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Abstract
In many practical situations, it is important to estimate the mean E and the vari-

ance V from the sample values x1, . . . , xn. Usually, in statistics, we consider the case
when the parameters like E and V do not change with time and when the sample
values xi are known exactly. In practice, the values xi come from measurements, and
measurements are never 100% accurate. In many cases, we only know the upper bound
∆i on the measurement error. In this case, once we know the measured value x̃i, we can
conclude that the actual (unknown) value xi belongs to the interval [x̃i −∆i, x̃i +∆i].
Different values xi from these intervals lead, in general, to different values of E and V .
It is therefore desirable to find the ranges E and V of all possible values of E and V .
While this problem is, in general, NP-hard, in many practical situations, there exist
efficient algorithms for computing such ranges.

In practice, processes are dynamic. As a result, reasonable estimates for E and V
assign more weight to more recent measurements and less weight to the past ones. In
this paper, we extend known algorithms for computing the ranges E and V to such
dynamic estimates.

1 Introduction

Need for statistical estimates. In many practical situations, it is important to estimate
statistical characteristics such as the mean E and the variance V from the sample values
x1, . . . , xn. There exist many methods for such estimation; see, e.g., [14].

Normal distribution and the standard estimates for E and V . Standard methods for
estimating E and V are based on the assumption that the corresponding random quantity
is normally distributed, with a probability density

ρ(x) =
1√

2π · V
· exp

(
−(x− E)2

2V

)
.
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This assumption is often empirically valid. The explanation for a frequent occurrence of
normal distribution comes from the Central Limit Theorem, according to which if the random
variable consists of several small independent components, then its distribution is close to
normal – and it is often the case that the desired value xi is influenced by a large number of
different independent factors; see, e.g., [14].

It is usually assumed that different sample values are independent. In this case, for each
pair of values E and V , the probability L that the observed sample x1, . . . , xn occurs for
these particular values of E and V can be found as simply the product of the corresponding
probabilities:

L =
n∏

i=1

ρ(xi) =
n∏

i=1

1√
2π · V

· exp
(
−(xi − E)2

2V

)
.

It is reasonable to select themost probable values E and V , i.e., the values for which the above
probability is the largest. This idea is known as the Maximum Likelihood (ML) approach.

We can find the corresponding maximum if we differentiate the expression L with respect
to E and V and equate derivatives to 0. As a result, we get the following estimates:

E =
1

n
·

n∑
i=1

xi; V =
1

n
·

n∑
i=1

(xi − E)2.

These are the estimates that are most frequently used to estimate the mean and variance.

Comment. Sometimes, statisticians use instead an un-biased estimate for the variance, i.e.,
an estimate for which the expected value is exactly the desired variance. This un-biased

estimate
1

n− 1
·

n∑
i=1

(xi − E)2 differs from the ML estimate by a constant factor in front of

the sum. Thus, from the computational viewpoint, we can easily reduce the computation
of the un-biased estimate to the computation of the ML estimate. Namely, to compute the
un-biased estimate, we can simply compute the ML estimate and multiply the result by
n

n− 1
. Because of this reduction, in the following text, we will mainly talk about computing

the ML estimate.

General case when the distributions are not necessarily Gaussian. While these
estimates are justified as optimal only for the normal distributions, they are used for other
distributions as well. Their application to arbitrary distributions is justified by the fact
that the mean can be equivalently defined as the limit of the arithmetic averages when the
sample size n grows to infinity – similarly to how the probability can be defined as limit of
the frequency when the sample size increases n → ∞.

The variance is, by definition, the expected value of the square of the difference (x−E)2:
V = E[(x−E)2]. It can be equivalently described as the difference E[x2]−(E[x])2. Similarly,

the above formula can be described asM−E2, where M
def
=

1

n
·

n∑
i=1

x2
i . The arithmetic average

of x2
i tends to E[x2], the arithmetic average E tends to E[x], so our estimate M −E2 tends

to the difference E[x2]− (E[x])2, i.e., to the actual variance.
The limits mean, in effect, that the estimates based on large n can serve as good estimates

for the actual mean and variance; the larger the sample size n, the better these estimates.
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(Although, for non-Gaussian distributions, these estimates are not necessarily optimal ones.)

Need to take interval uncertainty into account. Usually, in statistics, we consider
the case when the sample values xi are known exactly. In practice, the values xi come
from measurements, and measurements are never 100% accurate: the values x̃i resulting
from the measurement are, in general, different from the actual (unknown) values xi of the

corresponding quantities, and the corresponding measurement errors ∆xi
def
= x̃i − xi are

non-zero.
Sometimes, we know the probabilities of different values of measurement errors. However,

in many cases, we only know the upper bound ∆i on the (absolute value of the) measurement
error: |∆xi| ≤ ∆i [13]. In this case, once we know the measured value x̃i, we can conclude

that the actual (unknown) value xi belongs to the interval xi = [xi, xi]
def
= [x̃i −∆i, x̃i +∆i].

