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Abstract: In many practical situations, we are interested in the dependencies that do not change with time, i.e., that
do not change when we change the origin of the time axis. The corresponding translation-invariant transformations
are easy to describe: they correspond to convolutions, or, equivalently, to fuzzy transforms.
It turns out that if we relax the invariance condition and require only that the transformation be translation-convariant
(i.e., that it appropriately changes under translation), we get exactly two classes of transformations: Fourier transforms
and fuzzy transforms. This result explain why both transforms have been successfully used in data processing.

1 FROM GENERAL TO LINEAR
TRANSFORMATIONS: MOTIVATIONS AND
MAIN FORMULAS

General transformations: brief reminder. For most real-
life systems, their behavior and their state depend on the influ-
ence of other systems. For example, the state of a controlled
system depends on what control we apply: the position and
velocity of a car is determined by how much acceleration,
breaking, and turning we applied; the state of a growing plant
depend on how much water, minerals, and warmth it received
at different moments of time, etc.

In systems terms, what we apply to the system is called
an input, and the result of this application is called an out-
put. In this section, we will denote the input by x(s) and the
output by Y (t). In terms of these notations, each value Y (t)
of the output is determined by the values x(s) of the input at
different moments of time s.

In systems theory, the mapping that transforms the func-
tion x(s) describing the input into a function Y (t) that de-
scribes the output is called an input-output transformation, or
simply transformation.

Comment about noise. In real life, the output is not uniquely
determined by the input: due to inevitable noise, for the same
input, the output may be somewhat different.

In this paper, we only consider the average output – and
we do not provide a detailed analysis of the noise-induced ran-
dom component of the output (i.e., of the random deviations
between the actual output and the average output correspond-
ing to the given input).

Inputs and outputs beyond control examples. The same
input-output relation is applicable not only to controlled sys-
tems, but to other systems as well.

For example, due to inevitable inertia, a measuring in-
strument does not reproduce the input signal x(s) exactly, it
produces a somewhat distorted output signal Y (t) – which is,
however, uniquely determined by the input signal x(s) (pro-
vided that we ignore the effects of the random noise).

Applications beyond dependence on time. Similar input-
output relations hold for systems in which both the input and
the output are of more general type than simply functions of
time. For example, for an image processing system, the input

is the input image, i.e., a function Iin(x1, x2) describing how
the brightness depends on the spatial coordinates x1 and x2,
and the output is the output image Iout(x1, x2).

Simplest case: 1-D systems. In general, we need several
variables to describe the state of a system at a given moment
of time. For example, at any given moment of time t, the state
of a car can be described by its two spatial coordinates, two
components of the velocity vector, and an angle describing the
car’s orientation.

Similarly, we usually need several variables to describe the
control input. For example, to describe the control applied to
a car, we need to describe two parameters: linear acceleration
and the rotational acceleration (corresponding to turns).

The general behavior of such systems can be very com-
plex and difficult to analyze. In this paper, we start our anal-
ysis with the simplest possible case, when we need only one
variable to describe the input, and we need only one variable
to describe the output.

For such 1-D systems, the input x(s) at any given moment
of time s is characterized by a single number, and the output
Y (t) at any given moment of time is also characterized by a
single number.

From general systems to linear systems. For general sys-
tems, each value Y (t) of the output is determined by the input
values x(s) at different moments of time s. In many practical
situations, the input is relatively small. As a result, we can
expand the dependence of Y (t) on x(s) in Taylor series and
only keep linear terms in this expansion. How can we describe
the general form of such a linear dependence?

In the situations when we have only finitely many mo-
ments of time S1, . . . , Sn and thus, only finitely many in-
put variables x(S1), . . . , x(Sn), the general linear dependence
can be described as

Y (t) = c(t) + c(t, S1) · x(S1) + . . .+ c(t, Sn) · x(Sn), (1)

for appropriate coefficients c(t) and c(t, Si).
In practice, we have a potentially infinite number of differ-

ent moments of time s and thus, the potentially infinite num-
ber of input variables x(s). To properly take into account the
effect of all these variables, it is reasonable to consider more



and more dense values Si which cover a larger and larger in-
terval. When the values Si get closer and closer to each other,
the sum (1) tends to the corresponding integral.

