of " and "� correspond to the speci�ed relations
f�S� and f�S��� We want to investigate� for every query Q� whether the answer to this query has changed when
we replace the old speci�cations with the new ones�

Given system �E�� for each query Q� each of the extended programs " and "� can give us four di�erent
answers� so we have �� � � �� possible combinations of answers� true
to
true� true
to
false� etc� For example�

� true
to
true means that the statement Q is true in both speci�cations and is� therefore� consistently true�

� true
to
false means that the statement Q was originally true and is now false� i�e�� that there is an
inconsistency between these two speci�cations�

� incomplete
to
true means that the new speci�cation completed the knowledge expressed in the original
speci�cations� etc�

The simple solution and its drawbacks� As in the last subsection� we can solve this problem if we ask the
same query to two di�erent programs and compare the answers� However� it is desirable to have this comparison
done by the Prolog program itself�

Solution� We cannot directly merge the facts and the rules from the programs " and "�� because if we did
we would lose the information concerning which rules corresponded to the old speci�cations and which rules
corresponded to the new ones� However� we can still merge the logic programs indirectly� Namely� in e�ect�
since we have two di�erent logic programs� we thus have two di�erent description of each atom P � i�e�� in e�ect�
two di�erent atoms� �P according to the old speci�cation� and �P according to the new speci�cation�� Some
atoms are described by the basic facts� so we do not need to duplicate them� but for every other atom P � we
can keep this notation for �P in the original speci�cation "�� and use a di�erent notation �the natural one is
P �� to describe this same atom according to the new program "��

Since the new program "� describes the new atoms� we have to replace� in every rule from "�� every atom P

that is not a basic fact by the corresponding atom P �� Then� we can merge these programs� add the predicate
ans��� �� to describe the answers to each of them� and add a new predicate to describe comparison�

compare�P� T�� T��� ans�P� T��� ans�P �� T��� �C�

Our claim is similar to the one made in the previous subsection� If the underlying Prolog compiler correctly
handles generalized logic programs� then for the thus combined program� will get the correct comparison for
every query�
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Proposition 
� Let " and "� be extended logic programs with the same alphabet 	i�e�� with the same atoms
�
and let "� be a set of facts 	called basic
 common to both programs� Let "� be a generalized logic program that
is obtained from " and "� as follows�

� First� we introduce� for every atom P that does not belong to "�� a new atom P �� and replace each
occurrence of this atom P in the program "� by the corresponding atom P ��

� Second� we combine the rules and facts from the program " and from the replaced program "��

� Third� we interpret all literals from the combined program as new atoms�

� Fourth� we add a new predicate symbol ans��� �� and new rules �E� for every atom P that either occurs in
the original program "� or has the form P � for one of such atoms�

� Finally� we add the rule �C��

Then� for every atom Q� and for each pair of possible truth values ht�� t�i� compare�Q� t�� t�� is true for "� if
and only if the query Q has a truth value t� in the original logic program "� and a truth value t� in the original
logic program "��

Comment� In the actual Prolog� we cannot use the notation A� to denote a new atom that corresponds to A�
therefore� we will use the ASCII notation new�A�� In these new notations� the rule �C� takes the following form�

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

� An Example

The original speci�cation� Suppose we have a simple speci�cation S to indicate� based upon salary and
marital status� when a person is to pay income taxes�

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary 
 
�����

Furthermore suppose that the complete domain of the problem is�

person�bill�������married��

person�sam�������married��

person�bob�������single��

person�joe�������married��

person�lyle�
�����married��

person�john�
�����married��

person�sal�������single��

person�bart�������married��

For such a small domain� the speci�ed relation is feasible to compute�

pay�taxes��lyle�
�����married���

pay�taxes��john�
�����married���

pay�taxes��sal�������single���

pay�taxes��bart�������married���

Let us abbreviate the speci�ed relations in the following way�
f�S� � fpt�lyle�� pt�john�� pt�sal�� pt�bart�g
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First modi�cation� Now suppose� a change is made resulting in S��

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary 
 ������

The speci�ed relation appears as�
f�S�� � fpt�bill�� pt�sam�� pt�bob�� pt�joe�� pt�lyle�� pt�john�� pt�sal�� pt�bart�g

Notice that this change is an example of the leftmost Venn Diagram in Figure �� where f�S� � f�S��

Second modi�cation� Now suppose the change is made to S� resulting in S���

pay�taxes��Name�Salary�married���	Salary 
 
�����

The speci�ed relation appears as�
f�S��� � fpt�sal�� pt�bart�g

In this case� the change is re�ected in the middle Venn Diagram of Figure �� where f�S� � f�S����

Third modi�cation� Finally consider the change from S to S����

pay�taxes��Name�Salary�single���	person�Name�Salary�single�� Salary 
 ������

pay�taxes��Name�Salary�married���	person�Name�Salary�married�� Salary 
 
�����

The speci�ed relation appears as�
f�S���� � fpt�sal�� pt�bart�� pt�bob�g

In this case� the third Venn Diagram is represented� wheref�S� �� f�S���� 	 f�S� �� f�S�����

Applying logic programming techniques to these speci�cations� general idea� For any problem
of reasonable size it is not feasible to compute the speci�ed relations to determine the nature of the change�
Therefore� one must hope for a mechanism to detect the need for change �on the �y�� The extended logic
programming mechanism indeed allows for this form of detection� It turns out that if S is paired with each of
the changed speci�cations S�� S��� and S���� the extended logic programming answering mechanism can detect
the inconsistencies that result� In other words� when changes to S are combined with S and the extended logic
programming answering mechanism is employed� the comparison query will result in inconsistent answers for
data a�ected by a change�

Comparing S and S�� For example� when combining S and S��

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary 
 
�����

new�pay�taxes��Name�Salary�Marital����	person�Name�Salary�Marital��Salary 
 ������

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

neg�P��	not P�

Inconsistencies are detected for queries� involving bob� bill� sam� and joe� This is because in f�S� these individuals
do not pay taxes and in f�S�� they do pay taxes� For all remaining people� taxes are paid in f�S� and f�S��
and the query mechanism answers that it is true that they pay taxes�
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Comparing S and S��� When given S and S���

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary 
 
�����

pay�taxes��Name�Salary�married���	person�Name�Salary�married��Salary 
 
�����

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

neg�P��	not P�

Inconsistencies are detected for queries� involving john and lyle� This is because in f�S� these individuals do
pay taxes and in f�S��� they do not pay taxes� For all remaining people� taxes are paid or not paid in both f�S�
and f�S��� and the query mechanism answers consistently�

Comparing S and S���� Finally consider S and S����

pay�taxes��Name�Salary�Marital���	person�Name�Salary�Marital��Salary 
 
�����

pay�taxes��Name�Salary�single���	person�Name�salary�single��Salary 
 ������

pay�taxes��Name�Salary�married���	person�Name�Salary�married��Salary 
 
�����

ans�P�true��	P�not neg�P��

ans�P�false��	neg�P��not P�

ans�P�incomplete��	not P�not neg�P��

ans�P�inconsistent��	P�neg�P��

compare�P�T��T
��	ans�P�T���ans�new�P��T
��

neg�P��	not P�

Inconsistencies are detected for queries� involving john� bob and lyle� For john and lyle� this is because in f�S�
they do pay taxes and in f�S���� they do not pay taxes� For bob� in f�S� he does NOT pay taxes and in f�S����
he does� For all remaining people� taxes are paid or not paid in both f�S� and f�S���� and the query mechanism
answers appropriately�

	 Conclusion

It is our belief that the potential for understanding software evolution and software maintenance is greatly
improved through the use of recent results in Logic Programming research� The advantage of this approach
is that one can extend Prolog with the simple rules and conventions presented here and actually execute a
speci�cation and observe the impact of change�
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Appendix A� Proofs

A��� Proof of Proposition �

This proof follows from the general result about splittings of logic programs� Proposition � follows
from the general theory of stable models of split logic programs� developed by V� Lifschitz and H� Turner in the
paper �����

In that paper� this notion was de�ned for class of logic programs that is more general than we have allowed�
namely� for the so
called disjunctive logic programs that allow an additional connective �or� in the conclusion
of �if���then� rules� i�e�� which allows rules of the type

B�j � � � jBd � A�� � � � � An� not C�� � � � � not Cm�

where �B�j � � � jBd� means �B� or � � � or Bd�� Since in Proposition �� we only consider logic programs without
disjunction� a reader who is not interested in this general result can simply assume that we have a regular logic
program� �We will return to the general case in Appendix B��

In Appendix B� we will propose a generalization of the result from ����� To make this generalization easier
to describe� and also to simplify the result	s understanding by the reader who may not be well trained in logic
programming� we will slightly modify the original notations and expositions �while preserving the construction
from ���� intact��

Splitting� main de�nitions� The main de�nition from ���� can be reformulated as follows� for every two
literals a and b from a logic program� let us denote a � b if in one of the rules� a appears in the head �i�e�� in the
conclusion part of the rule�� and b appears elsewhere in this rule� i�e�� either in its head �as one of the possible
rule	s conclusions� or in its body �as one of the conditions of the rule�� By a splitting of the program� we mean
a mapping s from the set of all literals into a linearly well
ordered set �i�e�� into the set of all ordinal numbers
that are smaller than some ordinal number �� for which a � b implies s�a� � s�b�� In other words� to every
literal a� we assign a level s�a��

Comment� For Propositions � and �� we do not need in�nite ordinal numbers� since �nite ordinal numbers are
exactly natural numbers �� �� �� �� � � �� a reader who does not feel comfortable with general ordinal numbers can
use natural numbers instead� In this case� instead of a trans�nite recursion� i�e�� recursion over ordinal numbers�
the reader can substitute normal recursion� i�e�� recursion over natural numbers�

Answer sets for split logic programs� intuitive description� Intuitively� the existence of a splitting
sequence means that rules that de�ne literals from level � only use literals from this and lower levels� Thus�
e�g�� rules that de�ne literals of level � only use literals from the same level and thus� these rules are self
su�cient
to de�ne which of the literals of level � are true and which are not�

As soon as we have de�ned the truth values of all literals of level �� we can de�ne the truth values of literals
of level �� etc�

Answer sets for split logic programs� a formal description� Formally� this process corresponds to
trans�nite recursion� i�e�� recursion over all possible levels �in our case� over all ordinal numbers � �� if � is
�nite� this becomes a simple recursion��

� First� we take all the rules whose heads are of level �� By de�nition of a splitting� all conditions from these
rules are also of level �� Then� we �nd an answer set A� for the the corresponding logic program�

� If for some level �� we have already described the answer sets A� for all levels � � �� then we can de�ne
the answer set A� corresponding to this level � as follows�

��



� consider the union A�� of all already de�ned sets A� �

� select all the rules whose heads contain only literals of levels � and lower�

� delete all the rules in which one of conclusions in the head is a literal from the set A�� �because
these rules are automatically true��

� if one of the conclusions of a rule is a literal of level � � that does not belong to A��� we delete this
literal from the conclusion �because this literal cannot be true��

� delete all the rules in which one of the conditions is not p for some literal p included inA�� �intuitively�
since p � A��� the condition p is true and thus� the opposite condition not p is not satis�ed��

� delete all the rules in which one of the conditions is p for some literal p of level � � that is not
included in A�� �intuitively� since p �� A��� the condition p is not true and thus� the rule is not
applicable��

� from each of the remaining rules� delete all conditions p and not p that are literals of levels � � �after
our previous deletions� all these conditions are automatically true��

As a result� we get a logic program which only contains literals of level �� If this logic program has an
answer set� we add all literals from this answer set to A�� and get A�� �If this logic program turns out
to be empty� we take simply A�� as A���

As a result of this procedure� we get a set A��

The main result about split logic programs� The main theorem from ���� consists of the following two
statements�

� if this set A� is consistent� then it is an answer set of the original logic program�

� vice versa� every consistent answer set A to the original logic program can be obtained by this trans�nite
recursive procedure�

For stable models �and� correspondingly� for s
answer sets�� similar results are true without requiring consistency�

Proof of Proposition 	� To apply this general result to our program "�� we can take a splitting into two
levels� at the top level� we have all literals ans��� ��� and at the bottom level� all other literals� Since we only
have two levels� we only have to consider A� and A�� Here� " consists exactly of all the rules whose heads are
of level �� when we have found an s
answer set for this program� then� according to the recursive procedure�
for every rules with the conclusion ans��� ��� either the rule itself will be eliminated� or all its conditions will be
eliminated� It is easy to check that as a result� we get exactly the literals ans��� �� that we want� Proposition �
is proven�

A��� Proof of Proposition �

Proposition � can be proven by a similar use of a theorem about split logic programs� the main di�erence is
that� in contrast to the proof of Proposition �� where two layers were su�cient� here� we need �ve di�erent
layers� The corresponding splitting map s�p� is as follows�

� to all literals p from the set "�� we assign the lowest level �s�p� � ���

� to all literals from the program "� we assign level ��

� to all literals from the program "�� we assign level ��

� to all literals of the type ans�P� ��� we assign level ��

� �nally� to all literals of the type compare��� �� ��� we assign level ��

� 



Then�

� On level �� we will have all facts from "� true�

� On level �� we will have an answer set for "�

� On level �� we will have an answer set for "��

� On level �� we will have the correct answers for ans��� ���

� Finally� on level �� we will have correct answers for compare��� �� ���

Comment� This proof is technically correct� but somewhat un
natural� In the next appendix� we will show how
the theorem about split logic programs can be generalized in such a way that results like Proposition � become
more naturally provable�

Appendix B� A New Result about Splittings of Logic Programs

B��� Motivations

In the proof of Proposition �� there was a de�nite logic in the relative levels from "�� "� ans��� ��� and
compare��� �� ��� but there was no particular logical reason why literals from "� were assigned a higher level
than literals from "� it could be done the other way around� There is no logical relation between " and "��
and the only reason why we placed one above another was technical� we had to somehow order them simply
because the theorem about split logic programs �that we were using� requires that the levels are linearly ordered�
Natural logical relations between the di�erent di�erent parts of the program "� lead only to a partial order
between di�erent parts�

compare��� �� ��
�

ans��� ��
� �

" "�

� �
"�

It is� therefore� desirable to generalize Lifschitz	s and Turner	s result to logic programs for which the splitting
map maps literals into a partially ordered set�

B��� Formulation of the new result

Fortunately� this generalization can be obtained by a simple modi�cation of the original proof� As in the proof
of Proposition �� for every two literals a and b from a logic program� we use the denotation a � b to indicate
that in one of the rules� a appears in the head �i�e�� in the conclusion part of the rule�� and b in the body of this
rule�

Let us recall that a �partially� ordered setM is called well�ordered if it does not have an in�nite monotonically
decreasing sequence m� � m� � � � � � mn � � � �

Def� By a generalized splitting of a logic program� we mean a mapping s from the set of all literals into a
well
ordered set �not necessarily linearly ordered� for which a � b implies s�a� � s�b�� �

For a program that allows a generalized splitting� we can� almost literally� repeat the construction described
in the proof of Proposition �� and get the following result�

�!



Theorem� If a logic program allows a generalized splitting� then�

� if a set A� obtained by the above�described trans�nite recursion is consistent� then it is an answer set of
the original logic program�

� vice versa� every consistent answer set A to the original logic program can be obtained by the above
trans�nite recursive procedure�

B��� Proof of the new result� main idea

There are two main possibilities to prove this result�

� One possibility is to simply repeat the proof from �����

� Another possibility is to take into consideration the fact that every well
ordering can be extended to a
linear well ordering and therefore� we can apply the original theorem from ���� to prove our result� From
the recursive construction� it easily follows that if in the original ordering� levels � and 	 were unrelated
by the ordering relation� then the corresponding reduced logic programs on stages � and 	 do not depend
on each other �similarly to levels corresponding to " and "� in the proof of Proposition ���
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