Different values xi from these intervals lead, in general, to different estimates of
E(x1, . . . , xn) and V (x1, . . . , xn). It is therefore desirable to find the ranges

E = [E,E] = {E(x1, . . . , xn)|x1 ∈ x1, . . . , xn ∈ xn} and

V = [V , V ] = {V (x1, . . . , xn)|x1 ∈ x1, . . . , xn ∈ xn}

of all possible values of E and V .

Case of interval uncertainty: what is known. The general problem of estimating the
range of a function under interval uncertainty is known as the main problem of interval
computations; see, e.g., [7, 11].

The situation is the simplest with the mean E(x1, . . . , xn) =
1

n
·

n∑
i=1

xi: since the mean

is an increasing function of each of its variables x1, . . . , xn, its smallest possible value E is
attained when we take the smallest possible values xi = xi of all the inputs, and its largest
possible value E is attained when we take the largest possible values xi = xi of all the inputs.

Thus, the desired range has the form [E,E] =

[
1

n
·

n∑
i=1

xi,
1

n
·

n∑
i=1

xi

]
.

In contrast, the variance V (x1, . . . , xn) is not always monotonic, so for the variance,
estimating the range is a more complex task. It is known that in general, the problem of
computing this range is NP-hard [3, 4]. Specifically, the lower endpoint V can be computed in
feasible time [3, 4, 15], but computing V is NP-hard. For some practically useful situations,
there exist efficient algorithms for computing V ; see, e.g., [2, 5, 9, 8, 15].

Need to consider dynamic estimates. Usually, in statistics, we consider the case when
the parameters like E and V do not change with time. In practice, processes are dynamic.

As a result, reasonable estimates for E and V should assign more weight to more recent
measurements and less weight to the past ones. Specifically, if we sort the values xi from
the most recent one x1 to the least recent one xn, then, for each function y(x), to estimate
the mean value of y, instead of the arithmetic mean, we take the weighted mean

E[y] ≈
n∑

i=1

wi · xi,

3



where w1 ≥ w2 ≥ . . . ≥ wn > 0, and
n∑

i=1
wi = 1. In particular, for the mean E, we have the

estimate

E =
n∑

i=1

wi · xi.

Similarly, as an estimate for the actual variance E[x2]− (E[x])2, we take

V =
n∑

i=1

wi · x2
i −

(
n∑

i=1

wi · xi

)2

.

One can show that this expression is equivalent to V =
n∑

i=1
wi · (xi − E)2.

Comment. If wi = 0, this simply means that we do not take into account the corresponding
value xi. Thus, if we restrict ourselves only to the inputs on which the characteristics actually
depend, we conclude that wi > 0.

What we do in this paper. In this paper, we extend known algorithms for computing
the ranges E and V to such dynamic estimates.

2 Simplest Case: Estimates for the Mean

Let us first consider the simplest case: estimates for the mean. Since all the weights are

non-negative, the function E =
n∑

i=1
wi · xi is an increasing function of all its variables. Thus:

• the smallest possible value E is attained when we take the smallest possible values
xi = xi of all the inputs, and

• the largest possible value E is attained when we take the largest possible values xi = xi

of all the inputs.

Thus, the desired range of E has the form [E,E] =
[

n∑
i=1

wi · xi,
n∑

i=1
wi · xi

]
.

3 Estimates for the Variance: Analysis of the Problem

When a function attains minimum and maximum on the interval: known facts
from calculus. In this computation, we will use known facts from calculus.

A function f(x) defined on an interval [x, x] attains its minimum on this interval either
at lone of its endpoints, or in some internal point of the interval. If it attains is minimum

at a point x ∈ (a, b), then its derivative at this point is 0:
df

dx
= 0.

If it attains its minimum at the point x = x, then we cannot have
df

dx
< 0, because then,

for some point x + ∆x ∈ [x, x], we would have a smaller value of f(x). Thus, in this case,

we must have
df

dx
≥ 0.
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Similarly, if a function f(x) attains its minimum at the point x = x, then we must have
df

dx
≤ 0.

For the maximum, a similar thing happens. If f(x) attains is maximum at a point

x ∈ (a, b), then its derivative at this point is 0:
df

dx
= 0. If it attains its maximum at the

point x = x, then we must have
df

dx
≤ 0. Finally, if a function f(x) attains its maximum at

the point x = x, then we must have
df

dx
≥ 0.

Let us apply these known facts to our problem. We are interested in range of the

expression V =
n∑

i=1
wi · x2

i − E2, where E
def
=

n∑
i=1

wi · xi. For this estimate,
∂E

∂xi

= wi, hence

∂V

∂xi

= 2wi · xi − 2E · ∂E
∂xi

= 2wi · (xi − E).