So, a general transformation linear 1-D transformation can
be written as follows: Y (t) = c(t) +

∫
c(t, s) · x(s) ds, for

appropriate functions c(t) and c(t, s).
When we do not apply any input, i.e., when x(s) = 0 for

all s, then we get Y (t) = c(t). Thus, if we identify input x(t)
with a control action, the function c(t) describes the state of
the un-controlled system, for which x(t) = 0. We are inter-
ested in predicting the deviations y(t) def

= Y (t)−c(t) between
the actual state and the un-controlled state. For this deviation,
the dependence on x(s) takes an even simpler form

y(t) =

∫
c(t, s) · x(s) ds. (2)

This is the dependence that we will consider in this paper. To
describe this dependence, it is sufficient to consider a single
function c(t, s). This function is usually called a kernel of the
transformation (2).

Definition 1. By a linear transformation, we mean a map-
ping of the type (2).

Comment. In this paper, we will mainly consider the case
when the function c(t, s) is continuous, smooth (differen-
tiable), etc. However, in some practical cases, this function
is not continuous and not smooth.

As an example of such a situation, let us consider an ideal
non-distorting input-output system in which, for every input
x, the output y(t) is identical to the input x(t) at this same
moment of time. In such a system, the value y(t) depends
only on the value x(t) at this moment of time t but not on the
values x(s) for s ̸= t. Thus, we must have c(t, s) = 0 for all
s ̸= t.

If the function c(t, s) was a continuous function of its vari-

ables t and s, then we would be able to take sn = t+
1

n
and in

the limit n → ∞, when sn → t, get c(t, t) = lim c(sn, t) =
0. Since we already know that c(t, s) = 0 for s ̸= t, we would
thus conclude that c(t, s) = 0 for all s and t – and so, that the
transformation (2) transforms every input signal x(s) into an
identical 0: y(t) = 0. This contradicts to the above assump-
tion that y(t) = x(t). So, the function c is not continuous.

For this ideal non-distorting transformation, not only the
function c(t, s) is not continuous, it is, strictly speaking, not a
function at all – rather a limit of functions. Such useful limits
are known as generalized function or distributions.

2 TRANSLATION-INVARIANT
TRANSFORMATIONS: A GENERAL
DESCRIPTION

Translation: motivations and reminder. For many real-
life systems, the same input repeated after some time should
lead to the exact same output. This is not always true: e.g.,
a system can start running out of battery power, or the mate-
rial from which the system is built can start showing fatigue.
However, in many cases, the above property is indeed true.
How can we describe this property in precise terms?

First, we need to describe what it means that we apply the
same input after a certain time t0. Suppose that the original
input was described by the function x(s). We call the new
input the same if it has the exact same form – but in the new

time coordinate s1, in which the starting point is t0 time units
after the original one.

If we change the original starting point (which corre-
sponded to s = 0) with a new starting point which is t0 units
of time later, then the new time s1 is equal to s1 = s − t0.
Thus, in terms of the original time coordinate, the new input
x(s1) has the form x(s− t0).

Informally, we simply shift all the moments of time by t0.
Because of this meaning, the operation transforming s into
s− t0 is called a shift, or a translation.

Translation-invariance: definition. The property that we
are trying to formalize is as follows: We start with the input
x(s), and we produce the output y(t). Then, we select some
time shift t0 and take the input x(s1) = x(s− t0) which looks
exactly the same as the original input x(s) – except that is
now described in new translated coordinates s1 = s − t0; we
expect that in these new coordinates, the output yt0(t) also
take the exact same form as before, i.e., we expect the output
to be equal to yt0(t) = y(t1) = y(t− t0).

Thus, we require that the relation between input and out-
put does not change (“is invariant”) when we apply a time shift
(translation). Such invariance is called translation-invariance.

Definition 2. We say that a linear transformation (2) from
functions to functions is translation-invariant if for every real
number t0, whenever the transformation transforms a function
x(s) into a function y(t), it also transforms a translated func-
tion x(s− t0) into the similarly translated function y(t− t0).

Translation-invariant transformations have been described
in signal processing:

Proposition 1. A linear transformation (2) is translation-
invariant if and only the corresponding kernel c(t, s) has the
form A(t− s) for some function A(t).

