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Abstract

In many practical situations like weather prediction, we are interested
in large-scale (averaged) value of the predicted quantities. For example, it
is impossible to predict the exact future temperature at different spatial
locations, but we can reasonably well predict average temperature over
a region. Traditionally, to obtain such large-scale predictions, we first
perform a detailed integration of the corresponding differential equation,
and then average the resulting detailed solution. This procedure is often
very time-consuming, since we need to process all the details of the original
data.

In our previous papers, we have shown that similar quality large-scale
prediction results can be obtained if instead, we apply a much faster pro-
cedure – first average the inputs (by applying an appropriate fuzzy trans-
form), and then use these averaged inputs to solve the corresponding
(discretization of the) differential equation.

In this paper, we provide a general theoretical explanation of why our
semi-heuristic method works, i.e., why fuzzy transforms are efficient in
large-scale predictions.

1 Formulation of the Problem

Predictions are needed. One of the main objectives of science is to predict
the future values of the physical quantities. For example, it is desirable to
predict tomorrow’s weather, the weather for several days ahead, etc. For a
spreading flu epidemics, it is desirable to predict how this epidemics will spread
if we do not introduce any restrictions on travel – and how this spread will
change if such restrictions are introduced.
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Detailed predictions are often impossible. Of course, ideally, it is desir-
able to have predictions which are as detailed as possible. For example, ideally,
we would like to know the exact value of tomorrow’s temperature and wind
speed at all possible spatial locations within a given region – or to predict ex-
actly where the epidemics will spread and exactly how many people will fall ill
if we do not introduce any travel restrictions.

However, in many practical situations, such a detailed prediction is impossi-
ble. In some of these situations, prediction is potentially possible, but it requires
such a large amount of computations that even on the fastest modern comput-
ers, the computations finish long after the future event (that we are trying to
predict) has already occurred.

Large-scale predictions are usually sufficient. In many practical situa-
tions in which we cannot predict the exact values of the future quantities, it is
often sufficient to predict the average values of the future quantities, averaged
over certain areas.

For example, from the practical viewpoint, even though we cannot predict
the exact value of tomorrow’s temperature at all possible spatial locations, it
would be beneficial to predict the average temperature over a given small geo-
graphic region. Similarly, for an epidemic, even though we are unable to predict
where exactly it will spread, and how many people will fall ill in different small
towns, it is very beneficial to be able to predict how many people on average
will get ill in the region.

For predicting time series – e.g., financial time series formed by the prices of
different stocks at different moments of time, though it is impossible to predict
the exact values of the future prices, it os desirable to at least be able to predict
the trends, i.e., the prices averaged over a certain time period.

Comment. For clarity and simplicity, in the following text, we will describe
the case when both the input x(t) and the output y(t) depend only on time t.
The exact same formulas can also be applied if we have a spatial dependence;
in this case, t and s are the corresponding spatial points.

Towards a precise mathematical description of quantities predicted
by large-scale prediction. Instead of predicting the values y(t) for different
moments of time t, we predict the weighted averages y(t), i.e., the average of
the values y(s) for the values s which are close to t.

It is reasonable to assume that for different moments t we use the same
averaging, i.e., that the weight with which the value y(s) contributes to y(t)
depends only on the difference t − s and not on the absolute values of t or s.
Under this assumption, the general formula for the weighted average takes the
form

y(t) =

∫
w(t− s) · y(s) ds, (1)
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where all the weights are non-negative and for each t, the total weight of all the
values y(s) is equal to 1: ∫

w(s) ds = 1. (2)

An example and a useful equivalent reformulation of averaging. A
natural example of such averaging is a Gaussian averaging, where we use Gaus-
sian weights:

w(s) =
1√

2π · σ
· exp

(
− s2

2σ2

)
. (3)

It is often convenient to represent this Gaussian weight function as

w(s) = const ·W (s), (4)

where the new weight function W (s) is described by a simpler formula

W (s) = exp

(
− s2

2σ2

)
. (5)

This new weight function satisfies the property (W (0) = 1 and)

max
s

W (s) = 1. (6)

Large-scale quantities and fuzzy transform. A similar representation is
often useful for other weight functions as well. In general, once we know this
new weight function W (s), we can use the normalized condition (2) to find that

w(s) =
W (s)∫
W (t) dt

. (7)

