
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

5-1-2011

Estimating Probability of Failure of a Complex
System Based on Partial Information about
Subsystems and Components, with Potential
Applications to Aircraft Maintenance
Christelle Jacob
Institut Supérieur de l’Aéronautique et de l’Espace (ISAE)

Didier Dubois
Institut de Recherche en Informatique de Toulouse (IRIT)

Janette Cardoso
Institut Supérieur de l’Aéronautique et de l’Espace (ISAE)

Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-23
Published in Proceedings of the International Workshop on Soft Computing Applications and Knowledge
Discovery SCAKD'2011, Moscow, Russia, June 25, 2011, pp. 30-41.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Jacob, Christelle; Dubois, Didier; Cardoso, Janette; Ceberio, Martine; and Kreinovich, Vladik, "Estimating Probability of Failure of a
Complex System Based on Partial Information about Subsystems and Components, with Potential Applications to Aircraft
Maintenance" (2011). Departmental Technical Reports (CS). Paper 615.
http://digitalcommons.utep.edu/cs_techrep/615

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/615?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Estimating Probability of Failure of a Complex
System Based on Partial Information about
Subsystems and Components, with Potential

Applications to Aircraft Maintenance

Christelle Jacob1, Didier Dubois2, Janette Cardoso1, Martine Ceberio3, and
Vladik Kreinovich3

1 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), DMIA department,
Campus Supaéro, 10 avenue Édouard Belin, Toulouse, France

jacob@isae.fr, cardoso@isae.fr
2 Institut de Recherche en Informatique de Toulouse (IRIT), ADRIA department,

118 Route de Narbonne 31062 Toulouse Cedex 9, France
dubois@irit.fr

3 University of Texas at El Paso, Computer Science Dept., El Paso, TX 79968, USA
mceberio@utep.edu, vladik@utep.edu

Abstract. In many real-life applications (e.g., in aircraft maintenance),
we need to estimate the probability of failure of a complex system (such
as an aircraft as a whole or one of its subsystems). Complex systems are
usually built with redundancy allowing them to withstand the failure of
a small number of components. In this paper, we assume that we know
the structure of the system, and, as a result, for each possible set of failed
components, we can tell whether this set will lead to a system failure.
In some cases, for each component A, we know the probability P (A) of
its failure; in other cases, however, we only know the lower and upper
bounds P (A) and P (A) for this probability. Sometimes, we only have
expert estimates for these probabilities, estimates that can be described
as fuzzy numbers.
Usually, it is assumed that failures of different components are inde-
pendent events, but sometimes, we know that they are dependent – in
which case we usually do not have any specific information about their
correlation. Our objective is to use all this information to estimate the
probability of failure of the entire the complex system. In this paper, we
describe methods for such estimation.

Keywords: complex system, probability of failure, interval uncertainty,
fuzzy uncertainty, stochastic dependence

1 Formulation of the Problem

It is necessary to estimate the probability of failure for complex systems. In
many practical situations applications, we need to estimate the probability of
failure of a complex system. The need for such estimates come from the fact

that in practice, while it is possible (and desirable) to minimize the risk, it is not
possible to completely eliminate the risk: no matter how many precautions we
take, there are always some very low probability events that can potentially lead
to a system’s failure. All we can do is to make sure that the resulting probability
of failure does not exceed the desired small value p0. For example, the probability
of a catastrophic event is usually required to be at or below p0 = 10−9.

For example, in aircraft design and maintenance, we need to estimate the
probability of a failure of an aircraft as a whole and of its subsystems. On the
design stage, the purpose of this estimate is to make sure that this probabil-
ity of failure does not exceed the allowed probability p0. On the maintenance
stage, we perform this estimate to decide whether a maintenance is needed: if
the probability of failure exceeds p0, this means that we need to perform some
maintenance to decrease this probability to the desired level p0 (or below).