For such functions c(t, s), the linear transformation (2)
takes the form y(t) =

∫
A(t − s) · x(s) ds. This transfor-

mation is called a convolution of functions A(t) and x(s). It
also naturally appears in fuzzy logic techniques – and is there-
fore called fuzzy transform, or F-transform, for short; see, e.g.,
[3, 4].

3 FROM TRANSLATION-INVARIANCE TO
TRANSLATION-COVARIANCE

Fourier transforms: reminder. One of the main tools of
signal processing is Fourier transform

X(ω) =
1√
2π

·
∫

exp(−i · ω · s) · x(s) ds,

where i
def
=

√
−1.

Comment. In addition to Fourier transform, signal process-
ing also uses Laplace transform

∫
exp(−p · s) · x(s) dt.

Laplace transform is, in effect, Fourier transform correspond-
ing to imaginary values ω = i · p.

Fourier transform of a translated signal: reminder. One
of the reasons why Fourier transform is so useful is that it
behaves nicely under translation. Specifically, if instead of the
original signal x(s), we consider a translated signal xt0(s) =



x(s− t0), then the Fourier transform Xt0(ω) of this translated
signal takes the form

Xt0(ω) =
1√
2π

·
∫

exp(−i · ω · s) · xt0(s) ds =

1√
2π

·
∫

exp(−i · ω · s) · x(s− t0) dt. (3)

Let us introduce the new variable s1 = s− t0. In terms of this
new variable, s = s1 + t0, ds = ds1, so (3) takes the form

Xt0(ω) =
1√
2π

·
∫

exp(−i · ω · (s1 + t0)) · x(s1) ds1.

Here,

exp(−i ·ω ·(s1+ t0)) = exp(−i ·ω ·s1) ·exp(−i ·ω · t0). (4)

The factor exp(−i · ω · t0) does not depend on t1 and can
therefore be placed outside the integral. Thus, we get

Xt0(ω) = exp(−i·ω ·t0)·
1√
2π

·
∫

exp(−i·ω ·s1) ·x(s1) dt1.

The corresponding integral is simply X(ω), so we get

Xt0(ω) = exp(−i · ω · t0) ·X(ω). (5)

In other words, once we know all the values X(ω) of the
Fourier transform of the original signal x(s), we can easily
find all the values of the Fourier transform Xt0(ω) of the
translated signal xt0(s) = x(s − t0): it is sufficient to multi-
ply the corresponding components X(ω) by the correspond-
ing factors exp(−i · ω · t0).

Comment about notations. Traditionally, for the Fourier
transforms, the variable is denoted by ω. However, since we
want to consider Fourier transform as an example of a gen-
eral transformation (2) in which the transformation result is
denoted by y(t), we will use the same general notation for the
Fourier transform as well. In this notation, the formula (5)
takes the form

yt0(t) = exp(−i · t · t0) · y(t). (6)

Towards the notion of translation-covariance. We now
have two examples in which, once we know the transfor-
mation y(t) of the original signal x(s), we can easily find
the transformation yt0(t) of the translated signal xt0(s) =
x(s− t0):

For convolution (fuzzy transformation), we can find each
value yt0(t) as the value of the original transformation y(t) at
a translated moment of time: yt0(t) = y(t− t0).

For the Fourier transform, we can find each value yt0(t)
by multiplying the corresponding value y(t) of the origi-
nal transformation by an appropriate coefficient: yt0(t) =
exp(−i · t · t0) · y(t).

It is reasonable to consider a general type of such “easi-
ness”, where, to find each value yt0(t) of the new transforma-
tion, it is sufficient to take a single value of the original trans-
formation y(v(t, t0)) at some point v(t, t0) – and if needed,
multiply it by an appropriate factor f(t, t0) depending on t
and on t0.

Thus, we arrive at the following definition.

Definition 3. We say that a linear transformation (2)
is translation-covariant if there exist functions v(t, t0) and
f(t, t0) such that for every real number t0, whenever the
transformation transforms a function x(s) into a function
y(t), it should also transform a translated function xt0(s) =
x(s− t0) into a function yt0(t) = f(t, t0) · y(v(t, t0)).

