
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

1-1-2011

Designing, Understanding, and Analyzing
Unconventional Computation: The Important
Role Of Logic And Constructive Mathematics
Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-02
Published in Applied Mathematical Sciences, 2012, Vol. 6, No. 13, pp. 629-644

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Kreinovich, Vladik, "Designing, Understanding, and Analyzing Unconventional Computation: The Important Role Of Logic And
Constructive Mathematics" (2011). Departmental Technical Reports (CS). Paper 591.
http://digitalcommons.utep.edu/cs_techrep/591

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/591?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Applied Mathematical Sciences, Vol. x, 201x, no. xx, xxx - xxx

Designing, Understanding, and Analyzing

Unconventional Computation:

The Important Role of

Logic and Constructive Mathematics

Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA
email vladik@utep.edu

Abstract

In this paper, we explain why, in our opinion, logic and constructive
mathematics are playing – and should play – an important role in the
design, understanding, and analysis of unconventional computation.

Mathematics Subject Classification: 03A05, 03F60, 03F65, 68Q05,
65G20, 03F03

Keywords: unconventional computations; logic; constructive mathemat-
ics

1 Introduction

Challenge. There are many practical problems for which:

• the algorithms are, in principle, known, but

• computations requires such a long time that we have to stop them mid-
way and get poor quality results (if we get any meaningful results at
all).

2 Vladik Kreinovich

Traditional approaches to this challenge and their limitations. Tra-
ditional approaches to this challenge are:

• to design faster super-computers (hardware), and/or

• to design faster algorithms.

Both approaches are reasonable and sound reasonable. However, when people
implement these approaches, they often implement them in a limited way.

For example, when computer engineers talk about faster computers, they
usually talk mostly about new computers:

• which are innovative on the engineering level – in the sense that they
implement new engineering ideas – but

• which are not that innovative on the level of fundamental physics – in
the sense that the new designs use the same physical processes as the
existing computers.

Similarly, when computer scientists design faster algorithms, they usually
mostly design new algorithms for solving the exact same problem as before –
albeit slightly faster. For example, the existing software usually implement al-
gorithms for finding accurate solutions to the corresponding partial differential
equations. This accuracy makes sense in the ideal situations, when we know
the initial conditions with high accuracy. In practice, often, due to sparsity
and inaccuracy of sensor data, we only have approximate inputs. In such sit-
uations, when inputs are only known with high uncertainty, it makes no sense
to compute the results with a high accuracy.

Thus, when the traditional approaches are not sufficient, it is reasonable
to try alternative approaches that overcome these limitations. Specifically:

• re hardware: use unconventional physical (and biological) processes;

• re algorithms: perform computations only up to accuracy that matches
the input accuracy.

Our main claim. We claim that for both alternative approaches to succeed,
it is crucial to further develop the corresponding tools of mathematical logic –
and related methods of constructive mathematics.

2 Why Logic?

Stages of solving a problem. A computational solution to a problem con-
sists of the following stages:

Unconventional Computation: The Role of Logic 3

• first, we specify a problem, i.e., describe the user’s problem in precise
terms;

• then, we design and implement an algorithm for solving this problem;

• finally, we verify the corresponding program.

Let us show that logic is useful on all these three stages.

Logic has been efficiently used to specify problems. Sometimes, the
problem is presented in terms of explicit algebraic or differential equations.
However, in general, the correct formulation of the practical problem requires
logical terms (logical connectives, quantifiers, etc.).

For example, if the task is to design a stable control, this means that for
all deviations which are not too large, the trajectory will eventually return to
the standard one. In precise terms, this means that there exists a bound ∆
such that, for every moment t, if the distance ρ(x(t), x′(t)) does not exceed ∆,
then for every accuracy ε > 0, there exists a moment t0 > t such that for every
t′ ≥ t0, the new trajectory is ε-close to the original one. In precise terms, this
means that

∃∆∀t∀x′(ρ(x(t), x′(t)) ≤ ∆ ⇒ ∀ε∃t0∀t′(t′ ≥ t0 ⇒ ρ(x(t′), x′(t′)) ≤ ε)).

This is a simple example of a specification requiring quite a few quantifiers to
describe.