Information available for estimating system’s probability of failure: general de-
scription. Complex systems consist of subsystems, which, in turn, consists of
components (or maybe of sub-subsystems which consist of components). So, to
estimate the probability of failure of a complex system, we need to take into
account:

– when the failure of components and subsystems lead to the failure of the
complex system as a whole,

– how reliable are these components and subsystems, and
– are the component failures independent events or they are caused by a com-

mon cause, and

When the failure of components and subsystems lead to the failure of the complex
system as a whole? Complex systems are usually built with redundancy allowing
them to withstand the failure of a small number of components. Usually, we
know the structure of the system, and, as a result, for each possible set of failed
components, we can tell whether this set will lead to a system failure. So, in this
paper, we will assume that this information is available.

How reliable are components and subsystems? What do we know about the reli-
ability of individual components? For each component A, there is a probability
P (A) of its failure. When we have a sufficient statistics of failures of this type of
components, we can estimate this probability as the relative frequency of cases
when the component failed. In some case, we have a large number of such cases,
and as a result, the frequency provides a good approximation to the desired
probability – so that, in practice, we can safely assume that we know the actual
values of these probabilities P (A).

In some case, we only have a few failure cases, not enough to get an accurate
estimate for P (A). In this case, the only information that we can extract from
the observation is the interval P(A) = [P (A), P (A)] that contains the actual
(unknown) value of this probability.

This situation is rather typical for aircraft design and maintenance, because
aircrafts are usually built of highly reliable components – at least the important

parts of the aircraft are built of such components – and there are thus very few
observed cases of failure of these components.

In some cases, especially on the design stage, we do not yet have failure
statistics, so we have to rely on expert estimates, estimates based on the ex-
pert’s experience with similar components. These estimates are usually formu-
lated by using words from natural language, like “about 1%”. A natural way
to describe such expert estimates is to use fuzzy techniques (see, e.g., [9, 14]),
i.e., to describe each such estimate as a fuzzy number P(A). A fuzzy number
means, crudely speaking, that for different degrees of uncertainty α, we have an
interval P(A,α) that contains the actual (unknown) probability P (A) with this
degree of uncertainty: e.g., the interval P(A, 0) contains P (A) with guarantee
(uncertainty 0), while the interval P(A, 0.5) contains P (A) with uncertainty 0.5.

Are the component failures independent events or they are caused by a common
cause? In many practical situations, failures of different components are caused
by different factors. For example, for an aircraft, possible failures of mechanical
subsystems can be caused by the material fatigue, while possible failures of
electronic systems can be caused by the interference of atmospheric electricity
(e.g., when flying close to a thunderstorm). As a result, usually, it is assumed
that failures of different components are independent events

However, sometimes, we know that the failures of different components are
caused by a common cause. In this case, the failures of different components
are no longer independent events. In such situations, often, do not have any
specific information about the correlation between these failures. This is a typical
situation in aircraft design and maintenance – we have very few failures of each
component, not enough to determine the exact probability of each such failure,
and we have even fewer situations when two components failed, so an empirical
determination of such correlations is out of question.

What we do in this paper. Our objective is to use all this information to estimate
the probability of failure of the entire the complex system. In this paper, we
describe methods for such estimation.

2 Simplest Case: Component Failures are Independent
and Failure Probabilities P (A) Are Exactly Known

Let us start our analysis with the simplest case when the component failures are
independent and the failure probabilities P (A) for different components A are
known exactly.

As we mentioned, we assume that there exists an efficient algorithm that,
given a list of failed components, determines whether the whole system fails or
not.

In this case, it is always possible to efficiently estimate the probability P of
the system’s failure by using Monte-Carlo simulations. Specifically, we select the
number of simulations N . Then, for each component A, we simulate a Boolean

variable failing(A) which is true with probability P (A) and false with the re-
maining probability 1 − P (A). This can be done, e.g., if we take the result r
of a standard random number generator that generates values uniformly dis-
tributed on the interval [0, 1] and select failing(A) to be true if r ≤ P (A) and
false otherwise: then the probability of this variable to be true is exactly P (A).