Examples. For the fuzzy transform, we have f(t, t0) = 1
and v(t, t0) = t − t0. For the Fourier transform, we have
f(t, t0) = exp(−i · t · t0) and v(t, t0) = t.

Comment. The terminology comes from physics, specifi-
cally from relativity theory, where [1]: Some physical quan-
tities do not change their numerical values if we change the
coordinate system; such properties are called invariant. Some
quantities do change their numerical values when we change
a coordinate system – but these values can be easily computed
based on the values of this quantity in the original coordinates;
such quantities are called covariant.

For example, the length of a 3-dimensional vector is in-
variant with respect to rotations, while the coordinates of this
vector are covariant.

Our objective. The main objective of this paper is to de-
scribe all possible translation-covariant transformations.

Challenge. The description of all possible translation-
covariant transformations is not a trivial task since, in prin-
ciple, we can combine Fourier and fuzzy transforms.

For example, we can start with a fuzzy transform y(1)(t)
and a Fourier transform y(2)(t), and then define a new
translation-covariant transform y(3)(t) as follows:

• y(3)(t) = y(1)(tan(t)) when t ∈
(
−π

2
,
π

2

)
and

• y(3)(t) = y(2)(t) for all other values t.

One can show that this transform is indeed translation-
covariant.

What we do in this paper. In this paper, we describe all
possible translation-covariant transformations. We will show
that, similar to the above example, every such transformation
locally coincides either with a fuzzy transform, or with the
Fourier transform. This result explains why both transforms
have been successfully used in data processing.

4 TRANSLATION-COVARIANT
TRANSFORMATIONS: TOWARDS A
GENERAL DESCRIPTION

Equivalent transformations. In our definition of the
translation-covariance, we require that each value of the trans-
formation yt0(t) of a translated input xt0(s) = x(s − t0) can
be obtained by multiplying one the values y(v(t, t0)) of the
transformation y(t) of the original signal x(s) by an appropri-
ate factor f(t, t0).

Thus, it is reasonable to expect that the transformation re-
tains this property if we simply multiply all its values by some
function m(t) and/or reshuffle the values y(t). Let us describe
these changes in precise terms.

Definition 4. We say that a transformation

y(1)(t) =

∫
c(1)(t, s) · x(s) ds



is multiplication-equivalent to the transformation

y(t) =

∫
c(t, s) · x(s) ds. (7)

if for some function m(t) ̸= 0 and for every input x(s), we
have y(1)(t) = m(t) · y(t).

Comment. It is easy to check that the formula y(1)(t) =
m(t) · y(t) indeed defines a linear transformation of type (2):
Indeed, from (7), it follows that

y(1)(t) = m(t) ·
∫

c(t, s) · x(s) ds.

Since the factor m(t) does not depend on s, it can be placed
inside the integral:

y(1)(t) =

∫
m(t) · c(t, s) · x(s) ds.

So, the new transformation has the form (2) with the new func-
tion c(1)(t, s) = m(t) · c(t, s).

Proposition 2. If a transformation is translation-covariant,
then every multiplication-equivalent transformation is also
translation-covariant.

Definition 5. We say that a transformation

y(1)(t) =

∫
c(1)(t, s) · x(s) ds

is permutation-equivalent to the transformation

y(t) =

∫
c(t, s) · x(s) ds. (8)

if for some one-to-one function p(t) and for every input x(s),
we have y(1)(t) = y(p(t)).

Comment. It is easy to check that the formula y(1)(t) =
y(p(t)) indeed defines a linear transformation of type (2): In-
deed, from (8), it follows that

y(1)(t) =

∫
c(p(t), s) · x(s) ds. (9)

So, the new transformation has the form (2) with the new func-
tion c(1)(t, s) = c(p(t), s).

Proposition 3. If a transformation is translation-covariant,
then every permutation-equivalent transformation is also
translation-covariant.

The general case can be described as follows:

Definition 6. We say that a transformation

y(1)(t) =

∫
c(1)(t, s) · x(s) ds

is equivalent to the transformation

y(t) =

∫
c(t, s) · x(s) ds

if for some function m(t) ̸= 0 and for some one-to-one func-
tion p(t), for every input x(s), we have y(1)(t) = m(t) ·
y(p(t)).

