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Abstract

Often, about the same real-life system, we have both measurement-
related probabilistic information expressed by a probability measure P (S)
and expert-related possibilistic information expressed by a possibility mea-
sure M(S). To get the most adequate idea about the system, we must
combine these two pieces of information. For this combination, R. Yager
– borrowing an idea from fuzzy logic – proposed to use the simple product
t-norm, i.e., to consider a set function f(S) = P (S) · M(S). A natural
question is: can we uniquely reconstruct the two parts of knowledge from
this function f(S)? In this paper, we prove that while in the discrete
case, the reconstruction is often not unique, in the continuous case, we
can always uniquely reconstruct both components P (S) and M(S) from
the combined function f(S). In this sense, Yager’s combination is indeed
an adequate way to combine the two parts of knowledge.
Keywords: probability measure, possibility measure, Yager’s (product)
combination, uniqueness of reconstruction

1. Need to combine probabilistic and possibilistic knowledge. One
of the main objectives of science is to learn more about the world. One of the
main objectives of engineering is to be able to change the world to satisfy certain
objectives – build a house, build a road, a computer, etc. In order to make sure
that this change is successful, we also need to know the current state of the
world.

Most information about the world comes from measurements. As a result of
the measurements, we learn the values of relevant quantities x1, x2, . . .; together,
these values x1, . . . , xn form the description x = (x1, . . . , xn) of the state of the
world.
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Let X be the set of all such states. In view of the above description, it is
reasonable to assume that the state S either coincides with the n-dimensional
space IRn or with an open set in this space. In some cases, we know that only
finitely values of each of these variables are possible. In such cases, we have a
finite set X of all the states.

We rarely know the exact state x: measurements are usually imprecise,
and based on the measurement results, we only have partial knowledge about
x. Traditionally, in science and engineering, the corresponding uncertainty is
described in probabilistic terms; see, e.g., (Rabinovich 2005).

In the discrete case, we assign a probability p(x) > 0 to each possible state
x ∈ X, so that

∑
x∈X

p(x) = 1. States x for which the probability is 0 (p(x) = 0)

are impossible, and can thus be deleted from the set X.
In this case, for every set S ⊆ X, the probability P (S) that the actual

(unknown) state x belongs to this set can be computed as P (S) =
∑
x∈S

p(x).

Such functions P that assign to every (measurable) set S a probability P (S)
are called probability measures.

In the continuous case, we assign a probability density ρ(x) > 0 to each
possible state x ∈ X, so that

∫
ρ(x) dx = 1. Usually, the probability density ρ(x)

continuously depends on x. For every measurable set S ⊆ X, the probability
P (S) that the actual (unknown) state x belongs to this set can be computed as
P (S) =

∫
S
ρ(x) dx.

In addition to measurements, we also have expert knowledge. Expert knowl-
edge is often described in terms of possibilities: an expert assign, to each possible
state x, a degree µ(x) ∈ (0, 1] to which this state is possible; see, e.g., (Klir and
Yuan 1995), (Nguyen and Walker 2006). States x for which the degree of pos-
sibility is 0 (µ(x) = 0) are impossible, and can thus be deleted from the set X.
Usually, a small change in the state does not change this degree much, so it is
reasonable to assume that the function µ(x) is continuous.

If we have two possible states x and y, then the degree with which it is
possible that one of these state is the actual state is equal to the largest of the
corresponding degrees: M({x, y}) = max(µ(x), µ(y)). Similarly, for each set
S ⊆ X, it is reasonable to say that the degree M(S) with which it is possible
that the actual (unknown) state x is in this set S is equal to the largest of all
the degrees µ(x), x ∈ S, i.e., that M(S) = supx∈S µ(x). The resulting functions
M(S) are called possibility measures; see, e.g., (Klir and Yuan 1995), (Nguyen
2006), and (Nguyen and Walker 2006).

To get the most adequate understanding of the system, we need to combine
the measurement-based probabilistic knowledge and the expert-based possibilis-
tic knowledge.