Thus, in terms of the new weight function W (s), the weighted average (1) takes
the form

y(t) =

∫
W (t− s) · y(s) ds∫

W (s) ds
. (8)

Expression (8) is a particular case of the expression of a fuzzy transform [4, 5, 6]
which is, in general, defined as

Y =

∫
A(s) · y(s) ds∫

A(s) ds
(9)

for some function A(s) ≥ 0 for which max
s

A(s) = 1. For a special uniform case

[5, 6], we have several functions A(s) of the form An(s) = W (tn − s), where
W (s) is a given function. The corresponding values Yn of the fuzzy transforms
are then equal to

Yn =

∫
An(s) · y(s) ds∫

An(s) ds
=

∫
W (tn − s) · y(s) ds∫

W (s) ds
, (10)

i.e., coincide with the values y(tn) corresponding to different points tn.
Thus, from the mathematical viewpoint, the weighted averages are simply

the values of the fuzzy transform.
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Typical prediction procedure: solving a differential equation. Most
relations in physics are described by differential equations. In particular, the
relation between the observed signals x(t) and the predicted values y(t) can also
be described by a differential equation.

Traditional procedure for large-scale predictions. Since prediction usu-
ally means solving a known differential equation, a usual procedure for large-
scale predictions is as follows:

• first, we use the known values x(t) to solve the differential equations and
get the values y(t);

• then, we apply the weighted average procedure (8) to the resulting values
y(t), and get the desired large-scale predictions y(t).

Drawbacks of the traditional procedure. The main drawback of the tra-
ditional procedure is that we spend a lot of computation time to get a detailed
solution y(t) – but at the end, we only return a few values corresponding to
large-scale predictions.

For example, in weather prediction, we spend hours of computer time on
high-performance supercomputers to solve a complex system of differential equa-
tions with thousand of variables – and then only use the large-scale weighted
average of this solution.

Natural idea. We are only interested in large-scale predictions, i.e., only in
the weighted averages of the result y(t) of solving the differential equation,
averages that ignore the fine structure of the solution y(t). So why not start
with the averaged values of the input x(t), i.e., why not ignore the fine structure
of x(t) from the very beginning – and thus, save computation time.

In other words:

• traditionally, we first integrate the differential equation, and then average
the solution;

• what we propose is that we first average, and only then integrate; in this
manner, we will need fewer values to integrate and thus, less computation
time.

Empirically, this idea seems to work. For several differential equations,
we implemented the above idea of how to speed up computations. Specifically,

• instead of the original input x(t), we use the fuzzy transform values
X1, . . . , Xn,

• then we use the values Xi in the discretized version of the original differ-
ential equation, and
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• we use the results Y1, . . . , Yn of this solution as an estimate for the desired
large-scale averages (= fuzzy transform of y(t)).

Surprisingly, we got a very good approximation to the values Yi computed based
on the detailed y(t) [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12].

What we do in this paper. In this paper, we provide a theoretical explana-
tion for the empirical success of the fuzzy-transform-based methods of speeding
up computations.

This explanation makes us confident that this fuzzy transform technique can
be successfully used in other large-scale prediction problems as well.

2 Theoretical Explanation

Linearization. Usually, the effect of each input value x(t) on the prediction
results is small. In this sense, we can say that the inputs are relatively small.
Thus, we can use the standard technique of dealing with dependence on small
value:

• extend the dependence of y(t) on x(s) in Taylor series,

• ignore quadratic and higher order terms, and thus

• keep only linear terms in this dependence.

In this case, we get the following dependence:

y(t) = y0(t) +

∫
y1(t, s) · x(s) ds, (11)

for some functions y0(t) and y1(t, s).

Shift-invariance. We are interesting in systematic predictions, predictions
that need to be repeated again and again. In these predictions, there is no fixed
moment of time: if we start with the same input repeated later (i.e., shifted in
time, from x(t) to xnew(t) = x(t−t0)), we get the same result (similarly shifted)
ynew(t) = y(t− t0).