Then, we apply the above-mentioned algorithm to the simulated values of
the variables failing(A) and conclude whether for this simulation, the system
fails or not. As an estimate for the probability of the system’s failure, we then

take the ratio p
def
= f/N , where f is the number of simulations on which the

system failed. From statistics, it is known that the mean value of this ratio is
indeed the desired probability, that the standard deviation can be estimated
as σ =

√
p · (1− p)/N ≤ 0.5/

√
N , and that for sufficiently large N (due to

the Central Limit Theorem), the distribution of the difference P − p is close to
normal. Thus, with probability 99.9%, the actual value P is within the three-
sigma interval [p− 3σ, p+ 3σ].

This enables us to determine how many iterations we need to estimate the
probability P with accuracy 10% (and certainty 99.9%): due to σ ≤ 0.5/

√
N , to

guarantee that 3σ ≤ 0.1, it is sufficient to select N for which 3 · 0.5/
√
N ≤ 0.1,

i.e.,
√
N ≥ (3 · 0.5)/0.1 = 15 and N ≥ 225. It is important to emphasize that

this number of iterations is the same no matter how many components we have
– and for complex systems, we usually have many thousands of components.

Similarly, to estimate this probability with accuracy 1%, we needN = 22, 500
iterations, etc. These numbers of iterations work for all possible values P . In
practical applications, the desired probability P is small, so 1 − P ≈ 1, σ ≈√

P/N and the number of iterations, as determined by the condition 3σ ≤ 0.1
or 3σ ≤ 0.01, is much smaller: N ≥ 900 ·P for accuracy 10% and N ≥ 90, 000 ·P
for accuracy 1%.

Comment. In many cases, there are also efficient analytical algorithms for com-
puting the desired probability of the system’s failure; see, e.g., [5].

3 Important Subcase of the Simplest Case: When
Components are Very Reliable

In many practical applications (e.g., in important subsystems related to air-
crafts), components are highly reliable, and their probabilities of failure P (A)
are very small. In this case, the above Monte-Carlo technique for computing
the probability P of the system’s failure requires a large number of simulations,
because otherwise, with high probability, in all simulations, all the components
will be simulated as working properly.

For example, if the probability of a component’s failure is P (A) = 10−3, then
we need at least a thousand iteration to catch a case when this component fails;
if P (A) = 10−6, we need at least a million iterations, etc.

In such situations, Monte-Carlo simulations may take a lot of computation
time. In some applications, e.g., on the stage of an aircraft design, it may be OK,

but in other case, e.g., on the stage of routine aircraft maintenance, the airlines
want fast turnaround, and any speed up is highly welcome.

To speed up such simulations, we can use a re-scaling idea; see, e.g., [7].
Specifically, instead of using the original values P (A), we use re-scaled (larger)
values λ · P (A) for some λ ≫ 1. The value λ is chosen in such a way that the
resulting probabilities are larger and thus, require fewer simulations to come up
with cases when some components fail. As a result of applying the above Monte-
Carlo simulations to these new probabilities λ · P (A), we get a probability of
failure P (λ).

In this case, one can show that while the resulting probabilities λ · P (A) are
still small, the probability P (λ) depends on λ as P (λ) ≈ λk ·P for some positive
integer k.

Thus, to find the desired value P , we repeat this procedure for two different
values λ1 ̸= λ2, get the two values P (λ1) and P (λ2), and then find both unknown
k and P from the resulting system of two equations with two unknowns: P (λ1) ≈
λk
1 · P and P (λ2) ≈ λk

2 · P .

To solve this system, we first divide the first equation by the second one,
getting an equation P (λ1)/P (λ2) ≈ (λ1/λ2)

k with one unknown k, and find
k ≈ ln(P (λ1)/P (λ2))/(λ1/λ2). Then, once we know k, we can find P as P ≈
P (λ1)/λ

k
1 .

