
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

5-1-2011

Functional Verification of Class Invariants in
CleanJava
Carmen Avila
University of Texas at El Paso, ceavila3@miners.utep.edu

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-26

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Avila, Carmen and Cheon, Yoonsik, "Functional Verification of Class Invariants in CleanJava" (2011). Departmental Technical Reports
(CS). Paper 612.
http://digitalcommons.utep.edu/cs_techrep/612

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/612?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Functional Verification of Class Invariants in CleanJava
Carmen Avila and Yoonsik Cheon Cheon

TR #11-26
May 2011; revised November 2011

Keywords: class invariant, functional program verification, intended function, proof logic, CleanJava.

1998 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — Class invariants,
correctness proofs, formal methods; D.3.3 [Programming Languages] Language Constructs and Features
— Classes and objects; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning
about Programs — Assertions, invariants, pre- and post-conditions, specification techniques.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Functional Verification of Class Invariants in CleanJava

Carmen Avila and Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ceavila3@miners.utep.edu; ycheon@utep.edu

Abstract—In Cleanroom-style functional program verification,
a program is viewed as a mathematical function from one
program state to another, and the program is verified by
comparing two functions, the implemented and the expected
behaviors of a program. The technique requires a minimal
mathematical background and supports forward reasoning, but
it doesn’t support assertions such as class invariants. However,
class invariants are not only a practical programming tool but
also play a key role in the correctness proof of a program by
specifying conditions and constraints that an object has to satisfy
and thus defining valid states of the object. We suggest a way
to integrate the notion of class invariants in functional program
verification by using CleanJava as a specification notation and a
verification framework as well; CleanJava is a formal annotation
language for Java to support Cleanroom-style functional program
verification. We propose a small extension to CleanJava to specify
class invariants and to its proof logic to verify the class invariants.
Our extension closely reflects the way programmers specify and
reason about the correctness of a program informally. It allows
one to use class invariants in the framework of Cleanroom-style
functional specification and verification.

Keywords: class invariant, functional program verification,
intended function, proof logic, CleanJava.

I. INTRODUCTION

An assertion is a predicate or boolean expression, placed
in a program, that should be always true at that place [1].
Assertions such as class invariants and operation pre- and post-
conditions became popular as a practical programming tool for
verifying, testing and debugging programs [2]. If an assertion
evaluates to false at runtime, it indicates that there is an error
in the code for that particular execution, thus an assertion can
be used for runtime verification of code and for narrowing
down a problematic part of the code. Assertions also play a
key role in verifying statically the correctness of a program
[3]. A class invariant, for example, specifies a condition that
all objects of a class must satisfy while they can be observable
by clients. It defines valid states of an object and ensures that
an object remains in a consistent state. It must be proved that
all methods of the class preserve the class invariant.

A functional program verification technique such as Clean-
room [4] views a program as a mathematical function from
one program state to another and proves its correctness by
essentially comparing two functions, the function computed by
the program and its specification [5]. Since the technique uses
equasional reasoning based on sets and functions, it requires
a minimal mathematical background. Unlike Hoare logic [1],
it also supports forward reasoning and thus reflects the way

programmers reason about the correctness of a program infor-
mally. There is a formal notation to support Cleanroom-style
functional program verification. CleanJava is such a formal
annotation language for the Java programming language [6]. In
CleanJava, a specification function is written using a subset of
Java expressions enriched with CleanJava-specific extensions,
and every section of Java code is annotated with its expected
behavior for formal verification of the correctness of the code
(see Section II).

One problem of a functional program verification technique,
however, is that it doesn’t work well with assertions, especially
with class invariants. In fact, CleanJava doesn’t provide any
built-in language construct to express class invariants. This
poses a serious problem both in writing a specification and
using it for a correctness proof. In CleanJava, for example, the
behavior of a method is specified as a mathematical function,
and thus a class invariant must be expressed in a functional
form and merged to the specification of each method of
the class. The resulting specifications become less readable,
reusable, and maintainable, and the correctness verification is
not modular in that it can’t be decomposed into those of an
invariant property and a method-specific property.