For the general case, a similar result holds:

Proposition 4. If a transformation is translation-covariant,
then every equivalent transformation is also translation-
covariant.

From equivalence to reduction. Translation-covariant
transformations are not necessarily equivalent to Fourier
transform. For example, if we transform the original func-
tion x(s) into a single value of the Fourier transform, then
we also get a translation-covariant transformation – but this
new transformation is not equivalent to the original Fourier
transform, since it has lost most of the information about the
original Fourier transform.

To describe such situation, we will supplement the notion
of equivalence with a notion of reduction:

Definition 7. Let tg be a real number, and let

y(1)(t) =

∫
c(1)(t, s) · x(s) ds (10)

be a linear transformation. We say that the tg-th compo-
nent y(1)(tg) of the transformation (10) can be reduced to
the transformation y(t) =

∫
c(t, s) · x(s) ds if there exist

values m and p for which, for every input x(s), we have
y(1)(tg) = m · y(p).

Definition 8. Let tg be a real number. We say that a trans-
formation y(1)(t) =

∫
c(1)(t, s) · x(s) ds can be tg-locally re-

duced to the transformation y(t) =
∫
c(t, s) · x(s) ds if there

exists an open interval I = (t−, t+) (finite or infinite) con-
taining tg and functions m(t) and p(t) defined on this inter-
val for which, for every input x(s) and for all t ∈ I , we have
y(1)(t) = m(t) · y(p(t)).

Comment. One can easily check that two transformations
are equivalent if the first can be reduced to the second one
(with I = R) and the second one can be reduced to the first
one. In this sense, reduction is a local one-sided analogue of
equivalence.

Smooth transformations. In this paper, we will consider
transformations in which the function c(t, s) is smooth
(= twice continuously differentiable) and the corresponding
functions v(t, t0) and f(t, t0) are also smooth.

Both fuzzy transforms with a smooth function A(t) and
the Fourier transform are smooth in this sense.

Comments. A similar result holds for some non-smooth
functions as well, if we consider generalized functions – since
for some non-smooth functions, we can describe their “deriva-
tives” as generalized functions.

Definition 9. In this paper, by a smooth function, we mean
a twice continuously differentiable function.

Definition 10. A linear transformation (2) is called smooth
if the corresponding function c(t, s) is smooth.

Definition 11. We say that a smooth linear transformation
(2) is smoothly translation-covariant if there exist smooth
functions v(t, t0) and f(t, t0) such that for every real num-
ber t0, whenever the transformation transforms a function
x(s) into a function y(t), it should also transform a trans-
lated function xt0(s) = x(s − t0) into a function yt0(t) =
f(t, t0) · y(v(t, t0)).



Comment. In the following section, we will show that for
translation-covariant transformations, it is sufficient to require
that the functions c(t, s) and v(t, t0) are smooth. In this case,
the smoothness of the factor function f(t, t0) follows.

5 MAIN RESULT AND ITS PROOF
Now, we are ready for formulate our main result.

Theorem 1. Let (2) be a smoothly translation-covariant lin-
ear transformation. Then, for every value tg,

• either y(tg) can be reduced to the Fourier transform,
• or the transformation (2) can be tg-locally reduced to a

fuzzy transform.

Proof: towards a functional equation. translation-
covariance means that for every function x(s), once we know
its transformation

y(t) =

∫
c(t, s) · x(s) ds (11)

the transformation

yt0(t) =

∫
c(t, s) · x(s− t0) ds (12)

of the translated input xt0(t) = xt0(t − t0) is related to the
original transformation by the formula

yt0(t) = f(t, t0) · y(v(t, t0)). (13)

Substituting expression (11) and (12) into the formula (13),
we conclude that∫

c(t, s) · x(s− t0) ds = f(t, t0) ·
∫

c(v(t, t0), s) · x(s) ds

for all possible inputs x(s).
Introducing a new variable s1 = s − t0 (for which s =

s1 + t0 and ds = ds1) into the left-hand side of this formula,
we conclude that∫

c(t, s1+t0)·x(s1) ds1 = f(t, t0)·
∫

c(v(t, t0), s)·x(s) ds.

For convenience, it is useful to rename the variable in the first
integral from s1 back to s. Then, we get∫

c(t, s+ t0) · x(s) ds = f(t, t0) ·
∫

c(v(t, t0), s) · x(s) ds.

