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In many practical applications, we need to process data – e.g., to predict the future values of
different quantities based on their current values. Often, the only information that we have
about the current values comes from experts, and is described in informal (“fuzzy”) terms like
“small”. To process such data, it is natural to use fuzzy techniques, techniques specifically
designed by Lotfi Zadeh to handle such informal information.

In this survey, we start by revisiting the motivation behind Zadeh’s formulas for processing
fuzzy data, explain how the algorithmic problem of processing fuzzy data can be described
in terms of interval computations (α-cuts). Many fuzzy practitioners claim “I tried interval
computations, they did not work” – meaning that they got estimates which are much wider
than the desired α-cuts. We show that such statements are usually based on a (widely spread)
misunderstanding – that interval computations simply means replacing each arithmetic op-
eration with the corresponding operation with intervals. We show that while such straight-
forward interval techniques indeed often lead to over-wide estimates, the current advanced
interval computations techniques result in estimates which are much more accurate.

We overview such advanced interval computations techniques, and show that by using
them, we can efficiently and accurately process fuzzy data.

We wrote this survey with three audiences in mind. First, we want fuzzy researchers and
practitioners to understand the current advanced interval computations techniques and to use
them to come up with faster and more accurate algorithms for processing fuzzy data. For this
“fuzzy” audience, we explain these current techniques in detail. Second, we also want interval
researchers to better understand this important application area for their techniques. For this
“interval” audience, we want to explain where fuzzy techniques come from, what are possible
variants of these techniques, and what are the problems to which interval techniques can
be applied. These readers needs to avoid their own frequent misunderstanding – that fuzzy
techniques are “magical” heuristic tools that are only justified by intuition and that have no
mathematical justification. Readers of both types can skip the parts they already know.

Finally, we also want to target people who solve practical data processing problems – and
who may not be well familiar neither with the fuzzy nor with the interval techniques. We
want these readers to get an understanding of both the problem of processing fuzzy data and
of the interval techniques for solving this problem.

Keywords: fuzzy data processing, interval computations, algorithms

1. Need for Processing Fuzzy Data

Need for prediction. One of the main objectives of science and engineering is
to predict the future state of the world, i.e., to predict the future values of the
quantities that characterize this state. For example, we want to predict tomorrow’s
weather, the future position of a comet, the future location of a spaceship, the
result of a chemical reaction, etc. To predict these values, we need to know the
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current values of these quantities, and we need to know how these values change
with time.

In many situations, we know the equations that describe the time change. In
such situations, for each of the desired future values y, we have an algorithm
y = f(x1, . . . , xn) that computes (and estimate for) this value based on the current
(and past) values x1, . . . , xn of this and related quantities. Thus, to predict the
desired value, we:

• estimate the input data, i.e., the values x1, . . . , xn, and

• process the input data, i.e., apply the algorithm f to these estimates.

In simple cases, e.g., for a simple trajectory, this algorithm f(x1, . . . , xn) may be
as simple as a straightforward formula. In other cases – e.g., in weather prediction –
this algorithm is based on solving a complex system of partial differential equations.

Need for indirect estimations. Another case when we need data processing is
when we are interested in the value of a physical quantity which is very difficult
(or even impossible) to measure or estimate directly.

For example, if we are interested in measuring the distance between two points
on a desk, we can use a simple ruler. If we are interested in measuring the distance
between two buildings on campus, we can simply walk from one to another, count
the number of steps, and thus, measure the distance. If we are interested in the
distance between the two nearby cities, we can drive from one to another and
measure the distance covered by a car. However, if we want to measure the distance
to a nearby star, it is not yet possible to measure it directly by simply traveling
there :-( Such a distance is usually measured indirectly – e.g., by measuring the
angle in the direction of this star in two different seasons, when the Earth is on the
different sides of the Sun. Once we know these angles, we can use trigonometry to
find the desired distance.

Similarly, when we want to know how much water is in a bottle, we can measure
this amount directly – by weighing it. However, if we want to know how much
oil is in an oil field, we cannot measure it directly, we have to do it indirectly –
e.g., by sending seismic signals in different directions and recording the times that
these signals take to travel between different locations, and then use these times to
estimate the speed of sound at different points – and thus, to estimate the amount
of oil by computing the total volume covered by all the location in which, based
on the speed of sound, we conclude that this location contains oil.

In all such cases, in order to find the value of the desired difficult-to-measure
quantity y, we estimate the values of several related easier-to-measure quantities
x1, . . . , xn, and then use the known relation y = f(x1, . . . , xn) between xi and y
to estimate the desired value y. In other words, in such cases, we also need data
processing.

In this case too, the corresponding algorithm f can be straightforward – as in
trigonometric formulas for the distance to a star – or complex – as in solving
the system of partial differential equations that describes how a seismic signal
propagates through different parts of the Earth.

Where do input values come from: need for processing imprecise data.
Often, the estimates for the input values x1, . . . , xn come from measurements. How-
ever, frequently, measurements are difficult to perform, so we have to rely on expert
estimates for these values.

For example, in geosciences, it is rarely possible to get a reasonable description
of the Earth structure based only on measurements – an expert geophysicist needs
to supplement the easier-to-measure values in closer-to-surface areas with expert
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estimate of the difficult-to-measure deep structures. Similarly, in medicine, to di-
agnose a patient, it is often not enough to have the results of all the tests – it is
often necessary to supplement these results with the expertise of medical doctors.

Expert estimates are usually imprecise, experts use informal words from natural
language. For example, an expert can say that some value is “small”, or, more
precisely “close to 3.0, with an accuracy about 0.5”.

Based on such informal, “fuzzy” information about the inputs x1, . . . , xn, what
can we say about the desired value y = f(x1, . . . , xn)? In other words, how can we
process such imprecise (fuzzy) data?

2. How to Describe Fuzzy Uncertainty: Reminder

Fuzzy techniques – a natural way of describing imprecise data. In the
early 1960s, L. Zadeh proposed a technique that naturally describes such “fuzzy”
data. The main idea behind these fuzzy techniques is as follows; see, e.g., Zadeh
(1965), Klir and Yuan (1995), Nguyen and Walker (2006).

When we have a precise property, such as “less than 5”, then each possible value
either satisfies this property or not. Thus, a precise property P can be described by
its characteristic function χP (x), i.e., a function that assigns, to each possible real
number x, the value “true” or “false” depending on whether the value x satisfies
the property P . Our main objective is to process the data – i.e., to use computers.
In the computers, everything is represented as 0s and 1s. In particular, “true” is
usually represented as 1 and “false” as 0. As a result, it is reasonable to describe
a characteristic function so that χP (x) = 1 if the value x satisfies the property P
and χP (x) = 0 if the value x does not satisfy this property.

For an informal property like “small”, for some values x, we are absolutely sure
that this value is small, for some other values x, we are absolutely sure that x is
not small, but for many values x, a natural answer to the question “is x small?” is
“to some extent”. How can we describe this extent? This problem is very similar
to another problem for which the solution is well known: describing the degree of
satisfaction with a customer service, with a product, etc., something that most of
us describe in numerous polls. Usually, in such polls, we are asked to describe our
degree of satisfaction on a scale from, say, 0 to 10, 0 being absolutely unsatisfied
and 10 being fuzzy satisfied. This is also how we estimate the quality of a paper
when refereeing, this is how students evaluate their professors, etc.

In other words, a natural way to estimate the degree to which a value x satisfies
some informal property P is to assign a number. In a poll, this number goes from
0 to 5 or from 0 to 10, etc. However, we would like to make sure that in the case
of precise knowledge, we get χP (x) = 0 and χP (x) = 1. In the poll, 0 corresponds
to “absolutely false” (χP (x) = 0) and, say, 10 corresponds to “absolutely true”
(χP (x) = 1). So, to match these two scales, we need to re-scale our values – e.g.,
by dividing the value marked by an expert (such as 7 on a scale from 0 to 10) by
the largest possible value of this scale (i.e., by 10 in the above example).

No matter what re-scaling we use, we get a value from the interval [0, 1] that
describes to what extent the value x satisfies the given property. This value (degree)
to which the value x satisfied the property P is usually denoted by µP (x), and
the function µP that assigns, to each value x, this degree is called a membership
function or a fuzzy set.

Need for logical operations with fuzzy degrees. Fuzzy (imprecisely defined)
statements S, S′, . . . , are often combined by logical connectives like “and” (&),
“or” (∨), and “not” (¬): e.g., an expert rule for controlling a car can be that if
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the car in front is close and we are going fast, it is desirable to somewhat slow
down. In order to formalize such rules, we need to be able to formalize such logical
combinations S &S′ and S ∨ S′, i.e., to assign degree of belief to such statements.