In this paper we propose a way to integrate the notion
of class invariants in the functional program verification by
using CleanJava as a platform for our study. We suggest two
approaches: an invariant function and an invariant clause. In
the first approach, a user-defined function is introduced to
test a class invariant. This invariant function is referred to
in the specification of each method of a class. The second
approach supports an invariant as a built-in language feature
by extending CleanJava and its proof logic. It adds a special
clause to express an invariant of a class and extends the proof
logic to ensure that the specified invariant be established by
constructors and preserved by all methods of the class. Al-
though this approach requires a language extension, it provides
a better solution by cleanly separating the specification and
verification of an invariant from those of methods.

Since invariants are a well-known concept, it isn’t surprising
to find existing work on using invariants in a Cleanroom-style
verification [5]. However, the topic’s treatment is shallow in an
informal setting without giving a systematic way of translating
an invariant or a formal treatment of its proof rules.

The main contribution of our work is that it enables one
to use class invariants in the framework of a Cleanroom-
style functional specification and verification technique and
thus makes the technique more closely resemble the way

class AddressBook {
private List<Contact> db;

//@ [db := new ArrayList<Contact>()]
public AddressBook() {

db = new ArrayList<Contact>();
}

/*@ f0:[n != null ->
result := db->exists(getName().equals(n))] @*/

public boolean hasContact(String n) {
//@ f1: [r, i := false, 0]
boolean r = false;
int i = 0;

/*@ f2:[r, i := r || b, anything] where
boolean b = db.subList(i, db.size())

->exists(getName().equals(n)) @*/
while (i < db.size()) {
//@ [r, i := r || db.get(i).getName().equals(n), i++]

if (contacts.get(i).getName().equals(n))
r = true;

i++;
}

//@ f3:[result := r]
return r;

}
}

Fig. 1. Sample CleanJava code

programmers specify and reason about the correctness of a
program informally. We expect this to have a positive effect
on teaching and practicing the functional program verification.

The rest of this paper is structured as follows. In Section II
below we give a quick overview of CleanJava and functional
program verification. In Section III we illustrate the problem
of the functional verification not supporting class invariants.
In Section IV we describe our two approaches for integrating
the notion of invariants in a functional verification technique,
followed by a comparison of these approaches. In Section V
we provide a concluding remark along with future work.

II. BACKGROUND—CLEANJAVA

CleanJava is a formal annotation language for the Java
programming language to support a Cleanroom-style func-
tional program verification [6]. In the functional program
verification, a program is viewed as a mathematical function
from one program state to another. In essence, functional ver-
ification involves calculating the function computed by code,
called a code function, and comparing it with the intention
of the code written as a function, called an intended function
[5]. CleanJava provides a notation for writing intended func-
tions. A concurrent assignment notation, [x1, x2, . . . , xn :=
e1, e2, . . . , en], is used to express these functions by only
stating changes that happen. It states that xi’s new value is
ei, evaluated concurrently in the initial state—the state just
before executing the code; the value of a state variable that
doesn’t appear in the left-hand side remains the same. For
example, [x, y := y, x] is a function that swaps two variables
x and y.

Figure 1 shows sample Java code annotated with intended
functions written in CleanJava. It describes an AddressBook

class containing a collection of contacts. A CleanJava annota-
tion is written in a special kind of comments either preceded
by //@ or enclosed in /*@ ... @*/, and an intended
function is written in the Java expression syntax with a few
CleanJava-specific extensions. The first annotation states that
the constructor initializes the db field to a new empty list. The
intended function of the hasContact method is interesting.
It specifies a partial function defined only when the argument
(n) is not null; as shown, a concurrent assignment may have
an optional condition or guard followed by an arrow (->)
symbol. The function states that, given a non-null name (n),
the method tests if there is a contact with the given name in
db. The pseudo variable result denotes the return value of
a method, and exists is a CleanJava iteration operator that
tests if a collection contains at least one element that satisfies
a given condition. The body of the method is also interesting.
Each section of code is documented with its intended function.
In the function f2, the keyword anything indicates that we
don’t care about the final value of the loop variable i, and a
where clause introduces local definitions such as that of b.