2. Yager’s (product) approach to combining probabilistic and possi-
bilistic (product) knowledge. For each set S ⊂ X, we have two values: the
probability P (S) ∈ [0, 1] that the actual state is in this set and the possibility
M(S) ∈ [0, 1] that the actual (unknown) value x is in this case. How can we
combine these two values? The need to combine the two degrees d and d′ from
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the interval [0, 1] is well analyzed in fuzzy logic (Klir and Yuan 1995), (Nguyen
and Walker 2006), where a special class of “and”-operations (t-norms) has been
developed to describe operations corresponding to “and”. One of the simplest
and widely used t-norms is the product d · d′. In view of this, in (Yager 2011)
and (Yager to appear), it is proposed to use the product to combine the proba-
bilistic and possibilistic measures into a single set function f(S) = P (S) ·M(S).

3. Main question: how uniquely can we reconstruct the probabilis-
tic and possibilistic measures from the combination f(S)? A natural
question is: once we have this combined measure f(S), can we uniquely recon-
struct the original probabilistic and possibilistic measures? In other words, if
P (S) · M(S) = P ′(S) · M ′(S), does it follow that P (S) = P ′(S) and M(S) =
M ′(S) for all sets S?

In this paper, we provide an answer to this question – and to several related
auxiliary questions.

4. In the discrete case, reconstruction is not unique. Let us give a
simple example of such non-uniqueness, for the simple set X = {1, 2}. Indeed,
let

p(1) = 0.2, p(2) = 0.8, µ(1) = 1, µ(2) = 0.25,

then
P (∅) = 0, P ({1}) = 0.2, P ({2}) = 0.8, P (X) = 1,

M(∅) = 0, M({1}) = 1, M({2}) = 0.25, M(X) = 1.

Thus,
f({1}) = P ({1} ·M({1}) = 0.2 · 1 = 0.2,

f({2}) = P ({2} ·M({2}) = 0.8 · 0.25 = 0.2,

f(X) = P (X) ·M(X) = 1 · 1 = 1.

The resulting combination function

f({1}) = 0.2, f({2}) = 0.2, f(X) = 1

is symmetric with respect to swapping 1 and 2. Thus, the same combination
function will appear if we “swap” 1 and 2 and consider a different pair of mea-
sures:

p′(1) = 0.8, p′(2) = 0.2, µ′(1) = 0.25, µ′(2) = 1.

Non-uniqueness is proven.

5. In the continuous case, reconstruction is unique: a proof. Let
us prove that in the continuous case, we can uniquely reconstruct both the
probability density ρ(x) and the possibility values µ(x) from the combination
function f(S) = P (S) ·M(S).

5.1. Detecting when µ(x) < µ(y). Let us first show how, based on the
function f(S), we can detect, for every two points x and y, whether µ(x) < µ(y).
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Indeed, if µ(x) < µ(y), then, since the function µ(x) is continuous, for
sufficiently small ε > 0 and δ > 0, we have µ(x′) < µ′(y) for all x′ from the
ε-vicinity Bε(x) = {x′ : d(x, x′) ≤ ε} of the state x and for all y′ from the
δ-vicinity Bδ(y) = {y; : d(y, y′) ≤ δ} of the state y. Thus,

M(Bε(x) ∪Bδ(y)) = max

(
sup

x′:d(x,x′)≤ε

µ(x′), sup
y′:d(y,y′)≤δ

µ(y′)

)
=

sup
y′:d(y,y′)≤δ

µ(y′)

and thus, in the limit δ → 0, we get

M(Bε(x) ∪Bδ(y)) → µ(y).

For the probability measure,

P (Bε(x) ∪Bδ(y)) = P (Bε(x)) + P (Bδ(y))

and so, in the limit δ → 0, we get

P (Bε(x) ∪Bδ(y)) → P (Bε(x)).

Thus, in this case,

f(Bε(x) ∪Bδ(y)) = P (Bε(x) ∪Bδ(y)) ·M(Bε(x) ∪Bδ(y)) → P (Bε(x)) · µ(y).

For the limit set,

f(Bε(x)) = P (Bε(x)) ·M(Bε(x)) = P (Bε(x)) · sup
x′:d(x,x′)≤ε

µ(x′).

Since
sup

x′:d(x,x′)≤ε

µ(x′) < µ(y),

we thus conclude that

f(Bε(x)) < lim
δ→0

f(Bε(x) ∪Bδ(y)).

On the other hand, if µ(x) ≥ µ(y), then for

M(Bε(x) ∪Bδ(y)) = max

(
sup

x′:d(x,x′)≤ε

µ(x′), sup
y′:d(y,y′)≤δ

µ(y′)

)
,

when δ → 0, we get

M(Bε(x) ∪Bδ(y)) → M(Bε(x)).