When there is no imprecision, i.e., when each of the statements S and S′ is either
absolutely true or absolutely false, the truth values of S and S′ uniquely determine
the truth value of the logical combinations S &S′ and S ∨ S′. However, in case
of uncertainty, the expert’s degree of certainty in S &S′ depends not only on the
expert’s degrees of certainty in statements S and S′, but also on whether these
statements are independent or related. For example, if the two witnesses made
exactly opposite statements S and S′, i.e., that the criminal was tall and that he
was short, then the police’s degree of confidence in the statement S &S′ (meaning
that both witnesses were correct) is 0. However, if two witnesses both claim with
confidence that the criminal was tall (i.e., if S = S′), then the police’s degree of
confidence that both witnesses are correct is high.

So, ideally, in addition to asking an expert to estimate the degree of certainty for
each individual statement like “a person of height 175 cm is tall”, we should also
ask the experts to estimate the degree of confidence in all possible logical combi-
nations of such statements, in particular, if we have n basic statements S1, . . . , Sn,
we should ask the expert to estimate his or her degree of confidence in all 2n com-
binations of the type Sε1

1 & . . . Sεn
n , where each εi can take values − and +, S+

i
means Si, and S−

i means ¬Si. In real life, the number of expert statements n is
huge, and even for moderate n ≈ 300, the number 2n of such possible combinations
exceeds the number of particles in the Universe – no way we can ask that many
questions to an expert.

So, we face a following problem:

• We know the expert’s degree of confidence a = d(S) in a statement S, and we
know the expert’s degree of confidence a′ = d(S′) in a statement S′.

• Based on the two values a and a′, we must provide an estimate for the expert’s
degree of confidence in a statement S &S′.

The estimate for this degree corresponding to given values a and a′ is usually
denoted by f&(a, a′). The function f&(a, a′) that provides such estimates is called
an and-operation, or (for historic reasons) a t-norm.

Similarly, we need to estimate the expert’s degree of confidence in a statement
S∨S′. This estimate is usually denoted by f∨(a, a′), and the corresponding function
is called an or-operation or a t-conorm.

Comment. Of course, as we mentioned earlier, for the same values of a = d(S) and
a′ = d(S′), we can get different actual expert’s degree of confidence in a composite
statement S &S′. In other words, in reality, the degree of confidence in S &S′ is
not a function of a and a′. However, as we mentioned, we need to select one of
these values as our estimate f&(a, a′) – i.e., to select a function.

Simplest selection of t-norms and t-conorms. In principle, we can have many
different t-norms and t-conorms. In practice, it makes sense to select t-norms and
t-conorms which are in good agreement with common sense.

Let us start with t-norms. If we already know that the statement S′ is absolutely
true (i.e., if a′ = d(S′) = 1), then the composite statement S &S′ (“S and S′”) is
true if and only if is S is true. Thus, it is reasonable to require that in this case, the
resulting estimate f&(a, 1) for the expert’s degree of confidence in S &S′ should
exactly coincide with the degree a = d(S) of certainty in S: f&(a, 1) = a. Similarly,
it is reasonable to require that f&(1, a′) = a′ for all a′.

When we have two identical statements S′ = S, with a = d(S) = a′ = d(S′),
then S &S′ is simply equivalent to S. Thus, it is reasonable to require that the
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resulting degree of confidence f&(a, a) in S &S′ should be equal to the degree of
confidence a in the statement S, i.e., that f&(a, a) = a for all a.

Finally, if our degree of confidence in one of the statements S and S′ increases,
then intuitively, our degree of confidence in the composite statements S &S′ should
also increase (or at least not decrease). Thus, it is reasonable to require that the
function f&(a, a′) be an increasing (or at least non-decreasing) function of both its
variables: if a ≤ a1 and a′ ≤ a′1, then f&(a, a′) ≤ f&(a1, a

′
1).

Let us show that these reasonable requirements uniquely determine the value of
the t-norm f&(a, a′) for all possible combinations of degrees a, a′ ∈ [0, 1].

• When a ≤ a′, hen, by monotonicity, f&(a, a) ≤ f&(a, a′) ≤ f&(a, 1). We
know that f&(a, a) = a and that f&(a, 1) = a, so a ≤ f&(a, a′) ≤ a, i.e.,
f&(a, a′) = a.

• Similarly, when a′ ≤ a, we have f&(a′, a′) ≤ f&(a, a′) ≤ f&(1, a′) hence a′ ≤
f&(a, a′) ≤ a′ and f&(a, a′) = a′.

In both cases, f&(a, a′) = min(a, a′). This is the t-norm that we will be using.
For t-conorms (or-operations), we can use similar arguments. Indeed, if we know

that a statement S′ is false, then the statement “S or S′” is true if and only if S is
true. In this case, it is reasonable to require that the resulting estimate f∨(a, 0) for
the expert’s degree of confidence in S ∨ S′ should exactly coincide with the degree
a = d(S) of certainty in S: f∨(a, 0) = a. Similarly, it is reasonable to require that
f∨(0, a′) = a′ for all a′.

When we have two identical statements S′ = S, with a = d(S) = a′ = d(S′),
then S ∨ S′ is simply equivalent to S. Thus, it is reasonable to require that the
resulting degree of confidence f∨(a, a) in S ∨ S′ should be equal to the degree of
confidence a in the statement S, i.e., that f∨(a, a) = a for all a.

Finally, if our degree of confidence in one of the statements S and S′ increases,
then intuitively, our degree of confidence in the composite statements S∨S′ should
also increase (or at leats not decrease). Thus, it is reasonable to require that the
function f∨(a, a′) be an increasing (or at least non-decreasing) function of both its
variables: if a ≤ a1 and a′ ≤ a′1, then f∨(a, a′) ≤ f∨(a1, a

′
1).

Let us show that these reasonable requirements uniquely determine the value of
the t-conorm f∨(a, a′) for all possible combinations of degrees a, a′ ∈ [0, 1]. Indeed,
we can have either a ≤ a′ or a′ ≤ a.

• When a′ ≤ a, then, by monotonicity, f∨(a, 0) ≤ f∨(a, a′) ≤ f∨(a, a). We know
that f∨(a, 0) = a and that f∨(a, a) = a, so a ≤ f∨(a, a′) ≤ a, i.e., f∨(a, a′) = a.

• Similarly, when a ≤ a′, we have f∨(0, a′) ≤ f∨(a, a′) ≤ f∨(a′, a′) hence a′ ≤
f∨(a, a′) ≤ a′ and f∨(a, a′) = a′.

In both cases, f∨(a, a′) = max(a, a′). This is the t-conorm that we will be using.

Comment. In our analysis, we considered the most general case, when we have no
information about the possible relation between different statements. We showed
that in this general case, if we need to select some t-norm and some t-conorm, then
minimum and maximum are a reasonable choice.

In specific applications, however, we may have additional information about this
relationship; in such situations, different t-norms and t-conorms are more adequate.
For example, such situations occur in control applications; see, e.g., Nguyen and
Kreinovich (1998).
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3. How to Process Fuzzy Data: Derivation of Zadeh’s Extension Principle

Processing fuzzy data: reminder. We are now ready to describe the problem
of processing fuzzy data. In this problem:

• we know the algorithm y = f(x1, . . . , xn) that transforms the values of n input
quantities into the estimate for the desired quantity y;

• we also have expert estimates about each of the inputs xi, estimates which
are described by the corresponding membership functions µi(xi);

• our objective is to find, for every real number y, the degree µ(y) to which this
number y is a possible value of the desired quantity.

Intuitively, y is a possible value of the desired quantity if for some values x1, . . . , xn:

• x1 is a possible value of the 1st input quantity,

• and x2 is a possible value of the 2nd input quantity,

• . . . ,

• and y = f(x1 . . . , xn).

We know:

• that the degree of confidence that x1 is a possible value of the 1st input
quantity is equal to µ1(x1),

• that the degree of confidence that x2 is a possible value of the 2nd input
quantity is equal to m2(x2), etc.

The degree of confidence d(y, x1, . . . , xn) in an equality y = f(x1 . . . , xn) is, of
course, 1 or 0, depending on whether this equality is true or not.