4 Cases When We Know the Probabilities P (A) with
Uncertainty: Fuzzy Uncertainty Can Be Reduced to
Interval One

In many cases, we do not know the exact probabilities P (A) of the component’s
failure, we only know the intervals P(A) that contain these probabilities, or,
even more generally, a fuzzy number P(A) that describes this probability.

In the case of intervals, different combinations of values P (A) ∈ P(A) lead,
in general, to different values P . Let us denote the dependence of P on the values
P (A) by f : P = f(P (A), P (B), . . .). In this case, we want to know the range of
possible values of the desired probability P :

P = [P , P] = f(P(A),P(B), . . .)
def
=

{f(P (A), P (B), . . .) : P (A) ∈ P(A), P (B) ∈ P(B), . . .}.

The problem of computing such an interval is a particular case of the general
problem of interval computations, i.e., a problem of computing the range of a
given function f(x1, . . . , xn) when each of the variables xi takes value from a
given interval xi; see, e.g., [6, 8, 12] and references therein.

When each probability is described by a fuzzy number P(A), i.e., by a mem-
bership function µA(P) that assigns, to every real number P , a degree to which
this number is possible as a value of P (A), we want to find the fuzzy number

P that describes f(P (A), P (B), . . .). A natural way to define the corresponding
membership function µ(P) leads to Zadeh’s extension principle:

µ(P) = sup{min(µA(P (A)), µB(P (B)), . . .) : f(P (A), P (B), . . .) = P}.

It is known that from the computational viewpoint, the application of this
formula can be reduced to interval computations.

Specifically, for each fuzzy set with a membership function µ(x) and for each

α ∈ (0, 1], we can define this set’s α-cut as X (α)
def
= {x : µ(x) ≥ α}. Vice versa,

if we know the α-cuts for all α, we, for each x, can reconstruct the value µ(x) as
the largest value α for which x ∈ X (α). Thus, to describe a fuzzy number, it is
sufficient to find all its α-cuts.

It is known that when the inputs µi(xi) are fuzzy numbers, and the function
y = f(x1, . . . , xn) is continuous, then for each α, the α-cut Y(α) of y is equal to
the range of possible values of f(x1, . . . , xn) when xi ∈ §i(α) for all i:

Y(α) = f(X1(α), . . . ,Xn(α));

see, e.g., [4, 9, 13, 14]. This is how processing fuzzy data is often done – by re-
ducing to interval computations.

P = [P , P] = f(P(A),P(B), . . .).

In particular, for our problem, once know the α-cuts P(A,α) corresponding
to different components A, we can find the α-cuts P(α) corresponding to the
desired probability P as the corresponding interval range:

P(α) = f(P(A,α),P(B,α), . . .).

So, if we know how to solve our problem under interval uncertainty, we can
also solve it under fuzzy uncertainty – e.g., by repeating the above interval
computations for α = 0, 0.1, . . . , 0.9, 1.0.

In view of this reduction, in the following text, we will only consider the case
of interval uncertainty.

5 Component Failures are Independent, Failure
Probabilities P (A) Are Known with Interval
Uncertainty: Monotonicity Case

In view of the above analysis, let us now consider the case when the probabilities
P (A) are only known with interval uncertainty, i.e., for each component A, we
only know the interval [P (A), P (A)] that contains the actual (unknown) value
P (A). We still assume that failures of different components are independent
events.

Let us start with the simplest subcase when the dependence of the system’s
failure on the failure of components is monotonic. To be precise, we assume that

if for a certain list of failed components, the system fails, it will still fail if we
add one more components to the list of failed ones. In this case, the smaller the
probability of failure P (A) for each component A, the smaller the probability
P that the system as a whole will fail. Similarly, the larger the probability of
failure P (A) for each component A, the larger the probability P that the system
as a whole will fail.