Since
P (Bε(x) ∪Bδ(y)) → P (Bε(x)),
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we conclude that

f(Bε(x) ∪Bδ(y)) = P (Bε(x) ∪Bδ(y)) ·M(Bε(x) ∪Bδ(y)) →

P (Bε(x)) ·M(Bε(x)) = f(Bε(x)),

and thus,
lim
δ→0

f(Bε(x) ∪Bδ(y)) = f(Bε(x)).

So, we can indeed detect whether µ(x) < µ(y): this inequality occurs if and
only if for all sufficiently small ε > 0, we have

f(Bε(x)) < lim
δ→0

f(Bε(x) ∪Bδ(y)).

5.2. Determining the ratio µ(y)/µ(x). Let µ(x) < µ(y). Then, for small ε,
asymptotically,

P (Bε(x)) ∼ ρ(x) · V (Bε(x)),

where V (B) denotes the volume of the set B, and

M(Bε(x)) ∼ µ(x).

Thus,

f(Bε(x)) = P (Bε(x)) ·M(Bε(x)) ∼ (ρ(x) · µ(x)) · V (Bε(x)).

On the other hand, we have

lim
δ→0

P (Bε(x) ∪Bδ(y)) = P (Bε(x)) ∼ ρ(x) · V (Bε(x)),

and
lim
δ→0

M(Bε(x) ∪Bδ(y)) = µ(y).

Thus,

lim
δ→0

f(Bε(x) ∪Bδ(y)) = lim
δ→0

P (Bε(x) ∪Bδ(y)) ·M(Bε(x) ∪Bδ(y)) ∼

(ρ(x) · µ(y)) · V (Bε(x)).

Thus,
lim
δ→0

f(Bε(x) ∪Bδ(y))

P (Bε(x))
∼ (ρ(x) · µ(y)) · V (Bε(x))

(ρ(x) · µ(x)) · V (Bε(x))
=

µ(y)

µ(x)
,

and thus, we can determine the ratio µ(y)/µ(x) as

µ(y)

µ(x)
= lim

ε→0

lim
δ→0

f(Bε(x) ∪Bδ(y))

P (Bε(x))
.
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When µ(y) < µ(x), we can similarly determine the ratio µ(x)/µ(y) and thus,
reconstruct its inverse µ(y)/µ(x).

Finally, when µ(y) = µ(x), we can detect this case – in which the ratio
µ(y)/µ(x) is equal to 1 – because this is the case when µ(y) ̸> µ(x) and µ(x) ̸>
µ(y), and these inequalities we already know how to detect.

5.3. Finishing the proof. Let us assume that the probability density ρ′(x)
and possibility function µ′(x) lead to the same function

f(S) = P (S) ·M(S) = P ′(S) ·M ′(S).

Since the ratio µ(y)/µ(x) is uniquely determined from the function f(S), we
conclude that

µ(y)

µ(x)
=

µ′(y)

µ′(x)
.

Let us pick any value x0 ∈ X, then

µ(y)

µ(x0)
=

µ′(y)

µ′(x0)
,

and thus,
µ′(y) = C · µ(y),

where C
def
=

µ(x0)

µ′(x0)
. Hence, we have

M ′(X) = sup
x∈X

µ′(x) = sup
x∈X

(C · µ(x)) = C · sup
x∈X

µ(x) = C ·M(X).

Since both P (S) and P ′(X) are probability measures, we have P (X) = P ′(X) =
1 and thus, f(X) = P (X) · M(X) = M(X) and f(X) = P ′(X) · M ′(X) =
M ′(X). So, M(X) = M ′(X) and thus, since M ′(X) = C ·M(X), we get C = 1
and µ′(x) = µ(x). Thence, the possibility measures coincide, so for every set S,
we have M(S) = M ′(S).

Now, from

f(S) = P (S) ·M(S) = P ′(S) ·M ′(S) = P ′(S) ·M(S),

we conclude that P (S) = P ′(S), i.e., that the probability measures also coincide.
Uniqueness is proven.

6. Conclusion. The fact that in the continuous case, we can uniquely recon-
struct both the possibility and possibility parts of the combined measure means
that by performing this combination, we do not lose any information. In this
sense, this combination operation is adequate.