Logic has been efficiently used to design algorithms. A logical speci-
fication not only provides a formalized description of the problem, it can often
lead to a solution to the problem. For example, several logic programming
languages (widely used in AI applications) make it possible to automatically
transform logical specifications into a code; see, e.g., [25, 26, 33].

Comment. It is worth mentioning that a related work was done at Microsoft
Research on Spec Explorer and Abstract State Machine.

Logic has been efficiently used in program verification. Not only the
problem itself – i.e., the connection between the input and the desired output
– can often be naturally described in terms of logic: the desired behavior of
each computational module can also be naturally described in logical terms.

A natural requirement for a computational module is that for all inputs
that satisfy a certain pre-condition, the result must satisfy the corresponding
post-condition. For example, for a sorting module, the resulting list must be

4 Vladik Kreinovich

sorted and it must consist of exactly the same elements as the input (albeit
maybe in a different order).

Similarly to the way logic is used in problem specification, this logical
description not only helps to describe the computations, it also helps to reason
about computations – since one of the main objectives of logic is reasoning. In
particular, logical tools are extremely important in program verification: once
we formulate both the specification and the computations in logical terms, the
verification of a program can be reduced to proving a precise logical result –
that the specification condition is satisfied for all the program outputs.

Logic can also help in developing proofs. For simple programs, correct-
ness proofs are often simple. For more realistic and more complex programs,
such proofs may be complex – and thus not easy to develop.

The general experience of proofs in different logics has recently led to the
emergence of logic-based automatic proof assistant programs, programs that
help users develop such proofs (HOL, Coq, etc.).

3 First Approach: Computations with Lim-

ited Accuracy

Analyzing the first approach: computations with limited accuracy.
The algorithms use both the sensor data and the results of (often time-consuming)
auxiliary computations (e.g., computation of special functions). To speed up
computations, we must determine which accuracy of these auxiliary computa-
tions is sufficient to provide the desired accuracy of the final result.

In precise terms, our main task is to compute the value f(x), based on
the value x computed at some previous computation steps. If we only need to
compute the value f(x) with accuracy ε > 0, then it is sufficient to compute x
only with an accuracy δ > 0 for which ρ(x, x′) ≤ δ implies ρ(f(x), f(x′)) ≤ ε.

Comment. In many useful applications, by the way, it is extremely important
that we guarantee that the actual values are within the given bounds of the
computational results – e.g., we want to guarantee that the spaceship hits the
Moon, that the nuclear reactor regime stays within the stable area, etc.

Enter constructive mathematics. In practice, whatever value x we com-
pute, we always need to compute it with some accuracy. In other words, we are
given some rational number ε > 0, and we need to produce a rational number
r(ε) for which |r(ε) − x| ≤ ε. A real number that can be computed with an
arbitrary accuracy is called computable. In precise terms, a computable real

Unconventional Computation: The Role of Logic 5

number x is a number for which there exists an algorithm that, given a rational
number ε, produces a rational number r(ε) for which |r(ε)− x| ≤ ε.

Similarly, for each computational transformation f : X → Y ,

• we must not only be able to efficiently compute f(x) given x,

• we must also be able, for any accuracy ε > 0, to efficiently produce
δ > 0 for which a δ-accurate approximation to x produces an ε-accurate
approximation to f(x):

ρ(x, x′) ≤ δ ⇒ ρ(f(x), f(x′)) ≤ ε.

In other words, since we are interested in computations, we must focus on
computable objects (i.e., objects computable with an arbitrary given accu-
racy), and on constructive mappings that enable us to transform computable
objects into computable ones.

This need has been recognized for several decades already – actually, start-
ing with the 1950s when the first computers appeared. There is a special
branch of mathematics called constructive mathematics that deals with such
definitions; see, e.g., [1, 2, 3, 4, 6, 18, 23].

At present, most research in constructive mathematics is devoted to specific
problems in which specific algorithms are needed. These results are scattered
around, are motivated mostly by specific problems, and are not easy to gener-
alize and to use when a new specific problem appears. Thus, we arrive at:

Research Direction I.1. Develop general constructive mathematics tech-
niques, with a special emphasis on problems requiring intensive computations
(such as large-scale partial differential equations).

Need for constructive logic. For individual problems, we can creatively
design appropriate algorithms – this is how many existing algorithms of con-
structive mathematics have been originally designed. However, designing a
radically new algorithm is a very slow, time-consuming task. In most applica-
tions, we achieve good results by:

• decomposing a problem into subproblems with known algorithms, and

• combining these algorithms.

