
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

1-1-2011

PWiseGen: Generating Test Cases for Pairwise
Testing Using Genetic Algorithms
Pedro Flores
Universidad Autónoma de Ciudad Juárez, pedro.flores@uacj.mx

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-06

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Flores, Pedro and Cheon, Yoonsik, "PWiseGen: Generating Test Cases for Pairwise Testing Using Genetic Algorithms" (2011).
Departmental Technical Reports (CS). Paper 595.
http://digitalcommons.utep.edu/cs_techrep/595

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/595?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

PWiseGen: Generating Test Cases for Pairwise Testing
Using Genetic Algorithms

Pedro Flores and Yoonsik Cheon

TR #11-06
January 2011

Keywords: combinatorial testing, genetic algorithms, pairwise testing, software testing, test coverage.

1998 CR Categories: D.2.5 [Software Engineering] Testing and Debugging — testing tools (e.g., data
generators, coverage testing); I.2.8 [Artificial Intelligence] Problem Solving, Control Methods, and Search
— Graph and tree search strategies.

To appear in the 2011 IEEE International Conference on Computer Science and Automation Engineering
(CSAE 2011), June 10-12, 2011, Shanghai, China.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

PWiseGen: Generating Test Cases for Pairwise Testing
Using Genetic Algorithms

Pedro Flores
Information Technology Department

Universidad Autónoma de Ciudad Juárez
Juárez, Mexico

Email: pedro.flores@uacj.mx

Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

Email: ycheon@utep.edu

Abstract—Pairwise testing is a combinatorial testing technique
that tests all possible pairs of input values. Although, finding a
smallest set of test cases for pairwise testing is NP-complete, pair-
wise testing is regarded as a reasonable cost-benefit compromise
among combinatorial testing methods. In this paper we formulate
the problem of finding a pairwise test set as a search problem and
apply a genetic algorithm to solve it. We also describe an open-
source tool called PWiseGen for generating pairwise test sets.
PWiseGen produces competitive results compared with existing
pairwise testing tools. Besides, it provides a framework and a
research platform for generating pairwise test sets using genetic
algorithms; it is configurable, extensible, and reusable.

Keywords: combinatorial testing, genetic algorithms, pairwise
testing, software testing, test coverage.

I. INTRODUCTION

Pairwise testing is an effective, combinatorial testing tech-
nique that, for each pair of input parameters to a software
system, tests all possible combinations of these parameters
[1]. It is based on the observation that most software errors
are caused by interactions of at most two factors such as input
values. Its test suite is much smaller than that of exhaustive
testing yet still very effective in finding errors. However, one
problem of pairwise testing is that finding the least number of
test cases has been proven to be an NP-complete problem [2].
This means that an efficient way to find an optimal solution
is not known and that the time required to find a minimum
number of test cases grows rapidly when the numbers of
parameters and possible values increase.

A genetic algorithm is a technique that simulates the natural
process of evolution [3]. It was discovered as a useful tool for
dealing with search and optimization-related problems and is
known to be effective for finding solutions for problems with
a huge search space and complexity. In a genetic algorithm,
a population of candidate solutions, called individuals, to a
problem evolves toward better solutions. The evolution is
governed by so-called genetic operators such as mutation and
crossover that select and modify individuals to form a new
population. In general, a fitter individual has a better chance
to survive and prevail in a population.

In this paper we formulate the problem of generating pair-
wise test sets as a search problem and apply genetic algorithms
to solve it. We describe (a) how a candidate solution—a set
of test cases—is encoded as an individual of a population, (b)

how the fitness of an individual is calculated to measure the
individual’s potential, and (c) how the various genetic opera-
tors are defined. The description focuses on domain-specific
features of our genetic algorithm, i.e., generating pairwise test
sets. We also describe tool support called PWiseGen that could
serve as a framework for generating pairwise test sets using
genetic algorithms. The tool is configurable, extensible, and
reusable, and thus will facilitate experimenting with genetic
algorithms. It lets one tune the various parameters of genetic
algorithms to find the best configuration, or to develop a new
algorithm, for a specific testing problem. To our knowledge, it
is the only open-source tool available for generating pairwise
test sets using genetic algorithms.