It would be instructive to sketch a correctness proof of the
hasContact method, which involves the following.

• Proof that the composition of functions f1, f2, and f3 is
correct with respect to (⊑), or a refinement of, f0, i.e.,
f1; f2; f3 ⊑ f0, where ; denotes a functional composition.

• Proof that f1, f2, and f3 are correctly refined
In the functional verification, a proof is often trivial

or straightforward because a code function can be easily
calculated and directly compared with an intended func-
tion; e.g., f1 and f3 are both code and intended func-
tions. However, one also need to use different techniques
such as a case analysis and an induction based on the
structure of the code as in the proof of f2 [6]. Be-
low we discharge the first proof obligation, where bi
is db.subList(i, db.size())→exists(getName().equals(n))
and ? is short for anything.
f1; f2; f3 ≡ [r, i := false, 0]; [r, i := r||bi, ?]; [result := r];

≡ [r, i := b0, ?]; [result := r];

≡ [r, i, result := b0, ?, b0]

⊑ [result := b0]

≡ f0

III. THE PROBLEM

A functional program verification technique is fundamen-
tally different from an assertion-based technique such as
Hoare logic [1]. It is direct and constructive in that for each
state variable such as a program variable one must state its
final value explicitly. On the other hand, an assertion-based
technique is indirect and constraint-based in that one specifies
the condition that the final state has to satisfy by stating a
relationship among state variables. The final value of a state
variable isn’t defined directly but instead is constrained and
given indirectly by the specified condition.

Because of this fundamental difference, a functional verifi-
cation technique doesn’t work very well with assertions such

2

as class invariants. In fact, CleanJava doesn’t provide a built-
in language construct for specifying class invariants. This is
a serious concern in practice because class invariants are a
popular programming idiom and can’t be directly expressed
in CleanJava. To illustrate this problem, let’s consider the
AddressBook class from the previous section. One possi-
ble class invariant for this class would be db != null &&
db→isUnique(getName()), stating the non-nullness of the db
field and the uniqueness of contact names; the isUnique
operator is a CleanJava iterator asserting the uniqueness of
given values. How to express this invariant in CleanJava? An
invariant must be merged to, and expressed in, the intended
function of each operation of the class to ensure its establish-
ment by a constructor and its preservation by each method, as
shown below.

class AddressBook {
private List<Contact> db;

/*@ [db := new ArrayList<Contact>] @*/
public AddressBook() { ... }

/*@ [n != null && db != null && db->isUnique(getName()) ->
result := db->exists(getName().equals(n))] @*/

public boolean hasContact(String n) { ... }
}

Note that the constructor’s intended function remains the
same. This is because the new value for db, an empty
list, obviously implies the invariant. For the hasContact
method, the invariant becomes the optional condition part of
the concurrent assignment and the rest are unchanged. This
is because a method assumes an invariant, and this particular
method doesn’t change any state variable, meaning that the
invariant is trivially preserved. For a mutation method, say
addContact, the invariant must become the condition of
its intended function and be implied by new values of state
variables.

There are several shortcomings in the above approach of
not explicitly stating a class invariant and scattering it all over
method specifications. There are problems of specification
readability, reusability, and maintainability. The specifications
of an invariant property and the behavior of a method are
tangled, and an invariant specification is duplicated in almost
every method specification. The approach also makes a cor-
rectness verification hard and non-modular in that the verifi-
cation of an invariant property and that of a method-specific
property can’t be performed separately, as the specifications
of these two properties are tangled and are not distinguished.

IV. OUR APPROACH

In this section we describe our approaches for supporting
invariants. We propose two approaches: an invariant function
and an invariant clause. The first approach allows one to
systematically translate an invariant to CleanJava annotations
without requiring an extension to CleanJava or its proof logic.
On the other hand, the second approach does require an
extension to both the notation and the proof logic of CleanJava,
but it cleanly separate the specification and verification of class
invariants from those of methods.