As we have mentioned, a natural way to represent “and” is to use min. Thus, for
each combination of values x1, . . . , xn, the degree of confidence d in a composite
statement

“x1 is a possible value of the 1st input quantity, and x2 is a possible value of the
2nd input quantity, . . . , and y = f(x1 . . . , xn)”

is equal to d = min(µ1(x1), µ2(x2), . . . , d(y, x1, . . . , xn)). We can simplify this ex-
pression if we consider two possible cases:

• when y = f(x1 . . . , xn), we get d = min(µ1(x1), µ2(x2), . . . , d(y, x1, . . . , xn));

• otherwise, we get d = 0.

We want to combine these degrees of belief into a single degree of confidence that
for some values x1, . . . , xn,

• x1 is a possible value of the 1st input quantity,

• and x2 is a possible value of the 2nd quantity, . . . ,

• and y = f(x1 . . . , xn).

The words “for some values x1, . . . , xn” means that the following composite prop-
erty hold

• either for one combination of real numbers x1, . . . , xn,

• or from another combination, etc.

As we have mentioned, a natural way to represent “or” is to use max. Thus, the
desired degree of confidence µ(y) is equal to the largest of the degrees corresponding
to different xi:

µ(y) = sup
x1,...,xn

min(µ1(x1), µ2(x2), . . . , d(y, x1, . . . , xn)).
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We know that the degree min(µ1(x1), µ2(x2), . . . , d(y, x1, . . . , xn)) is non-zero only
when y = f(x1 . . . , xn). It is therefore sufficient to only take supremum over such
combinations. For such combinations, we can omit the term d(y, x1, . . . , xn) in the
maximized expression. So, we arrive at the following formula:

µ(y) = sup{min(µ1(x1), µ2(x2), . . .) : y = f(x1, . . . , xn)}.

This formula was first proposed by L. Zadeh and is thus called Zadeh’s extension
principle. This is the main formula that describes knowledge processing under fuzzy
uncertainty.

4. Reduction to Interval Computations

From general fuzzy sets to fuzzy numbers. General fuzzy sets can be very
complex. In most practical situations, we are only interested in properties P de-
scribing numerical values, like “close to x0” or “small” for which the corresponding
degree of confidence µP (x) first increases, until some value x = x0, and then starts
decreasing. Since such properties come from describing numerical values, the fuzzy
sets with such an increase-then-decrease property are called fuzzy numbers.

Because fuzzy numbers are most important in practice, in this paper, we will only
consider the case when all the membership functions µi(xi) are fuzzy numbers.

An alternative way to describe fuzzy numbers: α-cuts. By definition of a
fuzzy number, for each fuzzy number µ(x) and for each real number α ∈ (0, 1], the

set x(α)
def
= {x : µ(x) ≥ α} is an interval. This interval is called an α-cut of the

original fuzzy number.
It is worth mentioning that the α-cuts corresponding to different values α form

an alternative way of representing this number, in the sense that if we know α-cuts
for all α, then we can uniquely reconstruct the original membership function µ(x).
Indeed, for each x, we can reconstruct µ(x) as the largest α for which x ∈ x(α).

Thus, to describe the desired membership function µ(y), it is sufficient to describe
the corresponding α-cuts y(α). Similarly, instead of assuming that we know each
original membership function µi(xi), we can equivalently assume that for each i
and for each α, we know the corresponding α-cut xi(α).

Zadeh’s extension principle reformulated in terms of α-cuts: analysis. In
order to use the α-cut representation for processing fuzzy data, we must reformulate
Zadeh’s extension principle in terms of α-cuts. In other words, for each α, we need
to describe when µ(y) ≥ α, i.e., when

sup{min(µ1(x1), µ2(x2), . . .) : y = f(x1, . . . , xn)} ≥ α.

One can show that in many reasonable cases, when the membership functions are
continuous and the corresponding set of possible values are bounded, the largest
value is attained for some values x1, . . . , xn for which y = f(x1, . . . , xn) – this is a
known fact in mathematical analysis. In such cases, the largest value µ(y) is larger
than or equal to α if and only one of the values min(µ1(x1), µ2(x2), . . .) is ≥ α.
Indeed, if one of the values min(µ1(x1), µ2(x2), . . .) is ≥ α for some x1, . . . , xn, then
µ(y), which is the largest of these values, is ≥ α. Vice versa, if the maximum µ(y) of
the values min(µ1(x1), µ2(x2), . . .) is ≥ α, then we have min(µ1(x1), µ2(x2), . . .) ≥ α
for the values x1, . . . , xn for which this maximum is attained.

When is min(µ1(x1), µ2(x2), . . .) ≥ α? Similarly to the above argument, the
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smallest of several numbers µi(xi) is larger than or equal to α if and only all these
numbers are ≥ α.

Indeed, if all the values µi(xi) are ≥ α, then the smallest of these values is also
≥ α. Vice versa, if even the smallest of these numbers is larger than or equal to
α, this means than every other value µi(xi) – which is larger than or equal to this
smallest number – is also larger than or equal to α.

Thus, µ(y) ≥ α if and only if there exist values x1, . . . , xn for which y =
f(x1, . . . , xn), and for which µ1(x1) ≥ α, . . . , and µn(xn) ≥ α. In terms of α-
cuts, µ(y) ≥ α means that y ∈ y(α), and µi(xi) ≥ α means that xi ∈ xi(α). So, y
is an element of the set y(α) if and only if there exist values xi ∈ xi(α) for which
y = f(x1, . . . , xn). In other words, the α-cut for y is equal to the range of possible
values of the function f(x1, . . . , xn) when xi belongs to the corresponding α-cuts:

y(α) = f(x1(α), . . . ,xn(α)
def
= {f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

Zadeh’s extension principle reformulated in terms of α-cuts: result. The
above analysis shows to describe the result of fuzzy data processing, we must be
able to solve, for each α, the following problem:

• Given: n intervals x1, . . . ,xn, and a data processing algorithm y =
f(x1, . . . , xn).

• Find: the range {y = f(x1, . . . ,xn) : x1 ∈ x1, . . . , xn ∈ xn}.

In this problem, in effect, we need to perform computations on intervals. This
problem is therefore called the problem of interval computations.

It is important to avoid a misunderstanding of the term “interval com-
putations”. Before we go further, we need to explain that there is a frequent
misunderstanding of interval computations. As we have mentioned, interval com-
putations is the name of a problem. No matter how we solve this problem, whether
we use calculus or any specific interval techniques, or any new method that is still
being developed now – in all these cases, we solve the problem of interval compu-
tations. However, often, when mentioning “interval computations”, practitioners
mean specific techniques for solving this problem — usually, the simplest of these
techniques, so-called “naive” interval computations.

At first glance, this is a simple easy-to-resolve situation: two different groups
– interval computations researchers and fuzzy practitioners – use the same term
“interval computations” in two different meanings. To interval computations re-
searchers, this is the name of a general problem – and thus, the name of all possible
techniques that can be used to solve this problem. To fuzzy practitioners, this is
a name for one specific technique. Such different meanings happen in science, and
usually do not lead to any serious problems – once the difference in meaning is well
understood.

However, in our case, the problem lies deeper: because of this misunderstanding,
fuzzy practitioners often completely ignore all the efficient techniques that interval
computation folks have invented to solve the general problem – because they mis-
takenly assume that anything published under the title “interval computations”
simply repeats the simple technique that they know under this name. Not only
fuzzy practitioners miss these efficient techniques, they also try to invent their
own techniques for processing interval data – and sometimes “re-invent the wheel”
and come up with “new” algorithms whose ideas have actually been known in the
interval community for decades.
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One of the main objectives of this paper is to explain this misunderstanding
and to explain that interval computations go way beyond the naive techniques. So
please do not assume that since we mentioned the term “interval computations”,
we will be only promoting naive techniques. Please continue reading, we are almost
ready to start describing these efficient techniques.

Before we describe these techniques, we first want to explain where this problem
of “interval computations” came from – a problem that was analyzed and solved
before the main ideas of fuzzy were developed.

5. Practical Origins of Interval Computations

Need for data processing. In science and engineering, we want to understand
how the world works, we want to predict the results of the world processes, and we
want to design a way to control and change these processes so that the results will
be most beneficial for the humankind.

For example, in meteorology, we want to know the weather now, we want to
predict the future weather, and – if, e.g., floods are expected, we want to develop
strategies that would help us minimize the flood damage.

Usually, we know the equations that describe how these systems change in time.
Based on these equations, engineers and scientists have developed algorithms that
enable them to predict the values of the desired quantities – and find the best
values of the control parameters. As input, these algorithms take the current and
past values of the corresponding quantities.

For example, if we want to predict the trajectory of the spaceship, we need to
find its current location and velocity, the current position of the Earth and of the
celestial bodies, then we can use Newton’s equations to find the future locations of
the spaceship.