Thus, to compute the smallest possible value P of the failure probability, it is
sufficient to consider the values P (A). Similarly, to compute the largest possible
value P of the failure probability, it is sufficient to consider the values P (A).
Thus, in the monotonic case, to compute the range [P , P] of possible values of
overall failure probability under interval uncertainty, it is sufficient to solve two
problems in each of which we know probabilities with certainty:

– to compute P , we assume that for each component A, the failure probability
is equal to P (A);

– to compute P , we assume that for each component A, the failure probability
is equal to P (A).

6 In Practice, the Dependence is Sometimes
Non-Monotonic

Let us show that in some practically reasonable situations, the dependence of
the system’s failure on the failure of components is non-monotonic. This may
sound counter-intuitive at first glance: adding one more failing component to
the list of failed ones suddenly makes the previously failing system recover, but
here is an example when exactly this seemingly counter-intuitive behavior makes
perfect sense.

To increase reliability, systems include duplication: for many important func-
tions, there is a duplicate subsystem ready to take charge if the main subsystem
fails. How do we detect that the main system failed? Usually, a subsystem con-
tains several sensors; sensors sometimes fail, as a result of which their signal no
longer reflect the actual value of the quantity they are supposed to measure. For
example, a temperature sensor which is supposed to generate a signal propor-
tional to the temperature, if failed, produces no signal at all, which the system
will naturally interpret as a 0 temperature. To detect the sensor failure, subsys-
tems often use statistical criteria. For example, for each sensor i, we usually know
the mean mi and the standard deviation σi of the corresponding quantity. When
these quantities are independent and approximately normally distributed, then,

for the measurement values xi, the sum X2 def
=

n∑
i=1

(xi −mi)
2

σ2
i

is the sum of n

standard normal distributions and thus, follows the chi-square distributed with
n degrees of freedom. So, if the actual value of this sum exceeds the threshold
corresponding to confidence level p = 0.05, this means that we can confidently
conclude that some of the sensors are malfunctioning.

If the number n of sensors is large, then one malfunctioning sensor may not
increase the sum X2 too high, and so, its malfunctioning will not be detected,

and the system will fail. On the other hand, if all n sensors fail, e.g., show 0
instead of the correct temperature, each term in the sum will be large, the sum
will exceed the threshold – and the system will detect the malfunctioning. In
this case, the second redundant subsystem will be activated, and the system as
a whole will thus continue to function normally.

This is exactly the case of non-monotonicity: when only one sensor fails, the
system as a whole fails; however, if, in addition to the originally failed sensor,
many other sensors fail, the system as a whole becomes functioning well.

7 What If We Have Few Components, With Respect to
Which the Dependence is Non-Monotonic

Let us start with the simplest case when there are only few components with
respect to which the dependence is non-monotonic, and with respect to all other
components, the dependence is still monotonic. In this case, for all monotonic
components B, as before, we can take P (B) = P (B) when we are computing P ,
and take P (B) = P (B) when we are computing P .

For non-monotonic components A, for computing each of the values P and
P , we need to to take into account all possible values P (A) ∈ [P (A), P (A)]. For
each such component, by using the formula of full probability, we can represent
the probability P of the system’s failure as follows:

P = P (A) · P (F |A) + (1− P (A)) · P (F |¬A),

where P (F |A) is the conditional probability that the system fails under the
condition that the component A fails, and P (F |¬A) is the conditional probability
that the system fails under the condition that the component A does not fail.
The conditional probabilities P (F |A) and P (F |¬A) do not depend on P (A),
so the resulting dependence of P on P (A) is linear. A linear function attains
it minimum and maximum at the endpoints. Thus, to find P and P , it is not
necessary to consider all possible values P (A) ∈ [P (A), P (A)], it is sufficient to
only consider two values: P (A) = P (A) and P (A) = P (A).

For each of these two values, for another non-monotonic component A′, we
have two possible options P (A′) = P (A′) and P (A′) = P (A′); thus, in this case,
we need to consider 2× 2 = 4 possible combinations of values P (A) and P (A′).