A. An Invariant Function

This approach is to express an invariant in the intended
function of each method. An invariant becomes part of the
intended function of a method and is verified along with
the intended function. This approach is similar to the view
that an invariant is conjoined to pre- and post-conditions
of an operation. To eliminate a duplication of an invariant
expression in multiple intended functions, we introduce a user-
defined function that tests an invariant. This function is called
an invariant function and is responsible for testing all the
invariants of a class.

Suppose we have an invariant I written in terms of a
state variable, say x, and a method with an intended function
[P → y := E], where the type of y is T . Then, our approach
produces the following user-defined function and intended
functions.

fun inv(x) = I
f1:[inv(x) && P -> y := E]
f2:[inv(x) && P ->

y := findAny(T z|z == E && inv(z))]

The first annotation introduces a user-defined function
named inv that tests the invariant of a class. The state
variables appearing in the invariant become the arguments of
the invariant function so that the invariant can be tested in both
the initial and the final states. The next two annotations show
translated intended functions. Depending on whether a state
variable appearing in the invariant is changed or not, either in-
tended functions f1 or f2 is used. If x and y are different state
variables—i.e., the state variable appearing in the invariant is
not changed, the first one (f1) is used; otherwise, the second
one (f2) is used. As expected, the invariant constrains the
condition (P) and the final values of state variables (E). The
CleanJava operator findAny denotes an arbitrary value that
satisfies a given condition. In f2, the argument to the second
inv call is z—the final value of y—because the expressions
in concurrent assignments are evaluated in the initial state and
the inv call is to check the invariant in the final state.

Let’s apply this approach to our AddressBook class. The
revised intended functions are shown below.

class AddressBook {
private List<Contact> db;
//@ fun inv(db) = db != null && db->isUnique(getName())

/*@ [db := findAny(List<Contact> l | inv(l) &&
l.equals(new ArrayList<Contact>()))] @*/

public AddressBook() { ... }

/*@ [n != null && inv(db) ->
result := db->exists(getName().equals(n)))] @*/

public boolean hasContact(String n) { ... }
}

An invariant function is defined in the first annotation. In
CleanJava, one doesn’t have to declare the signature of a user
defined function; it is inferred [6]. The constructor’s intended
function was translated using the f2 pattern. However, since
a constructor doesn’t assume an invariant in the initial state,
the invariant function doesn’t appear in the optional condition

3

part of the concurrent assignment. The intended function of
the hasContact method is translated using the f1 pattern.

B. An Invariant Clause

This approach is to support the notion of invariants as a
built-in language feature of CleanJava. For this, we propose
to introduce a new CleanJava language construct called an
invariant clause. An invariant clause can appear only in the
member declaration level and specifies the invariant of a class.
It must be established by all constructors and preserved by
all methods of the class. For example, shown below is the
AddressBook class annotated using an invariant clause. Note
that the intended functions of the constructor and the method
are unchanged.

class AddressBook {
private List<Contact> db;
//@ inv: [db != null && db->isUnique(getName()]

//@ [db := new ArrayList<Contact>()]
public AddressBook() { ... }

/*@ [n != null ->
result := db->exists(getName().equals(n))] @*/

public boolean hasContact(String n) { ... }
}

A natural next question is how to verify a class invariant
specified using an invariant clause. We extend the proof rules
of CleanJava to support the invariant clause. Consider a class
with an invariant I specified using an invariant clause. For a
constructor C with an intended function f in the form of [P →
x := E], we have the following extended proof obligations.

1) C is correct with respect to f , i.e., C ⊑ f .
2) C establishes I . For this, one needs to prove:

a) P ⇒ I if I is not written in terms of x, or
b) P ⇒ I[E/x] otherwise, where I[E/x] means I

with every free occurrence of x replaced with E.
For a method M with an intended function f in the form

of [P → x := E], we have the following extended proof
obligations.

1) M is correct with respect to f provided that I holds in
the initial state, i.e., M ⊑ [P && I → x := E].