To find this range, we must find the point where this expression attains its minimum, and
the point where it attains its maximum.

Where is minimum attained: analysis. By considering the variance V as a function of
xi, for the point (x1, . . . , xn, y1) at which V attains its minimum, we can make the following
conclusions:

• if xi = xi, then xi ≥ E;

• if xi = xi, then xi ≤ E;

• if xi < xi < xi, then xi = E.

So, if xi < E, this means that for the value xi ≤ xi also satisfies the inequality xi < E.
Thus, in this case:

• we cannot have xi = xi — because then we would have xi ≥ E; and

• we cannot have xi < xi < xi – because then, we would have xi = E.

So, if xi < E, the only remaining option for xi is xi = xi.
Similarly, if E < xi, this means that the value xi ≥ xi also satisfies the inequality xi > E.

Thus, in this case:

• we cannot have xi = xi — because then we would have xi ≤ E; and

• we cannot have xi < xi < xi – because then, we would have xi = E.

So, if E < xi, the only remaining option for xi is xi = xi.
What if xi < E < xi? In this case:

• the minimum cannot be attained for xi = xi, because then we should have xi ≥ E,
while we have xi < E;
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• the minimum cannot be attained for xi = xi, because then we should have xi ≤ E,
while we have xi > E.

Thus, the minimum has to be attained when xi ∈ (xi, xi). In this case, we have xi = E.

Where is minimum attained: conclusion.

• If xi ≤ E, i.e., if the interval xi is fully to the left of the mean E, the minimum is
attained for xi = xi.

• If E ≤ xi, i.e., if the interval xi is fully to the right of the mean E, the minimum is
attained for xi = xi.

• If xi < E < xi, i.e., if the interval xi contain the mean E, the minimum is attained for
xi = E.

In all three cases, once we know where the minimum is attained in relation to the endpoints
xi and xi, we can find out, for each i, where the minimum is attained – actually at the point
which is the closest to E.

This conclusion is in good accordance with common sense: the variance is the smallest
when all the values are the closest to the mean.

The value E must be found from the condition that it is the weighted mean of all
corresponding minimal values, i.e., that∑

i:xi≤E

wi · xi +
∑

j:E≤xj

wj · xj +
∑

k:xi<E<xi

wk · E = E.

By moving all the terms proportional to E to the right-hand side and dividing by the
coefficient at E, we conclude that

E =

∑
i:xi≤E

wi · xi +
∑

j:E≤xj

wj · xj∑
i:xi≤E

wi +
∑

j:E≤xj

wj

.

This conclusion will be used to design an efficient algorithm for computing V .

Where is the maximum attained: analysis. The function V (x1, . . . , xn) is convex.
Thus, its maximum is always attained at one of the endpoints of each intervals [xi, xi]. From
our calculus-based analysis, we can now come up with the following conclusions:

• if the maximum is attained for xi = xi, then we should have xi ≤ E, i.e., xi ≤ E;

• if the maximum is attained for xi = xi, then we should have xi ≥ E, i.e., E ≤ xi.

Thus, if xi < E, we cannot have xi = xi, so the maximum is attained for xi = xi. Similarly, if
E < xi, then we cannot have xi = xi, so the maximum is attained for xi = xi. If xi ≤ E ≤ xi,
then we can have both options xi = xi and xi = xi.
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Where is maximum attained: conclusion.

• If xi ≤ E, i.e., if the interval xi is fully to the left of the mean E, the maximum is
attained for xi = xi.

• If E ≤ xi, i.e., if the interval xi is fully to the right of the mean E, the maximum is
attained for xi = xi.

• If xi < E < xi, i.e., if the interval xi contain the mean E, the maximum can be
attained at both values xi and xi.

In all three cases, once we know where the maximum is attained in relation to the endpoints
xi and xi, we can find out, for each i, where the minimum is attained – actually at the point
which is the farthest away from E. This conclusion is also in good accordance with common
sense: the variance is the largest when all the values are the farthest way from the mean.

Now, we are ready to describe the corresponding algorithms.

4 Efficient Algorithm for Computing V

Description of the algorithm. First, we sort all 2n endpoints xi and xi of the given
intervals into a non-decreasing sequence r1 ≤ r2 ≤ . . . ≤ r2n−1 ≤ r2n. To cover the whole
straight line, we add the points r0 = −∞ and r2n+1 = +∞. As a result, the whole real line
is divided into 2n+ 1 zones [rk, rk+1], with k = 0, 1, . . . , 2n.