In many situations – e.g., in weather prediction – the corresponding computations
require a large amount of input data and a large amount of computations steps.
Such computations (data processing) are the main reason why computers were
invented in the first place – to be able to perform these computations in reasonable
time.

Need to take input uncertainty into account. In all the data processing tasks,
we start with the current and past values x1, . . . , xn of some quantities, and we use
a known algorithm f(x1, . . . , xn) to produce the desired result y = f(x1, . . . , xn).

The values xi come from measurements, and measurements are never absolutely
accurate: the value x̃i that we obtained from measurement is, in general, different
from the actual (unknown) value xi of the corresponding quantity. For example,
if the clock shows 12:20, it does not mean that the time is exactly 12 hours, 20
minutes and 00.0000 seconds: it may be a little earlier or a little later than that.

As a result, in practice, we apply the algorithm f not to the actual values xi,
but to the approximate values x̃i that come from measurements:

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f



July 5, 2011 21:2 International Journal of General Systems tr11-36

10 Gang Xiang and Vladik Kreinovich

So, instead of the ideal value y = f(x1, . . . , xn), we get an approximate value

ỹ = f(x̃1, . . . , x̃n). A natural question is: how do approximation errors ∆xi
def
=

x̃i−xi affect the resulting error ∆y
def
= ỹ−y? Or, in plain words, how to take input

uncertainty into account in data processing?

From probabilistic to interval uncertainty. Manufacturers of the measuring
instruments provide us with bounds ∆i on the (absolute value of the) measurement
errors: |∆xi| ≤ ∆i. If now such upper bound is known, then the device is not a
measuring instrument; see, e.g., Rabinovich (2005).

For example, a street thermometer may show temperature that is slightly dif-
ferent from the actual one. Usually, it is OK if the actual temperature is +24 but
the thermometer shows +22 – as long as the difference does not exceed some rea-
sonable value ∆. But if the actual temperature is +24 but the thermometer shows
−5, any reasonable person would return it to the store and request a replacement.

Once we know the measurement result x̃i, and we know the upper bound ∆i

on the measurement error, we can conclude that the actual (unknown) value xi
belongs to the interval [x̃i−∆i, x̃i +∆i]. For example, if the measured temperature
is x̃i = 22, and the manufacturer guarantees the accuracy ∆i = 3, this means
that the actual temperature is somewhere between x̃i − ∆i = 22 − 3 = 19 and
x̃i + ∆i = 22 + 3 = 25.

Often, in addition to these bounds, we also know the probabilities of different
possible values ∆xi within the corresponding interval [−∆i,∆i]. This is how un-
certainty is usually handled in engineering and science – we assume that we know
the probability distributions for the measurement errors ∆xi (in most cases, we as-
sume that this distribution is normal), and we use this information to describe the
probabilities of different values of ∆y. However, there are two important situations
when we do not know these probabilities:

• cutting-edge measurements, and

• cutting-cost manufacturing.

Indeed, how do we determine the probabilities? Usually, to find the probabilities
of different values of the measurement error ∆xi = x̃i−xi, we bring our measuring
instrument to a lab that has a “standard” (much more accurate) instrument, and
compare the results of measuring the same quantity with two different instruments:
ours and a standard one. Since the standard instrument is much more accurate, we
can ignore its measurement error and assume that the value Xi that it measures is
the actual value: Xi ≈ xi. Thus, the difference x̃i−Xi between the two measurement
results is practically equal to the measurement error ∆xi = x̃i − xi. So, when we
repeat this process several times, we get a histogram from which we can find the
probability distribution of the measurement errors.

However, in the above two situations, this is not done. In the case of cutting-
edge measurements, this is easy to explain. For example, if we want to estimate the
measurement errors of the measurement performed by a Hubble space telescope (or
by the newly built CERN particle collider), it would be nice to have a “standard”,
five times more accurate telescope floating nearby – but Hubble is the best we have.
In manufacturing, in principle, we can bring every single sensor to the National
Institute of Standards and determine its probability distribution – but this would
cost a lot of money: most sensors are very cheap, and their “calibration” using
the expensive super-precise “standard” measuring instruments would cost several
orders of magnitude more. So, unless there is a strong need for such calibration –
e.g., if we manufacture a spaceship – it is sufficient to just use the upper bound on
the measurement error.
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In both situations, after the measurements, the only information that we have
about the actual value of xi is that this value belongs to the interval [xi, xi] =
[x̃i − ∆i, x̃i + ∆i].

Different possible values xi from the corresponding intervals lead, in general, to
different values of y = f(x1, . . . , xn). It is therefore desirable to find the range of
all possible values of y, i.e., the set

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

(Since the function f(x1, . . . , xn) is usually continuous, its range is the interval.)
Thus, we arrive at the same interval computations problem.

6. How to Solve Interval Computation Problems

The main problem: reminder. We are given:

• an integer n;

• n intervals x1 = [x1, x1], . . . , xn = [xn, xn], and

• an algorithm f(x1, . . . , xn) which transforms n real numbers into a real num-
ber y = f(x1, . . . , xn).

We need to compute the endpoints y and y of the interval

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

-

. . .

-

-

xn

x2

x1

-yf

A brief history of interval computations. The need to provide guaranteed
bounds can be traced to the ancient Greeks. For example, when estimating the
value π – defined as the circumference of a circle with unit diameter – Archimedes
computed the lower and upper bound for π by computing the circumferences of
subscribing and circumscibing polygons. Particular cases of interval computations
can be traced throughout the whole history of mathematics.

Systematic development started in the 1950s, with the development of mod-
ern computers. The main interval computation techniques were invented indepen-
dently by three researchers from different countries: Ramon Moore from the US,
Mieczys law Warmus from Poland, and Teruo Sunaga from Japan. Ramon Moore is
probably the most well known, because he not only developed these ideas theoret-
ically, he actively applied them at the Lokheed Company where he was working,
and these applications – in particular, to computing trajectories of space flights –
brought a lot of publicity to the interval computations ideas.

But why do we need interval computations? Cannot we just use calculus?
What are these ideas? Because we start explaining them, we need to answer a
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natural question: why do we need any new ideas in the first place? From the purely
mathematical viewpoint, solving the main problem of interval computations simply
means that we solve two straightforward optimization problems:

• to find the lower endpoint y of the desired interval, we need to minimize
f(x1, . . . , xn) under the constraints xi ≤ xi ≤ xi;

• to find the upper endpoint y of the desired interval, we need to maximize
f(x1, . . . , xn) under the constraints xi ≤ xi ≤ xi.

From calculus, it is well known how to minimize a function: with respect to each
variable xi, the minimum is attained either at one of the endpoints xi or xi of the
corresponding interval [xi, xi], or – if this minimum is attained inside this interval

– it is attained at a point where the partial derivative is equal to 0:
∂f

∂xi
= 0. For

example, if the function f is quadratic, the derivative is linear, and so we end up
with a system of linear equations.

However, for each of n variables xi, we have three possible linear equations:

• the equation xi = xi corresponding to the left endpoint of the interval,

• the equation xi = xi corresponding to the right endpoint of the interval, and

• the equation
∂f

∂xi
= 0 corresponding to the interior points of the interval.

For two variables x1 and x2, for each of the three possibilities for x1, we have
three possibilities for x2, so we have a total of 3 × 3 = 32 = 9 possible systems of
linear equations. For three variables x1, x2, and x3, we similarly have 3×3×3 = 33

possible systems of linear equations. In general, for n variables, we have 3n possible
systems. While solving each system of linear equations is easy, solving 3n of them
requires exponential time and is – as we have mentioned earlier – not feasible for
large n.

Interval computations is NP-hard. The standard calculus approach to the
interval computation problem takes unrealistic exponential time. Is this a drawback
of a method – so that other methods can solve this problem in feasible time? It
turns out that it is the property of a problem itself. Specifically, it can be proven
that, in general, the interval computation problem is NP-hard even for quadratic
functions f(x1, . . . , xn); see, e.g., Ferson at el. (2002, 2005). Informally, NP-hard
means that – provided that P̸=NP, which most computer scientists believe to be
true – no algorithm is possible that always solves the interval computation problem
in feasible time.

Thus, this complexity is a property of a problem – no matter what method we
propose for solving this algorithm, if this method is feasible, it will sometimes only
provide an approximate range of the given function on given intervals.