2) M preserves I . For this, one needs to prove:
a) I ∧ P ⇒ I if I is not written in terms of x, or
b) I ∧ P ⇒ I[E/x] otherwise, where I[E/x] means

I with every free occurrence of x replaced with E.
As an example, let’s prove the invariant of the Ad-

dressBook class. For the constructor, we need to discharge
the proof obligation 2.b: P ⇒ I[E/x] because the con-
structor changes the state variable db appearing in the
invariant. Note that the constructor doesn’t have an op-
tional condition (P), leaving as a proof obligation I[E/x],
db != null && db→isUnique(getName()) where db is
newArrayList<Contact>. The proof is straightforward be-
cause a new empty list is not null and contains no contact. For
the hasContact method, we have to discharge the proof
obligation 2.a: I ∧ P ⇒ I , as it doesn’t change any state
variable. However, there is nothing to prove; it’s a tautology.

C. Comparison
The invariant function approach allows one to systematically

translate class invariants to intended functions. Since invariants
are factored out to user-defined functions, they are not dupli-
cated in intended functions. The strength of this approach is
that it doesn’t require a language extension or the proof rules.
However, it doesn’t completely address the original problems
of readability, reusability, maintainability, and verifiability. For
example, specifications are still tangled and scattered, and the
use of findAny operator in an intended function makes a
specification complicate and hard to read and understand.

An invariant clause addresses all the aforementioned prob-
lems by cleanly separating an invariant specification from
method specifications. It supports a separation of concerns in a
verification; an invariant verification and a method verification
can now be performed separately and in a modular way.
Another strength of this approach is that it can also support the
inheritance of an invariant by making a subclass to inherit the
invariants of its superclasses. However, the approach requires
an extension to both the language and its proof rules.

V. CONCLUSION

We suggested two approaches for supporting class invariants
in Cleanroom-style functional program verification. The first
approach systematically translates class invariants to intended
functions by factoring them out. It doesn’t require a nota-
tional or proof logic extension but is subject to the problems
of readability, reusability, maintainability, and verifiability.
The second approach supports class invariants as a built-in
language concept. For this, we introduced a new language
construct, called an invariant clause, and defined its meanings
in terms of proof rules. This approach addresses all the
aforementioned problems associated with the first approach
and closely reflects the way programmers specify and reason
about the correctness of a program informally.

In our study, we assumed that state variables are indepen-
dent without aliasing and one state variable is not contained
or owned by another. A related question is the granularity of
frame axioms that assert which objects—the whole or part?—
are allowed to be changed. These are future research problems.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-
0707874 and DUE-0837567.

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer programming,” Com.
of ACM, vol. 12, no. 10, pp. 576–580,583, Oct. 1969.

[2] D. S. Rosenblum, “A practical approach to programming with assertions,”
IEEE Trans. on Soft. Eng., vol. 21, no. 1, pp. 19–31, Jan. 1995.

[3] Y. Cheon and G. T. Leavens, “A simple and practical approach to unit
testing: The JML and JUnit way,” in ECOOP 2002, Máalaga, Spain, ser.
LNCS, vol. 2374. Springer-Verlag, Jun. 2002, pp. 231–255.

[4] H. D. Mills, M. Dyer, and R. Linger, “Cleanroom software engineering,”
IEEE Software, vol. 4, no. 5, pp. 19–25, Sep. 1987.

[5] A. Stavely, Toward Zero Defect Programming. Addison-Wesley, 1999.
[6] Y. Cheon, C. Yeep, and M. Vela, “Cleanjava: A formal notation for func-

tional program verification,” in ITNG 2011: 8th International Conference
on Information Technology: New Generations, April 11-13, 2011, Las
Vegas, NV. IEEE Computer Society, 2011, pp. 221–226.

4

	University of Texas at El Paso
	DigitalCommons@UTEP
	5-1-2011

	Functional Verification of Class Invariants in CleanJava
	Carmen Avila
	Yoonsik Cheon
	Recommended Citation