7. First auxiliary result: if we know the order of possibilities, then
there is uniqueness even in the discrete case. In the previous text, we
had an example showing that in the discrete case, reconstruction is not unique.
It turns out that if we know which possibilities are larger and which are smaller,
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then we can uniquely reconstruct both probabilities p(x) and possibilities µ(x)
from the product f(S) = P (S) ·M(S).

Indeed, if µ(x) ≤ µ(y), then we have

f({x}) = p(x) · µ(x), f({y}) = p(y) · µ(y), f({x, y}) = (p(x) + p(y)) · µ(x).

Thus, f({x, y}) − f({y}) = p(x) · µ(y) and thus, we can reconstruct the ratio
µ(y)/µ(x) as

µ(y)

µ(x)
=

f({x, y})− f({y})
f({x})

.

Once we know this ratio, we can reconstruct both p(x) and µ(x) – as we have
shown in the continuous case.

Comment. For n elements, there are n! possible orders. So, if we do not know the
order, we have at most n! possible pairs of probability and possibility measures
that can lead to a given function f(S).

8. What if we combine only possibility measures? What if instead of
combining the probability and possibility measures, we similarly combine two
possibility measures? Will we still get uniqueness?

In this case, the answer is no, even in the continuous case. Indeed, let us pick
any non-constant continuous function µ(x) and take f(S) = M(S) · M(S) =
(M(S))2. One can easily check that for µ′(x) = (µ(x))0.5, we get M ′(S) =
(M(S))0.5, and that for µ′′(x) = (µ(x))1.5, we get M ′′(S) = (M(S))1.5. Here,

M ′(S) ·M ′′(S) = (M(S))0.5 · (M(S))1.5 = (M(S))2,

hence M(S) · M(S) = M ′(S) · M ′′(S), but M ′(S) ̸= M(S). So, in this case,
reconstruction is not unique.

9. What is we combine only probability measures? Let us prove that in
this case, we have uniqueness of reconstruction both in the discrete and in the
continuous case. In other words, we prove that if for some probability measures
Pi(S) and P ′

i (S), we have

f(S) = P1(S) · P2(S) = P ′
1(S) · P ′

2(S)

for all measurable sets S, then:

• either P1(S) = P ′
1(S) and P2(S) = P ′

2(S) for all measurable sets S,

• or P1(S) = P ′
2(S) and P2(S) = P ′

1(S) for all measurable sets S.

Let us start with the discrete case. In this case, for every two elements x
and y, we know the values:

f({x}) = p1(x) · p2(x), f({y}) = p1(y) · p2(y),

f({x, y}) = (p1(x) + p1(y)) · (p2(x) + p2(y)).
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Thus,

∆(x, y)
def
= f({x, y})− f({x})− f({y}) = p1(x) · p2(y) + p2(x) · p1(y).

The first term p1(x) · p2(y) can represented as

p1(x) · p2(y) = (p1(x) · p2(x)) ·
p2(y)

p2(x)
,

i.e., as p1(x) · p2(y) = f({x}) · r, where we denoted r
def
=

p2(y)

p2(x)
. Similarly, the

second term p2(x) · p1(y) can be represented as f({y}) · r−1. Thus, the above
formula has the form

∆(x, y) = f({x}) · r + f({y}) · r−1.

The only unknown here is the ratio r. Multiplying both sides of this equation
by r and moving all the terms into one side, we get a quadratic equation

f({x}) · r2 −∆(x, y) · r + f({y}) = 0,

whose solutions are

r =
∆(x, y)±

√
∆2(x, y)− 4 · f({x}) · f({y})

2 · f({x})
.

Here,
∆2(x, y)− 4 · f({x}) · f({y}) =

(p1(x) · p2(y) + p2(x) · p1(y))2 − 4 · p1(x) · p2(x) · p1(y) · p2(y) =

(p1(x) · p2(y)− p2(x) · p1(y))2,

so

r =
p1(x) · p2(y) + p2(x) · p1(y)± (p1(x) · p2(y)− p2(x) · p1(y))

2 · p1(x) · p2(x)
.

For the plus sign, we get

r =
2 · p1(x) · p2(y)
2 · p1(x) · p2(x)

=
p2(y)

p2(x)
.

For the minus sign, we get

r =
2 · p1(y) · p2(x)
2 · p1(x) · p2(x)

=
p1(y)

p1(x)
.