We performed a series of experiments to assess, measure,
and evaluate the effectiveness of our genetic algorithm and the
PWiseGen tool. For the evaluation, we used the benchmark
problems available from the Pairwise Testing website [4]; the
website lists many tools for generating pairwise test sets, some
along with their efficiency measures given in terms of the
numbers of test cases generated for the benchmark problems,
however, most of these tools use some sort of deterministic
algorithms or strategies. Our approach is competitive in that,
compared with the existing tools of which efficiency measures
are available, the PwiseGen tool showed equal or better
efficiencies on all benchmark problems except for one. Our
experiments also showed the effectiveness of domain-specific
heuristics such as fitness calculation and genetic operations
that we introduced to our genetic algorithm.

In the remainder of this section, we provide a quick
overview of pairwise testing and genetic algorithms. Section II
describes the problem of generating pairwise testing sets. Sec-
tion III explains our genetic algorithm for generating pairwise
test sets by focusing on its key elements such as encoding of
individuals, fitness calculation, and genetic operations. Sec-
tion IV describes our tool support, the PWiseGen framework.
Section-V describes experiments that we performed to evaluate
the effectiveness of our genetic algorithm. Section VI discusses
related work, and Section VII concludes this paper.

A. Pairwise Testing

Pairwise testing is a combinatorial testing technique in
which every pair of input parameters of software is tested [4]
[1]. It is regarded as a reasonable cost-benefit compromise

among combinatorial testing methods; it can be performed
much faster than exhaustive testing that tests all combina-
tions of all input parameters, and is more effective than less
exhaustive methods that fail to exercise all possible pairs of
input parameters. The reasoning behind pairwise testing is that
the majority of software errors are caused by a single input
parameter or a combination of two input parameters. Pairwise
testing thus requires that each pair of input parameter values
be captured at least by one test case. As an example, let us
consider software that takes three input parameters, say x, y,
and z. If each parameter can have three different values, then
there will be 27 different pairs: (x1, y1), (x1, y2), . . ., (y3, z3).
A test case (x1, y3, z2), for example, captures three of these 27
pairs: (x1, y3), (x1, z2), and (y3, z3). By selecting test cases
judiciously, all pairs of input parameters can be exercised with
a minimum number of test cases; e.g., a set of nine test cases
can capture all 27 pairs of three parameters, each with three
different values.

B. Genetic Algorithms

Genetic algorithms use biological models to emulate the
process of evolution, where a population is made of a set
of possible solutions called individuals [3]. The search starts
with an initial population of which individuals are typically
generated randomly. The population is evolved into a new
generation by applying operations inspired by genetics and
natural selection, such as selection, crossover, and mutation.
This evolution process is repeated until a solution is found
in the population or a certain stopping condition, e.g., the
maximum number of iterations, is met. The search is guided
by a fitness function that calculates the fitness values of the
individuals in the population in that the fitter ones have a better
chance to survive and thus evolve into the next generation. The
effectiveness of a genetic algorithm is thus determined in part
by the quality of its fitness function.

For an algorithm to be considered to be genetic, it should
at least have the following key elements.

• Chromosome encoding. This is a way to represent a
possible solution. A chromosome consists of genes rep-
resenting a feature of an individual, and the possible
values for a gene are called alleles. For example, the eye
color feature of a person is a gene, and the alleles for
the gene could be black, brown, blue, and green. The
combination of genes in a chromosome is what defines
an individual’s set of features, and its encoding can vary
widely depending on the specific problem to be solved.

• Fitness function. This is a means to measure each individ-
ual’s potential. It determines how good an individual is
amongst all the others. The fitness value—calculated by
a fitness function and associated with each individual—
is the element used to determine which individuals have
more opportunities to prevail in a population.