In the simplest situations, this decomposition can be described in alge-
braic or analytical terms. However, a general decomposition and combination
requires full first order logic. For example:

• the solution of a certain equation can be reduced to the existence of some
auxiliary polynomial, or

6 Vladik Kreinovich

• in robust control, the stability under all possible values of the parameters
within a certain domain is equivalent to certain inequalities.

Even a proper formulation of many problems, strictly speaking, requires first
order logic: e.g., we want to make sure that a certain control strategy works
for all possible perturbations that satisfy a certain property.

Thus, we need to find out when a logical combination of constructive re-
sults is also constructive. This analysis was started by Kolmogorov in 1920s.
The resulting “constructive logic” is indeed actively used in constructive math-
ematics. Crudely speaking, in constructive logic:

• the formula ∃xP (x) means that we can efficiently produce such an x for
which the property P (x) holds;

• the formula ∀x∃yP (x, y) means that there exists an algorithm φ : X → Y
such that P (x, φ(x)) is always true.

In view of the need to develop a general constructive mathematics approach,
we arrive at

Research Direction I.2. Develop general constructive logic techniques, with
a special emphasis on problems requiring intensive computations.

Interval computations: general idea. In a general definition of construc-
tive mathematics, we want to develop algorithms that work for all possible
values of accuracy. In applications, the accuracy is usually fixed. In this case,
it makes sense to develop simplified algorithms that work only for specific
accuracy values. This is, in essence, the main idea of interval computations
[10, 11, 12, 13, 21, 29] – what Yu. Matiyasevich has called applied constructive
mathematics.

The name comes from the fact that for a single quantity, when we know
the measurement result x̃ with a known accuracy ∆, then all possible values
of this quantity form an interval [x̃−∆, x̃+∆].

Why intervals and not probability distributions. Traditional approach
to situations with measurement inaccuracy is to assume that we know the

probability distribution for the measurement error ∆x
def
= x̃− x. Usually, it is

assumed that this distribution is Gaussian; see, e.g., [38]. However, there are
practical situations when we do not know this distribution.

Indeed, the distribution for ∆x usually comes from the calibration of the
corresponding measuring instrument (MI). To perform this calibration, we
compare the results of measuring the same quantity by the available and by
a “standard” MI which is several times more accurate than the given one.

Unconventional Computation: The Role of Logic 7

Since the standard MI is much more accurate, the corresponding measurement
errors can be safely ignored in comparison with the measurement errors of
the original MI. In other words, we can safely assume that the results of the
standard MI are error-free, i.e., that they practically coincide with the actual
(unknown) values x of the corresponding quantity. Thus, the difference ∆x =
x̃ − x can be approximately described as the difference between the results
of measuring the same quantity by the original and the standard MI. After
several measurements, we get a sample of values ∆x, and from this sample,
we reconstruct the desired probability distribution for ∆x.

There are two types of practical situations when this procedure is not per-
formed. The first is the case of state-of-the-art measurements, e.g., in funda-
mental science. In this case the measuring instrument that we use is the best,
there is no better MI that can serve as a standard. Yes, it would be nice if near
the Hubble telescope, there would be another telescope that would measure all
the star coordinates with 5 times more accuracy – but the Hubble telescope
is the best we have. In this situation, we cannot determine the probability
distribution for ∆x. At best, we have an upper bound ∆ on the (absolute
value of) this measurement error – i.e., we get an interval.

Another case when we do not know the probability distribution for ∆x is
the case of routine manufacturing on the factory floor. In this case, it is theo-
retically possible to calibrate every sensor, but calibration costs a lot of money
– sensors are often cheap, but calibration means using the standard MI which
is much more expensive. As a result, for most sensor used in manufacturing,
it is too expensive to calibrate them. Instead of the probability distribution
for ∆x, we only use the upper bound ∆ provided by the manufacturer of the
corresponding MI (and the manufacturer must provide some bound, otherwise,
if the manufacturer does not guarantee any accuracy, this is not a measuring
instrument.)

Interval computations: precise formulation of the main problem.
The main problem of interval computations is as follows:

• we have a data processing algorithm f(x1, . . . , xn) that transforms n real
numbers x1, . . . , xn into a new value y = f(x1, . . . , xn);

• we do not know the exact values of the inputs xi; instead, for every input
i, we only know the interval xi = [xi, xi] of the corresponding value.