For the formula (11), this shift-invariance means that

• first, we must have y0(t) = y0(t − t0) for all t and t0; in particular, for
t0 = t, we conclude that y0(t) = y0(0), i.e., that y0 should not depend on
time at all: y0(t) = y0;

• second, we must have y1(t, s) = y1(t − t0, s − t0) for all t, s, and t0; in
particular, for t0 − s, we conclude that y1(t, s) = y1(t− s, 0) and that the
function y1(t, s) should only depend on the difference t− s.

Thus, we arrive at the following dependence:

y(t) = y0 +

∫
y1(t− s) · x(s) ds. (12)
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Main result: formulation. In the traditional approach, we first find the
detailed output (12) and then average it by applying the averaging

y(t) =

∫
W (t− s) · y(s) ds∫

W (s) ds
. (13)

An alternative approach is to first apply the same averaging to the original
signal x(t), resulting in

x(t) =

∫
W (t− s) · x(s) ds∫

W (s) ds
, (14)

and try use this averaged signal x(t) as the input to the corresponding dynamical
systems (i.e., in effect, to the transformation (12)):

yf (t) = y0 +

∫
y1(t− s) · x(s) ds. (15)

Our claim is that these two approaches always lead to the same result, i.e.,

yf (t) = y(t) (16)

for all moments of time t.

Proof. In terms of the normalized weight function (7), the original signal has
the form

y(t) =

∫
w(t− s) · y(s) ds, (17)

where y(s) is determined by the formula (12). Substituting the expression

y(s) = y0 +

∫
y1(s− u) · x(u) du (18)

into the formula (17), we conclude that

y(t) = y0 +

∫
w(t− s) · y1(s− u) · x(u) ds du, (19)

i.e., that

y(t) = y0 +

∫
w(t, u) · x(u) du, (20)

where

w(t, u)
def
=

∫
w(t− s) · y1(s− u) ds. (21)

Similarly, in terms of the normalized weight function w(t), we have

x(t) =

∫
w(t− s) · x(s) ds. (22)
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Substituting the corresponding formula

x(s) =

∫
w(s− u) · x(u) du (23)

into the expression (15) for yf (t), we conclude that

yf (t) = y0 +

∫
y1(t− s) · w(s− u) · x(u) ds du, (24)

i.e., that

yf (t) = y0 +

∫
wf (t, u) · x(u) du, (25)

where

wf (t, u)
def
=

∫
y1(t− s) · w(s− u) ds. (26)

In view of the formulas (20) and (25), to prove that the values y(t) and yf (t)
always coincide, it is sufficient to prove that the corresponding functions w(t, u)
and wf (t, u) coincide for all t and u. These functions are defined by expressions
(21) and (26).

To prove that these expressions coincide, let us try to transform them into
each other. In the expression (26), we take the value of the normalized weight
function w(t) at the point s − u. In contrast, in the expression (21), we use
the value w(t− s) for the corresponding auxiliary variable s. To transform the
expression (26) into the form (21), let us introduce a new auxiliary variable v
for which s − u = t − v. From this formula, we conclude that s = t + u − v,
hence t − s takes the form t − (t + u − v) = v − u. Thus, in terms of the new
variable v, the integrated expression in (26) takes the form

y1(t− s) · w(s− u) = y1(v − u) · w(t− v) = w(t− v) · y1(v − u). (27)

Hence, the integrals of these two expressions must also coincide:∫
y1(t− s) · w(s− u) ds =

∫
w(t− v) · y1(v − u) dv. (28)

The right-hand side of this equality is exactly the expression (21) – the only
difference is that we use a different name for the integration variable (v instead
of s). Thus, the functions w(t, u) and wf (t, u) indeed coincide – and hence,
yf (t) = y(t).

The equality is proven.

Comment. In the ideal case, when quadratic terms can be completely ignored
and there is no dependence on absolute time, the new method leads to exact
same large-scale predictions as the traditional one. In practice, if we take into
account that

• the quadratic terms are small but non-zero, and that
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• there may be an underlying trend-like dependence on absolute time (like
global warming in weather prediction)

we end up with approximate equality between the traditional and fuzzy-transform
based predictions – and this approximate equality is what we observed in our
experiments [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12].

Since large-scale predictions are approximate anyway, this approximate equal-
ity means that in terms of accuracy, the new predictions are, in effect, as good
as the traditional ones. Since the new predictions are much faster to compute,
they have a clear practical advantage.
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