This is true for all inputs x(s). For linear functions of finitely
many variables, the two linear functions coincide if and only
if all their coefficients coincide. For linear transformations,
the same result is true: the coefficients at each value x(s) in
both sides must be the same:

c(t, s+ t0) = f(t, t0) · c(v(t, t0), s) (14)

for all possible real numbers t, s1, and t0.

From a functional equation to a differential equation.
Functional equations are, in general, difficult to solve. Thus,
to solve the equation (14), we will reduce it to an easier-to-
solve differential equation.

This reduction when all the functions involved in this
equation are smooth (differentiable). We assumed that the ker-
nel c(t, s) is smooth, and that the function v(t, t0) is smooth.
Therefore, the only smoothness that we need to prove is that
the function f(t, t0) is smooth as well.

Auxiliary result: the function f(t, t0) is also smooth.
From the equation (14), we conclude that

f(t, t0) =
c(v(t, t0), s)

c(t, s+ t0)
. (15)

We assumed that the kernel c(t, s) is smooth, and that the
function v(t, t0) is smooth. Thus, from the formula (15), we
can conclude that the function f(t, t0) is also smooth.

From a functional equation to a differential equation
(cont-d). Since all three functions c(t, s), f(t, t0), and
v(t, t0) are smooth, both the left-hand side and the right-hand
side of the formula (14) are smooth. Therefore, we can differ-
entiate both sides of this formula by t0 and take t0 = 0.

For t0 = 0, we have f(t, 0) = 1 and v(t, t0) = t. As a
result, we get the following formula

∂c

∂s
= F (t) · c(t, s)− ∂c

∂t
· V (t), (16)

where we denoted

F (t) =
∂f(t, t0)

∂t0 |t0=0

; V (t) = −∂v(t, t0)

∂t0 |t0=0

.

Two possibilities. In this proof, we will consider two possi-
ble situations: V (tg) = 0 and V (tg) ̸= 0.

First case. In the first case, when V (tg) = 0, the equa-

tion (16) takes the form
∂c

∂s
(tg, s) = F (tg) · c(t, s). Thus,

the function cg(s)
def
= c(tg, s) satisfies the equation

dcg
ds

=

F (tg) · cg(s). Moving all the terms depending on cg into the
left-hand side and all the other terms into the right-hand side,

we conclude that
dcg
cg

= F (tg) · ds. Integrating both sides of

this equation, we get

ln(cg) = F (tg) · s+ C (17)

for some integration constant C. Taking exp of both side of
the equality (17), to get cg = exp(ln(cg)) in the left-hand
side, we conclude that

c(tg, s) = cg(s) = exp(F (tg) · s+C) = eC · exp(F (tg) · s).

Thus, in this case, the corresponding value y(tg) can be re-
duced to the corresponding component of the Fourier trans-
form, with m = exp(C) and with p(tg) = F (tg).

Second case. Let us now consider the second case, when
V (tg) ̸= 0. Since the function v(t, t0) is twice continuously
differentiable, its partial derivative V (t) is continuously dif-
ferentiable.

If V (t) ̸= 0 for all t, this means that the function V (t)
has the same sign for all values t. In this case, as the desired
interval I , we take the entire real axis R.

If there exists a value t < tg for which V (tg) = 0, then let
us take, as the left endpoint of the interval I , the least upper
bound t− of all the values t < tg at which V (t) = 0. This
point is a limit of points at which V (t) = 0. Since the function
V (t) is continuous, we can thus conclude that V (t−) = 0. (If
there is no such t < tg, then we take t− = −∞.)

Similarly, if there exists a value t > tg for which V (tg) =
0, then let us take, as the right endpoint of the interval I , the



greatest lower bound t+ of all the values t > tg at which
V (t) = 0. This point is a limit of points at which V (t) = 0.
Since the function V (t) is continuous, we can thus conclude
that V (t+) = 0. (If there is no such t < tg, then we take
t− = +∞.)