In general, when we have k non-monotonic components A1, . . . , Ak, it is suf-
ficient to consider 2k possible combinations of values P (Ai) and P (Ai) corre-
sponding to each of these components. When k is small, this is doable – and, as
our preliminary experiments show, works very well.

This procedure requires times which grows as 2k. As we mentioned earlier,
when k is large, the needed computation time becomes unrealistically large.

8 General Case: the Problem is NP-Hard, and Even
Checking Whether a Component Is Monotonic Is
NP-hard

Natural question. The fact that the above algorithm requires unrealistic expo-
nential time raises a natural question: is it because our algorithm is inefficient
or is it because the problem itself is difficult?

The problem is NP-hard. In the general case, when no assumption is made about
monotonicity, the problem is as follows:

– we have a propositional formula F with n variables Ai – each variable Ai is
true if the corresponding component fails, and the formula F is true if the
system as whole fails;

– for each component i, we know the interval [P (Ai), P (Ai)] that contains the
actual (unknown) P (Ai) that this component fails;

– we assume that the failures of different components are independent events.

Different values P (Ai) ∈ [P (Ai), P (Ai)] lead, in general, to different values of
the probability P that F is true (i.e., that the system failed). Our objective is
to compute the range [P , P] of possible values of this probability.

One can easily show that, in general, this problem is NP-hard (for precise
definitions, see, e.g., [15]). Indeed, it is well known that the following proposi-
tional satisfiability problem SAT is NP-hard: given a propositional formula F ,
check whether this formula is satisfiable, i.e., whether there exist values Ai that
make it true. We will prove that our problem is NP-hard by reducing SAT to
it: for every particular case F of SAT, there is a particular case of our problem
whose solution leads to a solution to the F . Indeed, for every formula F , let us
take [P (Ai), P (Ai)] = [0, 1] for all variables i.

If the formula F is not satisfiable, then F is always false, so the probability
of its being true is 0. In this case, the range of possible values of P consists of a
single value 0: [P , P] = [0, 0].

On the other hand, if F is satisfiable, e.g., if F is true for A1 true, A2 false,
etc., then we can take P (A1) = 1, P (A2) = 0, etc., and conclude that under
these probabilities, F is always true, i.e., P = 1. Thus, in this case, P = 1.

So, by computing P , we will get either P = 0 or P = 1. In the first case, F is
satisfiable, in the second case, it is not. The reduction proves that our problem
is NP-hard.

Even checking monotonicity is NP-hard. Let us show that even checking mono-
tonicity is NP-hard. Intuitively, monotonicity with respect to a component A
means that if the system was in a failing state, and we change the state of A to
failing, the system remains failing. In precise terms, monotonicity means that if
the formula F was true, and we change the value of the variable A from false to
true, then F remains true.

Let us prove that the problem of checking monotonicity is NP-hard by reduc-
ing SAT to this problem. Indeed, for every propositional formula F (A1, . . . , An),

we can form a new formula F ′ def
= F (A1, . . . , An)&¬A0.

When the original formula F is not satisfiable, then F is always false and
thus, the new formula F ′ is also always false. In this case, F ′ is, by definition,
monotonic with respect to A0.

When F is satisfiable, this means that F is equal to “true” for some values
of A1, . . . , An. In this case, for A0 =“false”, the new formula F ′ is true, but if
we make A0 =“true”, F ′ becomes false. Thus, in this case, F ′ is not monotonic
with respect to A0.

Summarizing: the new formula F ′ is monotonic with respect to A0 if and only
if the original formula F was satisfiable. This reduction proves that checking
monotonicity is indeed NP-hard.

9 Case of Narrow Intervals: Cauchy Deviate Method

In many practical situations, intervals are narrow. In this case, we can use an
efficient Cauchy deviates method to find the range of the resulting probability
P ; see, e.g., [10].