Different values xi ∈ xi lead, in general to different values y = f(x1, . . . , xn).
Our objective is to find the range of possible value of y, i.e., the interval

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

8 Vladik Kreinovich

-

· · ·
-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

Main problem of interval computations: computational complexity.
It is known that the above main problem of interval computations is NP-hard
even for quadratic f ; see, e.g., [18]. In this case, when we cannot compute the
exact range y, a natural idea is to compute a good approximating enclosure,
i.e., an interval Y that contains (encloses) the desired range: Y ⊇ y.

Comment. Of course, as with all other NP-hard problems, there are impor-
tant cases for which efficient algorithm can compute the exact range.

Interval computations: inverse problem. So far, we have considered the
main (forward) problem, when

• we know the range X0 of possible values of x and

• we need to efficiently compute the corresponding range f(X0) of y =
f(x).

In some practical applications, we need to solve the inverse problem, when:

• we know the range Y0 of y, and

• we must find the range X0 which guarantees that f(x) ∈ Y0.

Applications of interval computations. Interval computations have many
applications; see detailed description in [10, 11, 12, 13, 21, 29].

Historically the first applications were to the design of trajectory of a space-
flight, a trajectory that is guaranteed to hit the target area under all possible
uncertainties.

Another important practical application is the design of elementary particle
super-colliders. In a super-collider, a group of elementary particles is moving
with a speed close to the speed of light, accelerated by the magnets until it
hits the target. It is known that this system is unstable, in the sense that
under small deviations in the original trajectory and/or in the magnetic fields,
the particles will hit the walls of the tunnel way before they reach the target.
Interval computations are used to design the colliders in which a way that under

Unconventional Computation: The Role of Logic 9

all allowable deviations from the original trajectory and from the magnetic
fields, the particles still hit the target.

Interval computations have also been successfully used:

• in industrial robotics, where it is important to make sure that the robot
is safe in all possible situations,

• in chemical engineering, where it is important to guarantee that the
desired chemical process works well for all allowable concentrations of
different chemicals and ores in the input product,

• in nuclear safety, where it is important to guarantee that the reactor
remains safe for all allowed values of the parameters,

and in many other practical situations.

Logic (specifically, modal logic) has been efficiently used in interval
computations. Many problems of interval computations can be naturally
reformulated in terms ofmodal logic – specifically, it terms of the original modal
logic of necessity and possibility; see, e.g., [7, 28]. Specifically, in situations like
robust control, we want to make sure that the control is stable for all possible
values of the parameters from the given intervals, i.e., in terms of modal logic,
that it is necessarily stable.

On the other hand, a system is controllable if for every state from the
desired interval, there exists a control value from the interval of control value
that leads to this state. In modal logic terms, this means that the control
leading to the desired state is possible.

Because of this connection, modal logic has been efficiently used in design-
ing algorithms for interval computations; see, e.g., [5, 8, 18]. There is even a
special term modal interval analysis for such applications.

From direct to indirect methods of algorithm design: proof mining.
Historically, the first existence proofs were direct in the sense that they pro-
vided an explicit construction. In this sense, the first existence proofs were
constructive. Later on, the Greeks invented indirect proofs, e.g., proofs by
contradiction, that enabled to prove the existence of an object without explic-
itly constructing such an object. The proofs became non-constructive – but
much simpler.

At present, most constructive proofs are direct – they provide, in effect,
an algorithm for constructing an object. It has been recently shown that in
many cases, it is possible to convert indirect proofs into constructive ones –
namely, for some statements (like the statements of existence and uniqueness)
it is often possible to extract a constructive proof from a non-constructive one.

10 Vladik Kreinovich

The main idea is that, e.g., if a computable function f(x) has exactly one
zero, i.e., exactly one value x0 for which f(x0) = 0, then we can find this x0 with
increasing accuracy if, for value xi from the ε-nets {xi} – i.e., from finite sets for

which the whole range is a union of their ε-balls Bε(xi)
def
= {x : ρ(x, xi) ≤ ε} –

we compute the minimum mi = min
x∈Bε(xi)

|f(x)| of |f(x)| with sufficient accuracy

δ. Due to uniqueness, for sufficiently small ε and δ, all the values mi will be
provably larger than 0 except for points which are close to x0 – and thus, close
to each other. So, when all these points are 2ε-close, this means that x0 is
2ε-close to all of them – and thus, that each of these points xi can serve as a
2ε-approximation to x0.