• Genetic operations. These are the rule for evolution,
as they are applied to the individuals of a population
to facilitate their evolutions. The most common genetic
operations are (a) selection that selects individuals for

reproduction, (b) crossover that combines the genes of
two parents and generates two new children, (c) mutation
that modifies the genes of individuals randomly, and (d)
replacement that defines the rules of replacing existing
individuals in a population with the newly created indi-
viduals.

II. THE PROBLEM

One challenge of performing pairwise testing is to find a
test set consisting of the least number of test cases that covers
all pairs of input parameters of the software under test. As
mentioned earlier, this problem is known to be NP-complete
[2], meaning that an efficient way to find an optimal solution
is not known and that the time required to generate the test
cases grows rapidly with increased numbers of parameters
and possible values; there exist several algorithms that provide
acceptable solutions, however it remains uncertain if the solu-
tions are optimums [4]. In this paper we address this problem
by formulating it as a search problem and applying genetic
algorithms. The specific research problem is thus to develop
a genetic algorithm capable of generating and minimizing as
much as possible the number of test cases that contain all
pairs of input values to a software system, in order to perform
pairwise testing.

One problem of applying search-based algorithms such as
genetic algorithms to pairwise testing is that there are simply
too many variables or parameters to the algorithms themselves,
e.g., crossover and mutation rates. These variables are often
needed to be adjusted or tweaked through many experiments to
find a best configuration for a given, specific testing problem.
To our knowledge, there is no open-source tool available for
test practitioners or researchers to find a pairwise testing set
using genetic algorithms, not to mention its configurability.
The second problem to be addressed in this paper is thus to
develop an open-source tool that could serve as a framework
for generating pairwise test sets using genetic algorithms. The
tool should be configurable, extensible, and reusable so that
variations of the same algorithm could be experimented, or a
new algorithm could be easily developed using the framework,
for a given problem.

III. GENETIC ALGORITHMS FOR PAIRWISE TESTING

As explained in Section I-B, to use a genetic algorithm we
first need to represent a solution—in our case, test cases—
to our problem as a chromosome. The genetic algorithm
then creates an initial population of solutions and applies
genetic operators such as crossover and mutation to evolve
the solutions in order to find the best one (see Figure 1). In
general, the production of a new generation of the population
consists of three steps. First, two parents are selected from the
population based on the fitness values of the individuals, and
then two children are produced through crossover by copying
genes from parents. Second, mutation may be introduced into
the reproduction process by randomly changing some of the
genes forming the children chromosomes. Third, a number
of immigrants may be introduced into a new generation. An

2

P = initializePopulation()
i = 0
while (i < MAX_GEN && !hasSolution(P)) do

calculateFitness(P)
C = ∅
while (|C| < NUM_CROSSOVER) do

(p1, p2) = selectParents(P)
(c1, c2) = crossover(p1, p2);
if (mutate?) then

c1 = mutate(c1);
c2 = mutate(c2);

end
C = C ∪ {c1, c2}

end
if (immigration?) then

I = createImmigrants();
end
P = updatePopulation(P, C ∪ I)
i = i+ 1

end

Fig. 1. Genetic algorithm

immigrant is a randomly generated chromosome that replaces
one of the existing individual of the population. This cycle of
reproduction is repeated until either a solution is found or a
predefined number of generations is produced.

There are many variables that affect the performance of
genetic algorithms (see Section IV), but the three most impor-
tant aspects of using genetic algorithms are: (a) definition of
the genetic representation, known as chromosome encoding,
(b) definition of the fitness function, and (c) definition of
the genetic operations. Below we explain these key aspects
in details.