What does the interval computations community do. Since the problem of
interval computation is, in general, NP-hard, we cannot simply invent one feasible
algorithm that would exactly solve all the cases of this problem. Since, as we
have mentioned, interval computations problem do appear in practice – e.g., when
processing fuzzy data – there is a need to solve such problems. So, researchers try
their best:

• to find feasible algorithms that exactly solve practically important cases of
the interval computation problems, and

• if that is not possible, at least come up with feasible algorithms that provide
with as good an approximation to the desired range as possible.
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In this paper, we provide a brief overview of some of the related techniques –
techniques that are, in our opinion, under-used in fuzzy data processing.

Comment. In applications to fuzzy data processing, approximate algorithms make
perfect sense – since the input intervals come from fuzzy (expert) estimates, and
these estimates are approximate in the first place. In fuzzy techniques, we use exact
values of the membership functions, but in reality, an expert cannot meaningfully
distinguish between, say, degree of certainty 0.70 or degree of certainty 0.71.

Interval arithmetic: simplest case of interval computations. Let us start
with the simplest case of interval computations, when data processing f(x1, x2)
consists of applying one arithmetic operation: addition, subtraction, multiplication,
or division. In this case, we have explicit formulas for the range.

For addition and multiplication, these formulas comes from the fact that the
corresponding functions f(x1, x2) are monotonic in each of the variables. For ex-
ample, addition f(x1, x2) = x1 + x2 is an increasing function of both variables x1
and x2. Thus, when x1 is in the interval [x1, x1] and x2 is in the interval [x2, x2],
the smallest possible value y of y = x1 +x2 is attained when both variables attains
their smallest possible values x1 and x2, i.e., y = x1 + x2. Similarly, the largest
possible value y of y = x1 +x2 is attained when both variables attains their largest
possible values x1 and x2, i.e., y = x1 + x2. Therefore, the range of the sum has
the form

[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2].

For example, if Gang has between 5 and 10 dollars, and Vladik has between 7 and
15 dollars, then together, we have between 5 + 7 = 12 and 10 + 15 = 25 dollars.

Subtraction f(x1, x2) = x1 − x2 is an increasing function of x1 and a decreasing
function of x2. Thus, when x1 is in the interval [x1, x1] and x2 is in the interval
[x2, x2], the smallest possible value y of y = x1−x2 is attained when the variable x1
attains its smallest possible values x1 and the variable x2 attains its largest possible
values x2, i.e., y = x1 − x2. Similarly, the largest possible value y of y = x1 − x2 is
attained when the variable x1 attains its largest possible values x1 and the variable
x2 attains its smallest possible values x2, i.e., y = x1 − x2. Therefore, the range of
the difference has the form

[x1, x1] − [x2, x2] = [x1 − x2, x1 − x2].

For example, if Gang has between 5 and 10 dollars, and he owes Vladik between
2 and 4 dollars, then after paying his debt, he will have between 5 − 4 = 1 and
10 − 2 = 8 dollars.

For multiplication f(x1, x2) = x1 · x2, the situation is not so simple since the
product is an increasing function of x1 when x2 ≥ 0 and a decreasing function of
x1 when x2 ≤ 0. However, for every x2, the expression x1 ·x2 is a linear function of
x1, and it is known that a linear function attains its maximum and its minimum
only at the endpoints. Similarly, when we view this expression as a function of
x2, we conclude that it attains its minimum and maximum only at the endpoints
x2 = x2 and x2 = x2.

Thus, the minimum and maximum of x1 · x2 are attained when each of the
variables xi is equal either to its minimum xi or to its maximum xi. For each
variable, there are two possibilities, so we have 2 × 2 = 4 possible combinations.
Thus:

• to find the minimum, it is sufficient to find the smallest of the corresponding
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four products, and

• to the find the maximum, it is sufficient to find the largest of the corresponding
four products.

Therefore, the range of the product has the form

[x1, x1]·[x2, x2] = [min(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2),max(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2)].

The formula for the division comes from the fact that in most modern computers,
division a/b is implemented as a ·(1/b). Since we already know how to deal with the
multiplication, to get the expression for a/b, it is sufficient to be able to deal with
the inverse 1/b. Inverse is defined only for values b ̸= 0. When the interval does not
contain 0, then 1/b is defined everywhere on this interval, and it is a decreasing
function on this interval. Thus, when x1 ∈ [x1, x1]:

• the smallest possible value of 1/x1 is attained when x1 is the largest (x1 = x1),
and

• the largest possible value of 1/x1 is attained when x1 is the smallest (x1 = x1).

Therefore, the range of 1/x1 has the form

1/[x1, x1] = [1/x1, 1/x1].

Similar formulas can be written for simple elementary functions like ln(x), exp(x),
or

√
x since they are monotonic. For example, the function exp(x) is increasing, so

exp([x1, x1]) = [exp(x1), exp(x2)].

More complex functions like trigonometric functions sin(x1) and cos(x1) are only
piece-wise monotonic, so to find their range on a given interval, we must first divide
this interval into subintervals on which the function is monotonic.

Towards the general case: warning. We know how to estimate the range of
the result of a simple arithmetic operation or an elementary function. A natural
next question is: how to estimate the range of a general algorithm?

The first idea is called straightforward or naive interval computations. Before we
explain what it is, we need to remind the reader that, contrary to a widely spread
belief, this is not what interval computation is about. General interval computation
algorithms – some of which will be described later – are much more sophisticated
than that. So a reader may ask: why not start with these sophisticated practical
algorithms, why study the naive technique? We need to study straightforward in-
terval computations because more these sophisticated techniques use naive interval
computation as a building block.

Straightforward interval computations: main idea. After this warning, let
us explain the main idea behind straightforward interval computations. This idea
is based on the fact that in the computer, only basic arithmetic operations and
elementary functions are directly supported:

• either as a single hardware operations, as is he case with addition, subtraction,
and multiplication,

• or as a pre-programmed sequence of hardware operations, as is the case of
division and elementary functions.

Whatever more complex expression we write, a compiler will parse it, i.e., represent
it as a sequence of elementary arithmetic operations and elementary functions.
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Straightforward interval computations: example. As an illustrative example,
let us consider a simple arithmetic expression f(x) = (x− 2) · (x+ 2). How will the
computer compute it? The same way we will compute it: first, we compute the two
expressions in parentheses x − 2 and x + 2, then we multiply them. If we denote
the i-th intermediate result by ri, we get the following sequence of elementary
arithmetic operations:

• r1 := x− 2;

• r2 := x + 2;

• r3 := r1 · r2.

If we want to estimate the range of this expression on the interval [1, 2], then we
perform the same operations, but with intervals instead of numbers:

• first, we compute r1 := [1, 2] − [2, 2] = [−1, 0];

• then, we compute r2 := [1, 2] + [2, 2] = [3, 4];

• finally, we compute r3 := [−1, 0] · [3, 4] = [−4, 0].

So, straightforward interval computations resulted in an estimate Y = [−4, 0] for
the desired range.

In our toy example, it is easy to find the actual range. Namely, if we represent
the function f(x) in the equivalent form f(x) = x2 − 4, we can easily see that
this function is increasing on the interval [1, 2]. Thus, its smallest possible value is
attained for x = 1, its largest for x = 2, and its range is equal to y = [f(1), f(2)] =
[−3, 0].

In this example, the range computed by straightforward interval computations
encloses the actual range Y ⊇ y. One can prove, by induction, that this is always
the case: that what we get as a result of straightforward interval computations is
an enclosure for the actual range.

One can also see that in this example, the computed enclosure is wider that the
actual range. It is usually said that this enclosure contains excess width.

Reason for excess width. On the above simple example, one can clearly explain
why we get excess width. In this simple example, we have only three computational
steps.

On the first step, we compute the interval r1 = [−1, 0] that contains all possible
values of r1 = x−2. This is actually the exact range of r1 = x1−2 when x1 ∈ [1, 2].

On the second step, we compute the interval r2 = [3, 4] that contains all possible
values of r2 = x + 2. This is also the exact range of r2 = x1 + 2 when x1 ∈ [1, 2].
So far, there is no excess width.

Excess width appears on the third step, when we use the formula for interval
multiplication [−1, 0] · [3, 4] to compute the enclosure [−4, 0] for the range of r3 =
r1 · r2. The formula for interval multiplication correctly describes the range of
possible values of r1 · r2, when r1 can take all possible values from the interval r1
and r2 can take all possible values from the interval r2; in this case, all pairs (r1, r2)
with r1 ∈ r1 and r2 ∈ r2 are possible. In particular, the value −4 is possible when
r1 = −1 and r2 = 4.