This possibility of “mining” a non-constructive proof for possible algo-
rithms has been actively used in many areas of computational mathematics;
see, e.g., [14]. However, this area of research is only now developing its poten-
tial; more applications are potentially possible, more work is needed.

This “proof mining” makes it possible to go beyond the situations in which
algorithms are known – and the only problem is how to compute faster – to
realistic situations when even an algorithm is not yet known. Thus, we arrive
at

Research Direction I.4. Further develop proof mining, with a special em-
phasis on its use to develop algorithms for realistic large-scale problems.

Comment. The idea of proof mining is in line with the general idea of logic
as a specification language: once we formulate the original problem in logical
terms, and we prove that the problem is solvable, the proof mining automati-
cally designs an algorithm for solving this problem.

4 Second Approach: Unconventional Compu-

tations

Analyzing the second approach: unconventional computations. The
main idea of this approach is to use non-standard physical processes to speed
up computations.

Quantum computing: successes. The most well-known example of this
approach is quantum computing, where we can indeed achieve a speedup (see,
e.g., [32]); for example:

• quantum computing allows us to search in an un-sorted array of size n
in time

√
n (Grove’s algorithm);

Unconventional Computation: The Role of Logic 11

• quantum computing allows us to factor large integers in polynomial time
(Shor’s algorithm).

Limitations of quantum computing and need for other schemes. The
main limitation of quantum computing is that so far, there are no provable
super-polynomial quantum speed-ups. As a result (unless P=NP), it is not
possible to use quantum computing to solve NP-hard problems in polynomial
time.

It is therefore desirable to explore other possible schemes that can poten-
tially lead to an exponential speed-up, i.e., that can potentially solve NP-hard
problems in polynomial time.

Acausal processes. The simplest example of such a scheme is to use acausal
processes, i.e., processes that go back in time and influence the past; see, e.g.,
[39]. The idea is to spend as much time as needed on computations, and then
send the result of the computation back in time, to the moment when the user
formulated the problem. Thus, the user will receive the result in no time at
all.

The problem with this simple approach is that the actual time travel is
known to be paradoxical – e.g., what happens if a time traveler goes to the past
and kills his own grandfather before his father was conceived? A reasonable
solution to this paradox is that there are always some low-probability events
(like a meteorite hitting the Earth at exactly the given spot), so since the time
traveler was born, this means that some low probability event prevented the
time traveler from this killing. No matter how many cautions the time travel
traveler takes, there are always some very low-probability events that cannot
be all prevented. So, we arrive at a conclusion that time travel can trigger
events with very small probability p0 ≪ 1.

Let us show how this conclusion can be used to solve NP-hard problems
in polynomial time; for details, see [15, 16, 20, 27, 30]. As an example of an
NP-hard problem, we can take the propositional satisfiability problem SAT:
given a propositional formula F (x1, . . . , xn), find the values of the propositional
variables that make this formula true. Now, the algorithm for solving SAT is
as follows:

• generate n bits x1, . . . , xn by using some physically random process,

• check whether the generated bits satisfy the formula F (x1, . . . , xn), and

• if ¬F (x1, . . . , xn), launch the time travel – which is set up in such a way
as to generate a very-low-probability event.

For this scheme, nature has two choices:

12 Vladik Kreinovich

• generate values xi that satisfy the formula f ; the probability of this is
2−n;

• run the time travel and thus, trigger a low-probability event with prob-
ability p0 ≪ 1.

When 2−n ≫ p0, the time travel is statistically improbable, so we will generate
a sequence that satisfies the formula F (x).

Potential use of curved space-time. Another natural source of speedup
is parallelization, when several computer work in parallel to perform the same
task.

Parallelization does lead to a drastic speedup, but, alas, in Euclidean space,
parallelization only leads to a polynomial speed-up; see, e.g., [21, 31]. Indeed,
the speed of all the physical processes is bounded by the speed of light c. Thus,
in time T , we can only reach computational units at a distance ≤ R = c · T .
The volume V (R) of this area (inside of the sphere of radius R = c · T) is
proportional to R3 ∼ T 3. So, we can use ≤ V/∆V ∼ T 3 computational
elements, where ∆V is the smallest volume of a single computational element).
Hence, we can simulate all these parallel computation on a sequential computer
and still get polynomial time.