A. Chromosome Encoding

We need to encode a set of test cases as an individual of a
population. In the literature, there are several different encod-
ing methods such as binary encoding, permutation encoding,
value encoding, and tree encoding [3]. We decided to use an
integer array encoding as suggested in [5], mainly because of
its easiness of manipulation. This encoding essentially stores
a set of test cases as an array of integer numbers, where each
number identifies a possible value of an input parameter of
the software under test.

As an example, let’s consider a Web based system that has
four different input parameters to be tested.

• Browser: Internet Explorer (IE), Firefox (FF), Opera, and
Safari

• Screen resolution: 800×600, 1024×768, and 1280×800
• JavaScript: JSEnabled and JSDisabled
• Cookies: CkEnabled and CkDisabled
Figure 2 shows a sample chromosome representing a set of

test cases. As shown, a test case is a sequence of numbers,
where each number identifies a particular value of a certain
input parameter of the software under test, e.g., 0 for the
Internet Explorer and 1 for Firefox. Thus, a chromosome
is simply a collection of sequences of numbers. As each

10
Screen Resolution

All Possible Values0123456789
IEFFOperaSafari800x6001024x7681280x800JSEnabledJSDisabledCkEnabledCkDisabled

Browser
JavascriptCookies10

Screen Resolution
All Possible Values0123456789

IEFFOperaSafari800x6001024x7681280x800JSEnabledJSDisabledCkEnabledCkDisabled
Browser
JavascriptCookies

ChromosomeTest set size = n Test case 2
Test case 1 Test case 3

Test case 40 4 8 90 4 8 9 3 5 7 93 5 7 9 3 6 8 93 6 8 9 2 5 8 102 5 8 10... Test case n1 5 7 101 5 7 10

Fig. 2. Integer array chromosome encoding

sequence represents a test case, all the sequences in a chro-
mosome have the same length, which is equal to the number
of input parameters.

B. Fitness Function

A fitness function determines how good an individual is. An
individual’s fitness is what gives the individual the possibility
to remain in a population and to be chosen for reproduction.
This is one of the most important parts of a genetic algorithm
because we need to have a way to measure each individual in
a way that the strongest individuals are selected for producing
newer and even stronger individuals to achieve an evolution
in the population.

When is an individual strong and promising? As our goal is
to find a (minimal) set of test cases that contains all possible
pairs of input parameters, a promising individual is the one
that contains many different pairs; the more different pairs an
individual has, the closer it is to a solution. Based on this
observation we defined the following two fitness functions.

• Counting the number of different pairs. This function
measures an individual’s fitness based on the number of
different pairs included in its chromosome. This is a very
straightforward fitness assessment since a larger number
of different pairs means a higher possibility of capturing
all pairs [5]. Note that since the total number of pairs that
should be captured is known and easy to calculate, it can
be easily determined if an individual is a solution. An
individual is a solution if the number of different pairs
contained in its chromosome equals the total number of
required pairs.

• Penalizing for repeated pairs. This function is a variation
of the above fitness function and penalizes the fitness if
the same pair appears more than a certain number of
times. An individual’s fitness is calculated in the same
way as the different pairs function, but the number of
repeated or duplicate pairs is also counted to penalize
the fitness.

3

C. Genetic Operations

Defining genetic operators is like establishing the rules of
evolution. We implemented common genetic operators such as
selection, crossover, replacement, immigration, and mutation.
Among these, crossover and mutation have the most influence
on the performance of a genetic algorithm. Before we explain
these two operators in detail, we first describe the other
operators briefly.