However, in our applications, not all pairs (r1, r2) are possible: since r1 = x1 − 2
and r2 = x1+2, there is a dependence between r1 and r2: r2 = r1+4. In particular,
the pair (r1, r2) = (−1, 4) at which the value −4 is attained is no longer possible,
as all the pairs that lead to values r3 = r1 · r2 < −3. When we apply interval
multiplication to the intervals r1 and r2, we ignore this dependence and thus, get
excess width.

In short, excess width is caused by dependence between intermediate results: if
there is no dependence, if for each arithmetic operation, all pairs of inputs from the
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corresponding intervals are possible, interval arithmetic produces the exact range.
Because of this observation, the problem of minimizing (and, ideally, eliminating)
the excess width is sometimes called dependency problem. This is the main problem
of interval computations: how to find the range with as little excess width as
possible.

Excess width is inevitable. At this point, it is worth reminding that, in general,
the main problem of interval computations, i.e., the problem of computing the
exact range of a given function f(x1, . . . , xn) on given intervals x1, . . . , xn, is
NP-hard. This means that not only straightforward interval computations produce
excess width: any feasible (polynomial-time) algorithm that always produces an
enclosure has to have cases in which this enclosure is wider than the desired range
– otherwise, we would be able to solve the NP-hard problem in feasible time, which
most computer scientists believe to be impossible.

We need a good approximation. Since we cannot always efficiently find the
exact range y = [y, y] of the given function f(x1, . . . , xn) on given intervals, we

should at least find a good approximation Y = [Y , Y ] for this range.

Why do we need an exclosure: engineering applications of interval com-
putations. In some practical problems, we need enclosure. For example, assume
that we want to prove that the system is stable for all possible combinations of
parameters xi ∈ xi, and stability is described by the condition f(x1, . . . , xn) ≥ 0
for a known function f(x1, . . . , xn). In terms of the exact range, the condition that
f(x1, . . . , xn) ≥ 0 for all xi ∈ xi is equivalent to stating that the smallest possible
value of f(x1, . . . , xn) is non-negative, i.e., that y ≥ 0. When we cannot compute

the exact range, we compute an approximation [Y , Y ]. In this case, a natural way
to test stability is to check whether Y ≥ 0.

However, if Y > y, we may have Y ≥ 0 and still y < 0. The only way to make
sure that the test based on Y guarantees stability is to have Y ≤ y.

Similarly, for criteria based on the opposite inequalities f(x1, . . . , xn) ≤ y0, the
only way to guarantee is to make sure that y ≤ Y . Thus, to get guaranteed bounds,
we must have Y ≤ y ≤ y ≤ Y , i.e., we must have y = [y, y] ⊆ [Y , Y ] = Y. In other
words, the estimate Y must be an enclosure for the desired range y.

Why do we need an exclosure: general case, including applications to
fuzzy data processing. The main purpose of this paper is to describe applications
to fuzzy data processing. In fuzzy data processing, the inputs are – well, fuzzy, so
there seems to be not too much need for guarantees. In this case, it is enough to
have an approximation Y ≈ y. An interval is determined by its endpoints, so the
fact that the interval Y = [Y , Y ] approximates the desired range y = [y, y] means

that Y approximates y and Y approximates y.
Some things we do desire: we need some bounds on the accuracy of these ap-

proximations. If there are no bounds on accuracy, then the approximation does
not make too much sense: whatever the value Y , the actual value y can be any
real number, as small as possible and as large as possible. Let us show that the
existence of an approximation with known bounds leads to an enclosure.

Indeed, in general, when we have an approximation x̃ for a number x, we may
have two different bounds for the approximation accuracy: from below and form
above. In other words, we have two numbers ∆− and ∆+ for which x̃−∆− ≤ x ≤
x̃ + ∆+. In our case, we would like to have such bounds for both approximations

Y and for Y , i.e., we would like to have values ∆−, ∆+, ∆
−

, and ∆
+

for which

Y − ∆− ≤ y ≤ Y + ∆+ and Y − ∆
− ≤ y ≤ Y + ∆

+
. In this case, we have

Y − ∆− ≤ y ≤ y ≤ Y + ∆
+

, and thus, the interval [Y − ∆−, Y + ∆
+

] is an
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enclosure for the desired range [y, y].
Vice versa, every enclosure be viewed as an approximation with known bounds:

indeed, if we have an enclosure [Y , Y ] ⊇ [y, y], this means that Y ≤ y ≤ y ≤ Y , i.e.,

that we have Y −∆− ≤ y ≤ Y + ∆+ and Y −∆
− ≤ y ≤ Y + ∆

+
for ∆− = ∆

+
= 0

and ∆+ = ∆
−

= Y − Y .
Because of this, in the following text, we will concentrate on techniques for

computing enclosures.

Comment. When we computed an enclosure from an approximation, we only used

two of the four bounds, we did not use the inequalities y ≤ Y +∆+ and Y −∆
− ≤ y.

When Y + ∆+ < Y − ∆
−

, i.e., when y ≤ Y + ∆+ ≤ Y − ∆
− ≤ y, we get a second

interval [Y +∆+, Y −∆
−

] which is guaranteed to be contained in the desired range.
In this overview, we just wanted to mention that such intervals exist and that they
are actively used in some efficient interval-related problems. Such problems include
the problems of controllability.

For example, we may want to make sure that by appropriately changing the pa-
rameters x1, . . . , xn from the given intervals [xi, xi], we can achieve all the values
of a certain quantity f(x1, . . . , xn) ranging from y− to y+. If we know the exact
range [y, y], then the checking is simple: we just check that [y−, y+] ⊆ [y, y]. How-

ever, if we know the enclosure [Y , Y ] ⊇ [y, y], and this enclosure contains [y−, y+],

nothing is guaranteed, because the actual range may be narrower than [y−, y+]. To
guarantee that [Y , Y ] ⊇ [y−, y+] for an approximation interval [Y , Y ] implies that
[y, y] ⊇ [y−, y+], we must make sure that [Y , Y ] is a subset of the actual range.

Resulting problem: computing most accurate approximations. Since we
cannot always compute the exact range, we need to produce an approximation
which is as accurate as possible. As we have mentioned, computing an approxi-
mation is equivalent to computing an enclosure, For enclosures, inaccuracy means
excess width. Thus, in terms of enclosures, the problem is to reduce the excess
width as much as possible.

How can we reduce excess width? In the following subsections, we will describe
the main techniques for reducing excess width. The efficient software packages for
solving interval computation problems usually incorporate all these techniques.
Before we go into the details of each of these techniques, let us briefly explain the
logic behind these techniques.

We started our description of interval computations with the example of interval
addition and interval subtraction. In these two cases, the corresponding function
f(x1, x2) is monotonic in each variable and thus, computing its range is easy. In
general, monotonicity seems to be the simplest case for computing the interval
range.

For example, intuitively, to compute the range of a function f(x1) on one variable
on an interval [x1, x1], we need to compute at least the values f(x1) and f(x1) of
this function f(x1) at the endpoints x1 and x1. The simplest case is when these
two values are sufficient to describe the range, i.e., when we are sure that all values
f(x1) for x1 ∈ [x1, x1] like between these values f(x1) and f(x1). This is guaranteed
only if the function is monotonic – increasing or decreasing, because otherwise, it
may have a local maximum or a local minimum at which its value is larger or
smaller than the endpoint values; see, e.g., Koshelev and Kreinovich (1996).

Thus, once we are given a function and n intervals, it may not be a bad idea to
check whether this function is monotonic. If the function is monotonic, computing
its range is easy.
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What if it is not monotonic – or at least we cannot prove that it is monotonic?
In this case, a good idea is to approximate the original function by a monotonic
one, so that at least the range for this monotonic component will be computed
exactly. For smooth functions, the possibility of such approximation comes from
the fact each smooth function f(x1, . . . , xn) on intervals [x̃i − ∆i, x̃i + ∆i] – i.e.,
in the vicinity of a point x̃ = (x̃1, . . . , x̃n) – can be well approximation by a linear
function (its tangent):

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
· ∆xi

The approximating linear function f(x̃1, . . . , x̃n)+
n∑

i=1

∂f

∂xi
·∆xi is always monotonic.

The use of this approximation is the main idea behind the mean value form.
What if the mean valued form is still not accurate enough? The accuracy of the

linear approximation can be estimated if we consider the first two terms in the
Taylor expansion:

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
·∆xi +

1

2
·

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
·∆xi ·∆xj + . . .

Since the main component of the approximation error is the quadratic part, this
approximation is of order ∆2

i . So, to decrease this excess width, we need to decrease
∆i. This can be done if we divide one or more of the original intervals into smaller
pieces, find the range of f(x1, . . . , xn) over all these pieces, and then compute the
union of all these ranges. In the simplest case when we divide into two pieces, this
method is called bisection.