An interesting fact is that in Lobachevsky space – historically the first
curved space – the volume inside a sphere grows exponentially with radius:
V (R) ∼ exp(R). According to modern physics, Lobachesvky space is not an
adequate description of the physical space, but the same exponential growth
of V (R) occurs for some more realistic space-time models. In such space-time
models, we can fit exponentially many processors inside the sphere of radius
R – and thus get an exponential speedup [21, 31].

Explicit use of Kolmogorov complexity. It is well known that biological
processes are often difficult to describe on the level of fundamental physics.
To facilitate this description, a Nobelist M. Gell-Mann suggested that physical
equations should include terms explicitly depending on complexity [9]. A nat-
ural formalization of this complexity is Kolmogorov complexity (see, e.g., [24]:
the shortest length of a program that generates a given sequence of symbols:

K(x)
def
= min{len(p) : p generates x}.

Under this assumption, by observing physical and biological processes, we can
measure the value K(x) [19]. However, it is well known that K(x) is not
algorithmically computable [24], and it is also known that the ability to get
non-computable values can speed up computations. Thus, Gell-Mann’s scheme
can indeed potentially speed up computations.

Unconventional Computation: The Role of Logic 13

Other schemes using new physical phenomena are based on:

• quantum field theory (G. Kreisel [22]),

• natural idea that every theory is approximate [16, 17], etc.

Unconventional computations and constructive mathematics. All
above schemes use or propose a radically new physical process.

It is worth noticing that some of the unconventional computation schemes
were discovered not by using or proposing a radically new physical process,
but rather by a diligent analysis of computability of simple (and seemingly
physically reasonable) physical equations such as the wave equation. It turned
out that even for the wave equation, there exist computable initial conditions
u(x, 0) for which the solution u(x, T) is not computable; see, e.g., [34, 35, 36,
37].

At present, the related research is mainly aimed at analyzing how physical
processes can, in principle, “compute” functions which are not computable in
the usual sense. From the viewpoint of our main objectives, however, it is
desirable to extend this activity to the analysis of what computations can be
thus sped up.

Research Direction II.1. Use constructive mathematics to analyze how the
use of physical processes – described by physically meaningful equations – can
speed up computations.

Acknowledgments

This is an expanded version of a paper that Grigori “Grisha” Mints (Stanford
University) and myself have prepared for the DARPA Workshop on Uncon-
ventional Computing (Stanford, California, March 23–24, 2010). Grisha is,
in effect, a co-author of this paper – but of course, I take all the blame for
possible shortcomings.

This work was also supported by grant HRD-0734825 from the US National
Science Foundation (NSF) and by Grant 1 T36 GM078000-01 from the US
National Institutes of Health (NIH).

References

[1] O. Aberth, Introduction to Precise Numerical Methods, Academic Press,
San Diego, California, 2007.

14 Vladik Kreinovich

[2] M. Beeson, Foundations of Constructive Mathematics: Metamathematical
Studies (Springer, Berlin/Heidelberg/New York, 1985.

[3] M. Beeson, “Some relations between classical and constructive mathemat-
ics” Journal of Symbolic Logic, 43 (1987) 228–246.

[4] E. Bishop and D. S. Bridges, Constructive analysis, Springer-Verlag,
Berlin-Heidelberg-New York, 1985.

[5] B. Bouchon-Meunier and V. Kreinovich, “From interval computations to
modal mathematics: applications and computational complexity”, ACM
SIGSAM Bulletin, 32(2) (1998) 7–11.

[6] D. S. Bridges and L. Vı̂ta, Techniques of Constructive Mathematics,
Springer, New York, 2006.

[7] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-
Dimensional Modal Logics: Theory and Applications, Elsevier, Amster-
dam, 2003.

[8] E. Gardeñes, M. A. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and
A. Trepat, “Modal intervals”, Reliable Computing, 7(2) (2001) 77–111.

[9] M. Gell-Mann, The Quark and the Jaguar, Freeman, New York, 1994.