The selection operator selects parents for reproduction, and
the most common method is the roulette wheel selection that
assigns to each individual of the population the probability of
being selected [3]. This probability is calculated based on the
fitness value of an individual, and thus individuals with higher
fitness values have better chances of being selected. When
two parents are combined and a reproduction occurs, two new
children are generated and become members of the population
by substituting two existing members. For the substitution,
we implemented two different replacement strategies: the
weakest individual replacement and the parent complement
replacement. The first strategy replaces the individual of the
lowest fitness value. The second strategy adapted from [5]
removes those individuals whose ranks are the complement
of the parents’ ranks. Given a population of 30 individuals,
for example, if individuals of ranks 1 and 5, respectively, are
selected for reproduction, the individuals to be replaced will
be individuals of ranks 29 (complement of rank 1) and 25
(complement of rank 5). The reason is that even the least fit
individual may contain valuable information and should have
some measure of protection from elimination. The immigration
operator is used to introduce some randomness to a population
during evolution to diversify the individuals. It introduces a
new individual with a randomly generated chromosome to the
population by replacing an existing individual. It may avoid
stagnation in the population when an improvement is not being
achieved and individuals are not able to obtain more pairs by
using the genetic operators.

1) Crossover: The crossover allows us to combine individ-
uals that were selected for reproduction. The basic idea is to
produce better individuals by combining the chromosomes of
the selected parents. There are many different ways to perform
the crossover, and we implemented four different variations.

• Single crossover point. In this method, a crossover at
a single point is made, and the crossover point is the
middle of the chromosome. This crossover point remains
the same throughout the algorithm’s execution.

• Single random crossover point. This method is used when
a single crossover point at a variable position is desired.
Each time a crossover is made, the position where the
crossover happens is determined randomly.

• Multiple crossover points. In this method, the crossover is
made at various points of the chromosome. The number
of crossover points can vary, and depending on the num-
ber of crossover points, the crossover positions will be
divided evenly over the chromosome. Once determined,
the crossover positions will remain the same throughout

Test case 21 4 6 10 1 4 8 9 5 7 9Test case 1 Test case 3
Test case 40 4 8 9 0 4 8 10 3 5 7 9 3 6 8 9Chromosome Test case 21 4 6 10 1 4 8 9 5 7 9Test case 1 Test case 3
Test case 40 4 8 90 4 8 9 0 4 8 100 4 8 10 3 5 7 93 5 7 9 3 6 8 93 6 8 9Chromosome

Test case 2 Mutated1 4 6 10 1 4 8 9 5 7 9Test case 1 Test case 3
Test case 40 4 8 9 2 5 7 10 3 5 7 9 3 6 8 9Chromosome Test case 2 Mutated1 4 6 10 1 4 8 9 5 7 9Test case 1 Test case 3
Test case 40 4 8 90 4 8 9 2 5 7 102 5 7 10 3 5 7 93 5 7 9 3 6 8 93 6 8 9Chromosome

Fig. 3. Similarity mutation

the execution of the algorithm.
• Multiple random crossover points. This method also

makes the crossover in several points of the chromosome,
but unlike the previous, the positions where the crossover
happens is always varying. Each time when two individu-
als are to be combined, random positions for the crossover
are determined.

2) Mutation: Mutation plays a very important role in our
algorithm. We learned through experiments that without muta-
tion individuals show improvements only in the first few gen-
erations, reaching a stagnation in the subsequent generation.
We also learned that a higher mutation rate makes the genetic
algorithm find a solution faster. There are studies stating that
the optimal mutation rate strongly depends on the selection
of the chromosome encoding and algorithms that don’t use
bit encodings could benefit from a higher mutation rate [6].
We implemented several variations for mutation. In random
mutation, the genes to be mutated are randomly selected,
and their values are replaced with randomly selected values;
however, the new values must be valid for the genes. Below we
explain the other mutation schemes known as smart mutations.

a) Similarity Mutation: The objective of this mutation is
to replace a similar gene, i.e., a test case. The logic behind
it is that, if an individual has two very similar test cases,
it is very likely that the individual’s fitness will improve
if one is replaced with a different test case. This scheme
requires a similarity threshold to be specified, which basically
determines whether two test cases are similar or not. With
a 75% similarity threshold, for example, a test case that is
at least 75% similar to another is mutated. As an example,
consider a chromosome, [0|4|8|9][0|4|8|10][3|5|7|9][3|6|8|9],
consisting of four test cases (see Figure 3). The first two
test cases are similar, and thus one of them will be mutated.
Depending on the configuration of the algorithm, either the
new values are selected randomly or selected are those values
that occur in the chromosome the least frequently.