All these methods are based on explicitly using the linear terms in Taylor ex-
pansion. Sometimes, we can get better results by using quadratic and higher order
terms; this idea is called Taylor arithmetic.

Comment. In this overview, we have just listed the main interval techniques. There
are many other useful techniques, many of them specifically designed for special
classes of functions.

First idea: use of monotonicity. For arithmetic operations, we had exact ranges.
The possibility to compute the exact ranges came from the fact that, e.g., addition
x1 + x2 and subtraction x1 − x2 are monotonic in each variable.

In general, if the f(x1, . . . , xn) is (non-strictly) increasing in each variable xi, then
its smallest value is attained when all the inputs take their smallest possible values,
and its largest value is attained when all the inputs take their largest possible
values. Thus, the desired range has the form:

f(x1, . . . ,xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].

Similarly, we can easily find the explicit formulas for the range when the func-
tion f(x1, . . . , xn) is increasing in some variables xi and decreasing in some other
variables xj .

How can we check whether a function is increasing or decreasing with respect
to each variable? From calculus, it is known that a function f is increasing in xi

if its derivative with respect to xi is non-negative:
∂f

∂xi
≥ 0. If we know the exact
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range [di, di] of this derivative
∂f

∂xi
on the interval xi, then checking monotonicity

is easy: all the values of the derivative are non-negative if and only if the smallest
of these values di is non-negative: di ≥ 0.

To apply this idea, we must estimate the range of the derivative. Estimating the
range is exactly what interval computations is about. To apply interval computa-
tions, we first need to find the derivative itself. We are considering functions that
consist of several well-defined steps. For such functions, we can find the deriva-
tive step-by-step if we follow the original scheme and apply the standard rules for
differentiation: (u + v)′ = u′ + v′, (u − v)′ = u′ − v′, (u · v)′ = u′ · v + u · v′,
and the “chain” rule for differentiating the composition: if h(x) = f(g(x)), then
h′(x) = f ′(g(x)) · g′(x). The resulting procedure has been automatically imple-
mented in several automatic differentiation (AD) tools; see, e.g., Griewank and
Walther (2008). Once we apply interval computations to the resulting derivative,
we get an enclosure [Di, Di] for the actual range [di, di]. The fact that we have an
enclosure means, in particular, that di ≥ Di. So, if Di ≥ 0, we know that di ≥ 0
and thus, that the function f(x1, . . . , xn) is increasing in xi.

Similarly, if Di ≤ 0, we conclude that di ≤ 0 and thus, that the function
f(x1, . . . , xn) is decreasing in xi. Thus, we arrive at the following technique.

Monotonicity: resulting technique. When we need to compute the range of a
function f(x1, . . . , xn) over intervals [xi, xi], then, for each variable xi, we first use

automatic differentiation techniques to find the derivative
∂f

∂xi
and use straightfor-

ward interval computation techniques to find the range [Di, Di] of this derivative.
If for every i, we have Di ≥ 0 or Di ≤ 0, then we can conclude that the function

f(x1, . . . , xn) is monotonic with respect to each of its variables. So, to find its
largest possible value y, we apply the algorithm f to the following values:

• xi = xi when Di ≥ 0, and

• xi = xi when Di ≥ 0.

Similarly, to find its smallest possible value y, we apply the algorithm f to the
following values:

• xi = xi when Di ≥ 0, and

• xi = xi when Di ≥ 0.

Comment. It should be mentioned that since straightforward interval computations
produce an enclosure for the actual range for the derivative, we may have di ≥ 0
but Di < 0. In such situations, the function is actually monotonic, but we do not
detect this monotonicity. To detect monotonicity better, we can thus use more
accurate interval computation techniques – e.g., the techniques based on checking
monotonicity of the derivative itself, or the mean valued form techniques that we
will describe in the following text.

What if we only have monotonicity with respect to some variables? Once
we know that the function f(x1, . . . , xn) is, e.g., increasing with respect to x1, then
we know that the maximum of f(x1, . . . , xn) on given intervals is attained when
x1 = x1 and the minimum of f(x1, . . . , xn) is attained when x1 = x1. Thus, to find
y, it is sufficient to find the largest possible value of a function f(x1, x2, . . . , xn) of
n− 1 variables x2, . . . , xn, and to find y, it is sufficient to find the largest possible
values of a function f(x1, . . . , xn) of n− 1 variables.

Similarly, if we know that a function f(x1, . . . , xn) is monotonic in k of its n
variables, then it is sufficient to consider two functions of n− k variables. As a we
have mentioned, the range-computing problem is NP-hard, which means, crudely
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speaking, that its computational complexity grows exponentially with the number
of variables, as ≈ 2n. From this viewpoint, reducing the number of variables from
n to n− k means decreasing computation time by a factor of 2k. For large k, this
is a big speed-up.

Monotonicity: example. Let us consider the same example on which we showed
excess width: finding the range of a function f(x) = (x−2) · (x+ 2) on the interval

x = [1, 2]. For this function, differentiation leads to
df

dx
= 1·(x+2)+(x−2)·1 = 2x.

By using straightforward interval arithmetic, we can estimate the range of this
function for x ∈ [1, 2] as [2, 2] · [1, 2] = [2, 4]. The lower endpoint of this range is
non-negative, so we can conclude that the original function f(x) is increasing on
the interval [1, 2]. Thus, its range is equal to f([1, 2]) = [f(1), f(2)] = [−3, 0]. On
this example, we get the exact range.

Not every function is monotonic. Of course, not every function is monotonic.
Let us see what happens when we apply straightforward interval computations to
a non-monotonic function. As a simple example, let us take the function f(x) =
x ·(1−x) on the range x ∈ [0, 1]. To describe what naive interval computations will
do for this function, let us first parse this expression, i.e., describe the sequence of
elementary step that a computer will perform when computing f(x). First, it will
compute r1 = 1 − x, and then it will compute r2 = x · r1. Replacing arithmetic
operations by the corresponding operations with intervals, we get r1 = [1, 1] −
[0, 1] = [0, 1] and then r2 = [0, 1] · [0, 1] = [0, 1].

The actual range can be computed based on the fact that for every function of
one variable, its minimum and maximum on a given interval are attained either at
one of the endpoints, or inside the interval. If the minimum or the maximum are
attained inside, then, according to calculus, its derivative is 0. Thus, to find the
minimum and the maximum of a function on a given interval [x, x], it is sufficient to

find its values at the endpoints x, x, and at the points where
df

dx
= 0. The smallest

of these values is the minimum y of the function f(x) on the given interval, the
largest of these values is its maximum y.

For our function,
df

dx
= 1−2x = 0 for x = 0.5, so we compute f(0) = 0, f(0.5) =

0.25, and f(1) = 0, and then find y = min(0, 0.25, 0) = 0 and y = max(0, 0.25, 0) =
0.25. So, the actual range is f(x) = [y, y] = [0, 0.25]. This range shows that the
estimate [0, 1] obtained by using straightforward interval computations has excess
width.

Mean valued form: second idea. How do we decrease excess width for such
non-monotonic functions? As we have mentioned, a natural idea is to approximate
the original function by its linear part – since every linear function is monotonic. A
general idea behind this approximation is well-known: we expand the dependence
f(x1, . . . , xn) = f(x̃1 − ∆x1, . . . , x̃n − ∆xn) into Taylor series and keep only linear
terms

f(x1, . . . , xn) = f(x̃1 − ∆x1, . . . , x̃n − ∆xn) = f(x̃1, . . . , x̃n) −
n∑

i=1

∂f

∂xi
· ∆xi + . . . ,

where . . . stands for quadratic and higher order terms that need to be estimated.
Let us show that we can come up with an even simpler expression – known as

the mean valued form – if instead of the values of the partial derivatives at the
central point (x̃1, . . . , x̃n) we consider its values at nearby points. The advantage
of the mean valued form is that it does not have quadratic or higher order terms.
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Let us start our explanation of the mean-valued form with the simplest case
of a function f(x) of one variable. To make this explanation clear, let us use the
standard calculus interpretation of the derivative: if f(x) is the position of the

object at moment x, then the derivative
df

dx
is the velocity at the moment x. In

general, the motion is not uniform: at some moments, the velocity is larger, at some
other moments, the velocity is smaller. In addition to the velocities at different
moments of time, we can also consider the average velocity on the time interval

[x̃−∆x, x̃], i.e., the value
f(x̃) − f(x̃− ∆x)

∆x
. The average velocity, by definition, is

smaller than or equal to the largest velocity and larger than or equal to the smallest
velocity. Thus, as we go from the moment when the velocity is the smallest to the
moment when the velocity is the largest, we will, at some point, reach the moment
χ at which the velocity is exactly equal to the average velocity:

f(x̃) − f(x̃− ∆x)

∆x
=

df

dx
(χ).