[10] Interval computations website
http://www.cs.utep.edu/interval-comp

[11] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[12] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer,
Dordrecht, 1996.

[13] R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Compu-
tations, Kluwer, Dordrecht, 1996.

[14] U. Kohlenbach, Applied Proof Theory: Proof Interpretations and Their
Use in Mathematics, Springer Verlag, Berlin, 2008.

[15] M. Koshelev, “Maximum entropy and acausal processes: astrophysical
applications and challenges”, In: G. J. Erickson et al. (eds.), Maximum
Entropy and Bayesian Methods, Kluwer, Dordrecht, 1998, pp. 253–262.

[16] O. M. Kosheleva and V. Kreinovich, “What can physics give to construc-
tive mathematics, In: Mathematical Logic and Mathematical Linguistics,
Kalinin, Russia, 1981, pp. 117–128 (in Russian).

Unconventional Computation: The Role of Logic 15

[17] O. M. Kosheleva and S. V. Soloviev, “On the logic of using observable
events in decision making. In: Proceedings of the IX National Symposium
on Cybernetics, Moscow, 1981, pp. 49–51 (in Russian).

[18] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-
plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1998.

[19] V. Kreinovich and L. Longpré, “Why Kolmogorov complexity in physical
equations, Intl J. of Theor. Physics, 37 (1998) 2791–2801.

[20] V. Kreinovich and L. Longpré, “Fast quantum algorithms for handling
probabilistic and interval uncertainty”, Mathematical Logic Quarterly,
50(4/5) (2004) 507–518.

[21] V. Kreinovich and M. Margenstern, “In some curved spaces, one can solve
NP-hard problems in polynomial time”, Notes of Mathematical Seminars
of St. Petersburg Department of Steklov Institute of Mathematics, 358
(2008) 224–250; reprinted in Journal of Mathematical Sciences, 158(5)
(2009) 727–740.

[22] G. Kreisel, “A notion of mechanistic theory, Synthese, 29 (1974) 11–26.

[23] B. A. Kushner, Lectures on Constructive Mathematical Analysis, Ameri-
can Mathematical Society, Providence, Rhode Island, 1985.

[24] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its
Applications, Springer, Berlin, Heidelberg, New York, 2008.

[25] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, Hei-
delberg, New York, 1987.

[26] J. McCarthy, Formalizing Common Sense, Ablex, Norwood, New Jersey,
1990.

[27] S. Yu. Maslov, Theory of Deductive Systems and Its Applications, MIT
Press, Cambridge, Massachusetts, 1987.

[28] G. Mints, A Short Introduction to Modal Logic, Center for the Study of
Language and Information CSLI, Stanford University, Stanford, Califor-
nia, 1992.

[29] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM Press, Philadelphia, Pennsylviania, 2009.

[30] H. Moravec, Time travel and computing, Carnegie-Mellon Univ., CS Dept.
Preprint, 1991.

16 Vladik Kreinovich

[31] D. Morgenstein and V. Kreinovich, “Which algorithms are feasible and
which are not depends on the geometry of space-time”, Geombinatorics
4(3) (1995) 80–97.

[32] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation, Cambridge University Press, Cambridge, Massachusetts, 2000.

[33] U. Nilsson and J. Maluszynski, Logic, Programming, and Prolog, Wiley,
New York, 2000.

[34] M. Pour-El and J. I. Richards, “A computable ordinary differential equa-
tion which possesses no computable solution”, Ann. Math. Logic, 17
(1979) 61–90.

[35] M. Pour-El and J. I. Richards, “The wave equation with computable
initial data such that its unique solution is not computable”, Adv. Math.,
39 (1981) 215–239.

[36] M. Pour-El and J. I. Richards, Computability in Analysis and Physics,
Springer-Verlag, Berlin, 1989.

[37] M. Pour-El and N. Zhong, “The wave equation with computable initial
data whose unique solution is nowhere computable”, Math. Log. Q., 43
(1997) 499–509.

[38] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Prac-
tice, Springer-Verlag, New York, 2005.

[39] K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous
Legacy, W. W. Norton, New York and London, 1995.

	University of Texas at El Paso
	DigitalCommons@UTEP
	1-1-2011

	Designing, Understanding, and Analyzing Unconventional Computation: The Important Role Of Logic And Constructive Mathematics
	Vladik Kreinovich
	Recommended Citation