b) Value Occurrences Mutation: This mutation attempts
to replace a duplicate value of an individual with a miss-
ing value to improve the individual’s fitness. For this, it
tries to find a value that is not present in any of the
test cases contained within the chromosome of the indi-
vidual to be mutated. As an example, consider a chromo-
some, [0|4|8|9][0|5|7|10][3|5|7|9][2|6|8|9], consisting of four
test cases. The value 1, denoting Firefox, is not present in
this chromosome. It can only appear in the first slot of a test

4

case. Therefore, the fist slot of every test case is checked for
a duplication. It turns out that the value 0, denoting Internet
Explorer, appears twice, i.e., in the first and second test cases,
thus one of them will be replaced with the value 1.

c) Pair Occurrences Mutation: This mutation is more
complex than the value occurrences mutation but has the same
principle in that it attempts to increase the number of different
pairs appearing in an individual. As an example, consider
a chromosome [0|4|8|9][0|5|8|10][3|5|7|9][2|6|7|10], consisting
of four test cases. This chromosome contains the pair (0,8)
twice, i.e., in the first and second test cases. It can be calculated
that the pair (0,7) doesn’t appear in the chromosome and can
replace one of the (0,8) pairs. This example also illustrates a
shortcoming of the pair occurrences mutation. If we modify
the first test case to introduce a (0,7) pair, i.e., to [0|4|7|9],
we gain two new pairs (0,7) and (4,7) but also loose existing
pairs made up of the value 8, i.e., (4, 8) and (8, 9), as well as
introducing a duplicated pair (7, 9) in the first and third test
cases.

IV. THE PWISEGEN TOOL

To address the problem of tool support mentioned in Sec-
tion II, we developed an open-source tool that implements the
genetic algorithm explained in the previous section. This tool,
called PWiseGen, can also be used as a framework for apply-
ing genetic algorithms to pairwise testing. For this, we had sev-
eral design goals including configurability, extensibility, and
reusability. In order to achieve these design goals we heavily
used object-oriented concepts such as inheritance, overriding,
and polymorphism. We also used several well-known design
patterns such as the strategy design pattern and the template
method [7]. Another key design approach is the use of an
XML-based configuration to specify various parameters of the
genetic algorithm, as well as new components implementing
genetic operators.

The PWiseGen implementation consists of several program
modules such as initialization, fitness calculation, and evolu-
tion, and these modules are separated from the main algorithm
module through well-defined interfaces. Each module comes
with abstract classes and a collection of concrete classes
that implement the interfaces. For example, the Crossover
interface of the evolution module specifies the protocol for
implementing the crossover genetic operator. An abstract class,
CrossoverStrategy, provides a template for implement-
ing a crossover strategy. It uses the template method design
pattern and includes methods for determining crossover points
and performing the actual crossover operation. This abstract
class has several concrete subclasses that implement various
crossover strategies (see Section III-C).

The use of interfaces makes the tool extensible, and the use
of an XML-based configuration makes it plug-and-playable.
For example, one can easily introduce a new crossover strategy
by defining a new crossover class, say MyCrossover; it can
be a subclass of the abstract class CrossoverStrategy
or directly implement the interface Crossover. Once this is

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE properties (View Source for full doctype...)>
<properties version="1.0">
<entry key="IsParamsFile">true</entry>
<entry key="PrintEveryX">1</entry>
<entry key="PopulationSize">30</entry>
<entry key="TestSetSize">12</entry>
<entry key="MaxGenerations">1000000</entry>
<entry key="FitnessFunction">DifferentPairsFitness</entry>
<entry key="ParentSelector">RouletteWheelSelector</entry>
<entry key="CrossoverStrategy">MyCrossover</entry>
...
<entry key="PairOccurrenceMutationValue">0.01</entry>
<entry key="ThresholdPairOcurrences">8</entry>