For each zone, we find the values xi which minimize V under the condition that their

weighted average E is contained in this zone. Namely, we compute Ek =
Nk

Dk

, where

Nk
def
=

∑
i:xi≤rk

wi · xi +
∑

j:rk+1≤xj

wj · xj; Dk =
∑

i:xi≤rk

wi +
∑

j:rk+1≤xj

wj.

If Ek is not within the zone [rk, rk+1], we dismiss it and move to the next zone. If it is within
the zone, we compute the corresponding value of the variance

Vk =
∑

i:xi≤rk

wi · (xi − Ek)
2 +

∑
j:rk+1≤xj

wj · (xj − Ek)
2.

This expression can be equivalently reformulated as Vk = Mk −Wk · E2
k , where we denoted

Mk =
∑

i:xi≤rk

wi · (xi)
2 +

∑
j:rk+1≤xj

wj · (xj)
2; Wk =

∑
i:xi≤rk

wi +
∑

j:rk+1≤xj

wj.

Once the computations are performed for all 2n + 1 zones, we find the smallest of the
corresponding values Vk as the desired smallest value V .

Computation time of this algorithm. Sorting takes time O(n log log(n)); see, e.g., [1].
Computing the sums D0, N0, M0, and W0 corresponding to the first zone take linear time
O(n). Each new sum is obtained from the previous one by changing a few terms which go
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from xi to xi; each value xi changes only once, so we only need totally linear time to compute
all these sums – and we also need linear time to perform all the auxiliary computations. Thus,
the total computation time is O(n · log(n)) +O(n) +O(n) = O(n · log(n)).

It is possible to provide a linear-time algorithm. This computation time can be
reduced to O(n) of we use the ideas from [15], where instead of sorting, we used the known
linear time algorithm for computing the median.

5 Efficient Algorithm for Computing V under a Rea-

sonable Condition

Description of the condition. We assume that for some integer C, each set of more than
C intervals has an empty intersection. For example, for C = 1, no two intervals have a
common point. For C = 2, two intervals may have a common point, but no three intervals
share a common point, etc.

Resulting algorithm. As with computing V , we start by sorting all 2n endpoints xi and
xi of the given intervals into a non-decreasing sequence r1 ≤ r2 ≤ . . . ≤ r2n−1 ≤ r2n. To cover
the whole straight line, we then add the points r0 = −∞ and r2n+1 = +∞. As a result, the
whole real line is divided into 2n+ 1 zones [rk, rk+1], with k = 0, 1, . . . , 2n.

For each zone, we find the values xi which maximize V under the condition that their
weighted average E is contained in this zone:

• for those i for which xi ≤ rk, we take xi = xi;

• for those i for which rk+1 ≤ xi, we take xi = xi;

• for all other indices i, for which [rk, rk+1] ⊆ xi, we consider both possibilities xi = xi

and xi = xi.

Because of our condition, for each zone, there are no more than C indices i in the third
category. Thus, for each zone, we have to consider ≤ 2C possible combinations of values xi

and xi. For each of these combinations, we compute the weighted average E and, if this
weighter average is within the zone [rk, rk+1], we compute the weighted variance V – e.g.,

V = M − E2, where M =
n∑

i=1
wi · x2

i is the weighted average of the squared values x2
i .

The largest of all such computed values V is then returned as V .

Computation time of this algorithm. Sorting takes time O(n · log(n)). Computing the
original values of E and M requires linear time. Similarly to the case of computing V , each
new sum is obtained from the previous one by changing a few terms which go from xi to xi;
each value xi changes only once, so we only need totally linear time to compute all these
sums – and we also need linear time to perform all the auxiliary computations. Thus, the
total computation time is also O(n · log(n)) +O(n) +O(n) = O(n · log(n)).
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Comment. A similar modification of an algorithm presented in [6] can lead to a polynomial-
time algorithm for computing the range of the weighted covariance

C =
n∑

i=1

wi · (xi − Ex) · (yi − Ey) =
n∑

i=1

wi · xi · yi,

where

Ex
def
=

n∑
i=1

wi · xi and Ey
def
=

n∑
i=1

wi · yi,

under the condition that all x-intervals xi are of the form [t
(x)
0 , t

(x)
1 ], [t

(x)
1 , t

(x)
2 ], . . . , [t

(x)
Nx−1, t

(x)
Nx
]

for some we have x-threshold values t
(x)
0 < t

(x)
1 < . . . < t

(x)
Nx
, and all y-intervals yi are of the

form [t
(y)
0 , t

(y)
1 ], [t

(y)
1 , t

(y)
2 ], . . . , [t

(y)
Ny−1, t

(y)
Ny
] for some we have y-threshold values

t
(y)
0 < t

(y)
1 < . . . < t

(y)
Ny
.

This situation occurs in statistical data processing, when we use, as input, answers to
threshold-related questions: e.g., whether the age is from 0 to 20, from 20 to 30, etc.
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