If f(S) = P ′
1(S) · P ′

2(S), then the corresponding ratio r =
p′2(y)

p′2(x)
should satisfy

the same quadratic equation, so we have

p′2(y)

p′2(x)
=

p2(y)

p2(x)
or

p′2(y)

p′2(x)
=

p1(y)

p1(x)
.
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A similar argument shows that

p′1(y)

p′1(x)
=

p2(y)

p2(x)
or

p′1(y)

p′1(x)
=

p1(y)

p1(x)
.

Thus, for each x and y, the ratio
p′2(y)

p′2(x)
coincides either with the ratio cor-

responding to the first original probability measure P1(S) or with the ratio
corresponding to the second original probability measure P2(S).

To complete the proof for the discrete case, we need to show that this cor-
respondence between the new and the original probability measures is the same
for all the pairs. Indeed, let us consider arbitrary three elements x, y and z. In
this case, we have three pairs (x, y), (y, z), and (x, z). If the correspondence is
different from some of these pairs, this means that we should have two pairs in

which the ratio
p′2(y)

p′2(x)
is equal to one of the two Pi-ratios and one pair in which

this ratio is equal to the other ratio. Without losing generality, let us assume
that two ratios are equal to the P2-ratio and one is equal to the P1-ratio, i.e.,
specifically, that

p′2(y)

p′2(x)
=

p2(y)

p2(x)
,

p′2(z)

p′2(y)
=

p2(z)

p2(y)
,

p′2(z)

p′2(x)
=

p1(z)

p1(x)
̸= p2(z)

p2(x)
.

In this case, however, multiplying the first two equalities, we get

p′2(z)

p′2(x)
=

p2(z)

p2(x)
,

which contradicts to the above inequality. This contradiction shows that for
every three elements, the correspondence is the same and thus, it is the same
for all pairs: since we can go from each pair (x, y) to every other pair (x′, y′)
via two intermediate triples:

• a triple (x, x′, y) that contains pairs (x, y) and (x, x′) – and that shows
that the pairs (x, y) and (x, x′) have the same correspondence, and

• a triple (x′, x, y′) that contains pairs (x, x′) and (x′, y′) – and that shows
that the pairs (x, x′) and (x′, y′) also have the same correspondence.

So, in the discrete case, we either have

p′2(y)

p′2(x)
=

p2(y)

p2(x)

for all x and y, or we have
p′2(y)

p′2(x)
=

p1(y)

p1(x)

for all x and y. In the first case, as in the proof of our main result, we can take
any x0 ∈ X and prove that for some constant C, we have p′2(x) = C · p2(x) for
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all x. Then, from the fact that both p′2(x) and p2(x) are probability measures,
we conclude that C = 1 and thus, that p′2(x) = p2(x) for all x.

In the second case, we similarly have p′1(x) = p1(x) for all x. Thus,

• either P ′
2(S) = P2(S) for all S,

• or P ′
2(S) = P1(S) for all S.

A similar result is true for P ′
1(S). The result is proven for the discrete case.

In the continuous case, we can partition the space X into finitely many small
subsets. Then, for the sets formed by taking unions of these subsets, we have
the exactly discrete situation, so for these subsets,

• either we have P ′
1 = P1 and P ′

2 = P2

• or we have P ′
1 = P2 and P ′

2 = P1.

We can then take smaller and smaller subsets. For every x and i, we have

ρi(x) = lim
S∋x, S→x

Pi(S)

V (S)
, ρ′i(x) = lim

S∋x, S→x

P ′
i (S)

V (S)
.

Thus, in the first case, in the limit, we will have ρ′1(x) = ρ1(x) and ρ′2(x) = ρ2(x)
for all x and thus, P ′

1(S) = P1(S) and P ′
2(S) = P2(S) for all measurable sets S.

Similarly, in the second case, in the limit, we will have ρ′1(x) = ρ2(x) and
ρ′2(x) = ρ1(x) for all x and thus, P ′

1(S) = P2(S) and P ′
2(S) = P1(S) for all

measurable sets S. The uniqueness is proven.

10. Remaining open questions. What if we have a product of three or more
probability measures? Will we be able to uniquely reconstruct all of them?
What if we have a product of a possibility measure and two or more probability
measures? What is we use a different t-norm instead of the product? Will
uniqueness and non-uniqueness results still hold?
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