10 What If We Do Not Assume Independence

Exact methods. If we do not assume independence, then, in principle, we can
have different probabilities P of failure even when the failure probabilities P (Ai)
of all components are known exactly. For example, if the system consists of two
components and it fails if both components fail, i.e., if F = A1 &A2, then possible
values of P take an interval

[P , P] = [max(P (A1) + P (A2)− 1, 0),min(P (A1), P (A2)].

In general, to describe probabilities of all possible combinations of state-
ments Ai, it is sufficient to describe 2n probabilities of atomic statements
Aε1

1 & . . . &Aεn
n , where εi ∈ {−,+}, A+ means A, and A− means ¬A. These

probabilities satisfy the condition that their sum is 1; each given probability
P (Ai) and the desired probability P can be described as a sum of some such
probabilities, so the problem of finding the range of P becomes the particular
case of linear programming problems, when we need to find the minimum and
maximum of a linear function under linear constraints; see, e.g., [16].

For example, in the above case n = 2, we have four non-negative unknowns
P++ = P (A1 &A2), P+− = P (A1 &¬A2), P−+ = P (¬A1 &A2), and P−− =
P (A1 &A2) that satisfy the constraints P++ + P+− + P−+ + P−− = 1, P++ +
P+− = P (A1), and P++ +P−+ = P (A2). Here, P = P++, so, e.g., to find P , we
need to minimize P++ under these constraints.

Limitations of the exact methods. This works well if n is small, but for large n,
this method requires an unrealistically long time.

Heuristic approximate methods. In principle, we can use technique similar to
straightforward interval computations. Indeed, for simple formulas F like ¬A1,
A1 ∨ A2, or A1 &A2, we have explicit formulas for the range of the probability
P (F). So, to estimate the range of the probability P for an arbitrary formula F ,
we can do the following:

– we parse the expression F , i.e., represent is as a sequence of simple boolean
operations – the same sequence that a computer computing F would follow,
and

– replace each computation step with corresponding operations with probabil-
ity ranges.

In this algorithm, at each moment of time, we keep the bounds on the proba-
bilities P (Ai) and on the probabilities P (Fj) of the corresponding intermediate
formulas.

The problem with this approach is that at each step, we ignore the depen-
dence between the intermediate results Fj ; hence intervals grow too wide. For
example, the estimate for P (A∨¬A) computed this way is not 1, but an interval
containing the correct value 1.

A more accurate algorithm was proposed in [1–3]. In this algorithm, at each
stage, besides the bounds on the values P (Fj) (including the original bounds on
P (Ai), or – if available – exact values of P (Ai)), we also compute the bounds for
the probabilities P (Fj &Fk), P (Fj &¬Fk), P (¬Fj &Fk), and P (¬Fj &¬Fk).

On each computation step, when we add a new intermediate result Fa (e.g.,
Fa = Fb &Fc), we add bounds for the probabilities of the new statement Fa and
of all possible combinations that include Fa, i.e., on the probabilities P (Fa &Fk),
P (Fa &¬Fk), P (¬Fa &Fk), and P (¬Fa &¬Fk). To compute each of these prob-
abilities, we use the known bounds on the probabilities of combinations of Fb

and Fk, Fc and Fk, Fb and Fc, and get the desired bounds on the combinations
of Fa and Fk by solving the corresponding linear programming problem. In this
linear programming problem, we consider, as variables, 23 = 8 probabilities of
atomic statements F εb

b &F εc
c &F εk

k .

At the end of the process, we get an interval P̃ . Similarly to interval compu-
tations, we can prove, by induction, that every possible value P of the system’s
failure is contained in this interval, i.e., that the interval P̃ is an enclosure for
the desired range [P , P]: [P , P] ⊆ P̃ .

This algorithm requires more computation time that the above straightfor-
ward algorithm – since for s intermediate steps, we now need s2 estimations
instead of s – but as a result, we get more accurate accurate, with smaller “ex-
cess width” for the resulting enclosure. For example, the probability P (A∨¬A)
is estimated as 1.