</properties>

Fig. 4. XML-based configuration

Problem 1: 34

Problem 2: 313

Problem 3: 415 317 229

Problem 4: 41 339 235

Problem 5: 2100

Problem 6: 1020

Fig. 5. Efficiencies of pairwise testing tools. A problem of size xy means
that it takes x parameters, each with y distinct values.

done, one only needs to change the XML configuration file to
specify this new class as the crossover strategy (see Figure 4).

V. EVALUATION

We conducted a series of experiments to evaluate the
effectiveness of our genetic algorithm. The Pairwise Testing
website lists quite a few tools for generating pairwise test
sets, some with their efficiency measures [4]. The efficiency
of a tool was measured in terms of the numbers of test cases
produced by the tool for several benchmark problems. The
efficiencies of these tools were compared using six benchmark
problems of different sizes: 34, 313, 415317229, 41339235,
2100, and 1020, where the notation xy means a problem with
x input parameters, each with y distinct values. Figure 5
shows the efficiency measures of these tool, along with that of
PWiseGen1. Among these tools, only GAPTS uses a genetic
algorithm [5], and the rest use some sort of deterministic
algorithms; AETG is a commercial web service [1], IPO
uses the in-parameter-order algorithm [2], and TConfig [8]
and CTS [9] use orthogonal arrays (see Section VI). As
shown, PWiseGen shows competitive results. It shows equal
or better efficiencies on all the benchmark problems except for
the last one. It even outperformed a genetic algorithm-based
GAPTS tool on two benchmark problems; however, it was
outperformed on the last problem.

1Unfortunately, we was not able to compare time and space efficiencies, as
these measures were not available for the existing tools.

5

As mentioned earlier, crossover and mutation are two most
important genetic operations that greatly affect the perfor-
mance of a genetic algorithm. For the crossover operation,
we used well-known strategies such as single and multiple
crossover points. However, for the mutation operation, we
introduced the notion of smart mutations that use heuristics
specific for the generation of pairwise test sets, such as
comparing similarity of test cases and counting duplicate
values or pairs (see Section III-C). We observed that the smart
mutation is on average 1.35 times faster than the random
mutation in terms of the number of generations needed to
find a solution. We also learned that the value occurrences
mutation and the pair occurrences mutation are 1.41 and 1.43
times faster than the similarity mutation.

One practical problem of using genetic algorithms is that
there are too many variables that may affect the performance
of the algorithms. For example, the PWiseGen tool has about
30 different configurable parameters; some parameters such
as mutation strategy have a few discrete values, but others
such as mutation rate have continuous values (see Figure 4
in Section IV). The user is perplexed by the large number of
parameters and their possible values, and it’s a daunting task to
find an optimal configuration for a given problem. To alleviate
this problem, the PwiseGen tool provide a dozen of predefined
configurations. We performed a series of experiments to com-
pare these configurations using the six benchmark problems.
The results are varying for different problems, but in general
C3—that uses multiple crossover with 2 crossover points—is
best for small number of input parameters and C6—that uses
multiple random crossover with 5 crossover points—is best
for large number of input parameters.

VI. RELATED WORK

We know of few publications on applying genetic al-
gorithms to the problem of generating pairwise test sets.
Ghazi and Ahmed suggested the use of genetic algorithms
to maximize pairwise coverage in testing the interaction be-
tween software components [10]. However, their work fo-
cused on proving the feasibility of using genetic algorithms
without showing much details of the algorithm itself. Their
experimental results didn’t include efficiencies measured on
the benchmark problems available from the Pairwise Testing
website [4]. McCaffrey described his genetic algorithm and the
GAPTS tool in general terms including the genetic operators
used [5]. He also showed experimental results obtained with
the benchmark problems (see Section V). However, his source
code is not available, and this in fact inspired our work.
McCaffrey used only standard genetic operators and didn’t
make use of problem-specific heuristics.