On the resulting interval I = (ti, t+), the function V (t)
has the same sign. On this interval, we can simplify the for-
mula (16) if we introduce a new coordinate t1 = T (t) for

which dt1 =
dt

V (t)
. This can be done if we take T (t) =∫ dt

V (t)
. Since the function V (t) has the same sign, the func-

tion T (t) is strictly monotonic: either strictly increasing or
strictly decreasing. Thus, on the interval I , we can define an
inverse function T−1(t).

If there are values t− > −∞ and/or t+ < +∞ at which
V (t±) = 0, then the integral T (t) is not defined beyond these
values. Indeed, since the function V (t) is differentiable, we
have

V (t± +∆t) = V (t±) + V ′(t±) ·∆t+ o(∆t) =

V ′(t±) ·∆t+ o(∆t).

Thus, in the vicinity of the point t±, the corresponding inte-
gral∫

dt

V (t)
=

∫
d(∆t)

V (t± +∆t)
∼ 1

V ′(t±)
·
∫

d(∆t)

∆t
=

1

V ′(t±)
· ln(∆t),

hence for ∆t → 0, this integral tends to infinity.
If we express t in terms of the new variable t1, i.e., take

t = T−1(t1), we get
∂c

∂t
· V (t) =

∂c1
∂t1

, where c1(t1, s)
def
=

c(T−1(t1), s) is the value c(t, s) expressed in terms of the new
time coordinate t1 = T (t) (for which t = T−1(t1)).

Thus, the equation (16) takes the simplified form

∂c1
∂s

= F1(t1) · c1(t1, s)−
∂c1
∂t1

, (18)

where F1(t1)
def
= F (T−1(t1)) is the value F (t) expressed in

terms of the new time coordinate t1 = T (t).
We can simplify the equation (18) even further if we in-

troduce a new variable s1
def
= t1 − s. In terms of this vari-

able, s = t1 − s1, and the kernel c1(t1, s) takes the form
c2(t1, s1)

def
= c1(t1, t1−s1). Vice versa, we have s1 = t1−s;

thus,
c1(t1, s) = c2(t1, t1 − s). (19)

For this expression (19),

∂c1(t1, s)

∂s
= −∂c2(t1, t1 − s1)

∂s1
=

∂c2
∂s1 (t1,t1−s1)

(20)

and

∂c1(t1, s)

∂t1
=

∂c2(t1, t1 − s)

∂t1
=

∂c2
∂t1

+
∂c2
∂s1

(21)

Thus, substituting the formulas (19), (20), and (21) into
the equation (19), we conclude that

∂c2
∂s1

= F1(t1) · c2(t, s)
∂c2
∂t1

+
∂c2
∂s1

. (22)

Canceling equal terms
∂c2
∂s1

in both sides, we get a simpli-

fied formula 0 = F1(t1) · c2(t1, s1) +
∂c2
∂t1

, i.e.,
∂c2
∂t1

=

−F1(t1) · c2(t1, s1). For each value s1, the auxiliary func-

tion as1(t1)
def
= c2(t1, s1) satisfies the equation

das1
dt1

=

−F1(t1) ·as1(t1). Moving all the terms depending on as1 into
the left-hand side and all the other terms into the right-hand

side, we conclude that
das1
as1

= −F1(t1) ·dt1. Integrating both

sides of this equation, we get

ln(as1)(t1) = L(t1) + C, (23)

where L(t1)
def
= −

∫
F1(t1) · dt1, the integration constant C

may be different from different values s1: C = C(s1). Ap-
plying exp to both side of the equality (23), we conclude that

c2(t1, s1) = as1(t1) = exp(L(t1) + C(s1)) =

exp(L(t1)) · exp(C(s1)).

Substituting s1 = t1 − s into this formula, we get

c1(t1, s) = c2(t1, t1 − s) = exp(L(t1)) · exp(C(t1 − s)).

Finally, substituting t1 = T (t) into this formula, we get

c(t, s) = c1(T (t), s) = exp(L(T (t)))) · exp(C(T (t)− s)).

One can easily check that this transformation can be reduced
to the convolution (fuzzy transform) A(t − s) with A(x)

def
=

exp(C(x)), with reduction described by the formulas m(t) =
exp(L(T (t))) and p(t) = T (t).

Thus, for the interval I containing the given point tg, we
get the desired tg-local reduction.

Thus, for both cases, the theorem is proven.
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