To get an even better accuracy, instead of probabilities of all possible combi-
nations of two intermediate results, we can compute, on each step, probabilities
of all possible combinations of three such results: Fi, Fj , and Fk. In this case,
computation time grows as s3 but the resulting enclosure is even more accurate.
Similarly, we can have combinations of fours, fives, etc.

Acknowledgments. C. Jacob was supported by a grant from @MOST Prototype,
a join project of Airbus, Institut de Recherche en Informatique de Toulouse
(IRIT), Laboratoire dAnalyse et dArchitecture des Systémes (LAAS), ONERA,
and Institut Supérieur de l’Aéronautique et de l’Espace (ISAE).

V. Kreinovich was supported in part by the National Science Foundation
grants HRD-0734825 and DUE-0926721 and by Grant 1 T36 GM078000-01 from
the National Institutes of Health.

References

1. Ceberio, M., Kreinovich, V., Chopra, S., Longpré, L., Nguyen, H. T., Ludaescher,
B., and Baral, C.: Interval-type and affine arithmetic-type techniques for handling
uncertainty in expert systems, Journal of Computational and Applied Mathemat-
ics, 199(2), 403–410 (2007)

2. Chopra, S.: Affine arithmetic-type techniques for handling uncertainty in expert
systems, Master’s thesis, Department of Computer Science, University of Texas at
El Paso, 2005.

3. Chopra, S.: Affine arithmetic-type techniques for handling uncertainty in expert
systems, International Journal of Intelligent Technologies and Applied Statistics,
1(1), 59–110 (2008)

4. Dubois, D., Prade, H.: Operations on fuzzy numbers, International Journal of
Systems Science, 9, 613–626 (1978)

5. Dutuit, Y., Rauzy, A.: Approximate estimation of system reliability via fault trees,
Reliability Engineering and System Safety, 87(2), 163–172 (2005)

6. Interval computations website http://www.cs.utep.edu/interval-comp
7. Jaksurat, P., Freudenthal, E., Ceberio, M., Kreinovich, V.: Probabilistic Approach

to Trust: Ideas, Algorithms, and Simulations, Proceedings of the Fifth International
Conference on Intelligent Technologies InTech’04, Houston, Texas, December 2–4,
2004 (2004)

8. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, Springer,
London (2001)

9. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River,
NJ (1995)

10. Kreinovich, V., Ferson, S.: A new Cauchy-based black-box technique for uncer-
tainty in risk analysis, Reliability Engineering and Systems Safety, 85(1–3), 267–
279 (2004)

11. Kreinovich, V., et al.: Computational Complexity and Feasibility of Data Process-
ing and Interval Computations, Kluwer, Dordrecht (1997)

12. Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis,
SIAM Press, Philadelphia, Pennsylvania (2009)

13. Nguyen, H. T., Kreinovich, V.: Nested intervals and sets: concepts, relations to
fuzzy sets, and applications, In: Kearfott, R. B., Kreinovich, V., eds., Applications
of Interval Computations, Kluwer, Dordrecht, 245–290 (1996)

14. Nguyen, H. T., Walker, E. A.: A First Course in Fuzzy Logic, Chapman &
Hall/CRC, Boca Raton, Florida (2006)

15. Papadimitriou, C.: Computational Complexity, Addison Welsey, Reading, Mas-
sachusetts (1994)

16. Walley, P.: Statistical reasoning with imprecise probabilities. Chapman & Hall:
New York (1991)

	University of Texas at El Paso
	DigitalCommons@UTEP
	5-1-2011

	Estimating Probability of Failure of a Complex System Based on Partial Information about Subsystems and Components, with Potential Applications to Aircraft Maintenance
	Christelle Jacob
	Didier Dubois
	Janette Cardoso
	Martine Ceberio
	Vladik Kreinovich
	Recommended Citation