There are several deterministic algorithms capable of gen-
erating test cases for pairwise testing [4]. However, it remains
uncertain if the generated test cases are optimal in terms of the
number of test cases. One such a pairwise test set generation
strategy is called in-parameter-order (IPO) that constructs a
test set by considering one parameter at a time [2]. Another
strategy is to use orthogonal arrays [8]. An orthogonal array

is a two-dimensional array of numbers that have a particular
value distribution—any two columns have the same number
of different value pairs. The AETG system uses yet another
strategy [1]. It generates a pairwise test set incrementally by
starting with an empty set and adding one test case at a time
Each time a new test case is needed, it produces a certain
number of candidate test cases based on a greedy algorithm,
and selects the one with the largest number of pairs that have
not been captured yet.

VII. CONCLUSION

We formulated the problem of pairwise testing as a search
problem and applied genetic algorithms to find pairwise test
sets. We also developed a support tool called PWiseGen that
could be used as a framework for generating pairwise test sets
using genetic algorithms. Our approach showed competitive
results compared with existing approaches and tools for pair-
wise testing. The key contributions of our work include (a) a
genetic algorithm-based approach for generating pairwise test
sets, (b) an open-source framework called PWiseGen, and (c)
sample configurations and guidelines for using, adapting, and
extending the framework. To our knowledge, our study is few
work that applies genetic algorithms to pairwise testing, and
PWiseGen is the only open-source tool for generating pairwise
test sets using genetic algorithms; the tool is available from
http://code.google.com/p/pwisegen/.

ACKNOWLEDGMENT

Cheon’s work was supported in part by NSF grants CNS-
0707874 and DUE-0837567.

REFERENCES

[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. Patton, “The AETG
system: an approach to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, vol. 23, no. 7, pp. 437–444, Jul.
1997.

[2] Y. Lei and K. Tai, “In-parameter-order: a test generation strategy for
pairwise testing,” in Proceedings of the Third IEEE International High-
Assurance Systems Engineering Symposium, November 12-14, 1998,
Washington, DC. IEEE Computer Society, 1998, pp. 254–261.

[3] M. Mitchell, An Introduction to Genetic Algorithms. The MIT Press,
1999.

[4] J. Czerwonka. (2010, Dec.) Pairwise testing, combinatorial test case
generation. [Online]. Available: http://www.pairwise.org

[5] J. D. McCaffrey, “An empirical study of pairwise test set generation
using a genetic algorithm,” in ITNG 2010: 6th International Conference
on Information Technology: New Generations, April 12-14, 2010, Las
Vegas, NV. IEEE Computer Society, 2010, pp. 992–997.

[6] D. M. Tate and A. E. Smith, “Expected allele coverage and the role of
mutation in genetic algorithms,” in Proceedings of the 5th International
Conference on Genetic Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 31–37.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[8] A. Williams and R. Probert, “A practical strategy for testing pair-
wise coverage of network interfaces,” Software Reliability Engineering,
International Symposium on, pp. 246–254, 1996.

[9] A. Hartman and L. Raskin, “Problems and algorithms for covering
arrays,” Discrete Mathematics, vol. 284, no. 1-3, pp. 149–156, Jul. 2004.

[10] S. A. Ghazi and M. A. Ahmed, “Pair-wise test coverage using genetic
algorithms,” in The 2003 Congress on Evolutionary Computation, Vol-
ume 2, December 8-12, 2003, Canberra, Australia. IEEE Computer
Society, 2003, pp. 1420–1423.

6

	University of Texas at El Paso
	DigitalCommons@UTEP
	1-1-2011

	PWiseGen: Generating Test Cases for Pairwise Testing Using Genetic Algorithms
	Pedro Flores
	Yoonsik Cheon
	Recommended Citation