Multiplying both sides of this equality by the difference ∆x, we conclude that

f(x̃) − f(x̃− ∆x) =
df

dx
(χ) · ∆x, i.e., that

f(x̃− ∆x) = f(x̃) − df

dx
(χ) · ∆x

for some χ ∈ [x̃ − ∆x, x̃]. Since both values x̃ − ∆x and x̃ belong to the interval
x = [x, x], we conclude that the intermediate point χ belongs to the same interval.

For a function f(x1, x2) of two variables, we can apply this argument first to x1
and then to x2. As a result, we get the following two formulas:

f(x̃1 − ∆x1, x̃2 − ∆x2) = f(x̃1, x̃2 − ∆x2) −
∂f

∂x1
(χ1, x̃2 − ∆x2) · ∆x1;

f(x̃1, x̃2 − ∆x2) = f(x̃1, x̃2) −
∂f

∂x2
(x̃1, χ2) · ∆x2.

Substituting the expression for f(x̃1, x̃2 − ∆x2) from the second formula into the
first one, we conclude that

f(x̃1 −∆x1, x̃2 −∆x2) = f(x̃1, x̃2)−
∂f

∂x1
(χ1, x̃2 −∆x2) ·∆x1 −

∂f

∂x2
(x̃1, χ2) ·∆x2,

i.e., that

f(x̃1 − ∆x1, x̃2 − ∆x2) = f(x̃1, x̃2) −
∂f

∂x1
(χ(1)) · ∆x1 −

∂f

∂x2
(χ(2)) · ∆x2

for some χ(1), χ(2) ∈ x1 × x2.
In general, for n variables, we get a similar formula

f(x̃1 − ∆x1, . . . x̃n − ∆xn) = f(x̃1, . . . , x̃n) −
n∑

i=1

∂f

∂xi
(χ(i)) · ∆xi.
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This formula can be used to find an enclosure for the function f(x1, . . . , xn) on given
intervals xi = [x̃i − ∆i, x̃i + ∆i]. Namely, since χ(i) ∈ x1 ××× xn, each derivative
∂f

∂xi
(χ(i)) belongs to the range of this derivative on these intervals. Also, by defini-

tion, ∆xi ∈ [−∆i,∆i]. Thus, each product
∂f

∂xi
(χ(i)) ·∆xi belongs to the product of

the corresponding intervals, and the value f(x1, . . . , xn) = f(x̃1−∆x1, . . . x̃n−∆xn)
belongs to the corresponding linear combination of such intervals. In short, we ar-
rive at the following conclusion.

Mean valued form: resulting algorithm. When xi ∈ xi, then f(x1, . . . , xn) ∈
Y, where

Y = ỹ +

n∑
i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i,∆i].

So, we arrive at the following method for estimating the range of a given function
f(x1, . . . , xn) on given intervals x1, . . . , xn:

• first, we use the Automatic Differentiation (AD) tools to find all n partial
derivatives of the given function;

• then, we estimate the range of each of these derivatives on the given intervals;

• finally, we use the above formula to compute the enclosure.

How do we estimate the ranges of the partial derivatives?

• if appropriate, we can use monotonicity;

• if the derivatives are not monotonic, we can use straightforward interval com-
putations;

• alternatively, we can estimate the ranges of each derivative by applying the
same mean values form; this way, we spend more time on computations but
hopefully get more accurate results.

Mean valued form is usually combined with checking monotonicity. In
the process of computing the mean valued form, we find the range for each partial
derivative. Once we have this range, we can check whether the function is monotonic
with respect to the corresponding variables xi – in the above text, we describe how
we can do it. If the function is monotonic with respect to some of the variables,
then we can use this monotonicity to reduce the problem to the one with fewer
variables – and then apply the mean valued form only to this function with fewer
variables.

Mean valued form: example when it leads to a better enclosure. Let us
first give an example when the mean valued method leads to a much narrower
enclosure than straightforward interval computations. As such an example, we will
consider the problem of computing the range of the function f(x) = x · (1 − x)
on the interval x = [x, x] = [0.4, 0.6]. To represent an interval [x, x] in the form

[x̃−∆, x̃+ ∆], we can take x̃ =
x + x

2
and ∆ =

x− x

2
. In our case, we get x̃ = 0.5

and ∆ = 0.1.
The actual range can be found if we compute the value of this function at the

endpoints 0.4 and 0.6, and at the point where the derivative is equal to 0. Here,

automatical differentiation leads to
df

dx
= 1 · (1 − x) + x · (−1) = 1 − 2x, so the

derivative is equal to 0 when x = 0.5. At the resulting three values of x, the function
f(x) takes the values f(0.4) = f(0.6) = 0.4 ·0.6 = 0.24 and f(0.5) = 0.5 ·(1−0.5) =
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0.25. Thus, the smallest possible value of f(x) in the given interval is equal to
y = min(0.24, 0.25) = 0.24, the largest value is equal to y = max(0.24, 0.25) = 0.25,
and so, the desired range is equal to [y, y] = [0.24, 0.25].

For this problem, straightforward interval computations lead to 1 − [0.4, 0.6] =
[1, 1]− [0.4, 0.6] = [1− 0.6, 1− 0.4] = [0.4, 0.6] and [0.2, 0.6] · [0.4, 0.6] = [0.16, 0.26].

For the case of a single variable n = 1, the general formula for the mean valued

method takes the form Y = f(x̃)+
df

dx
(x)·[−∆,∆]. Here, automatical differentiation

leads to
df

dx
= 1 · (1 − x) + x · (−1) = 1 − 2x. The range of this derivative can be

estimated by using straightforward interval computations, as

df

dx
(x) = 1 − 2 · [0.4, 0.6] = [−0.2, 0.2].

Thus, the mean valued method leads to the following enclosure:

Y = f(0.5) + [−1, 1] · [−0.2, 0.2] = 0.25 + [−0.02, 0.02] = [0.23, 0.27].

It is easy to check that this interval is indeed an enclosure for the actual range
[0.24, 0.25], and that its width 0.27 − 0.23 = 0.04 is much smaller than the width
0.36− 0.16 = 0.2 of the interval obtained by using straightforward interval compu-
tations.

Mean valued form: example when it does not lead to a better enclosure.
Let us now give an example when the mean valued method is still not perfect. As
such an example, we can take the above case of computing the range of the function
f(x) = x · (1 − x) on the interval x = [x, x] = [0, 1]. To represent an interval [x, x]

in the form [x̃−∆, x̃+ ∆], we take x̃ =
x + x

2
and ∆ =

x− x

2
. In our case, we get

x̃ = 0.5 and ∆ = 0.5.
In the previous example, we have shown that for the function f(x) = x · (1− x),

we have Y = f(x̃) +
df

dx
(x) · [−∆,∆], where

df

dx
= 1 − 2x. The range of this

derivative can be estimated by using straightforward interval computations, as
df

dx
(x) = 1−2·[0, 1] = [−1, 1]. Thus, the mean valued method leads to the following

enclosure:

Y = 0.5 · (1 − 0.5) + [−1, 1] · [−0.5, 0.5] = 0.25 + [−0.5, 0.5] = [−0.25, 0.75].

It is easy to check that this is indeed an enclosure for the actual range [0, 0.25].
The right endpoint 0.75 of the new enclosure is somewhat better than the corre-
sponding endpoint 1 of the enclosure [0, 1] that we obtained by using straightfor-
ward interval computations, but the left endpoint is worse than the previous one.

Bisection: third idea. How can we further decrease the excess width? The main
idea behind the mean valued method is that we approximated a function by linear
terms of its Taylor expansion. The accuracy of this approximation is of the same

order as quadratic terms
∂2f

∂xi∂xj
· ∆xi · ∆xj , i.e., of order O(∆2

i ). Thus, a natural

way to make the estimations more accurate is to decrease the half-widths ∆i of
the corresponding intervals. For example, if we split each interval in two, with
half-width ∆i/2, the approximation error decreases from ∆2

i to ∆2
i /4.

Thus, the idea is:
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• to bisect the original domain,

• to use one of the above techniques to compute the enclosure of the original
function of each of sub-domains, and

• take the union of the resulting enclosures.

Comment. Bisection is an example of a general divide-and-conquer strategy for
algorithm design, where in order to solve a complex problem, we first divide it
into several simpler ones; see, e.g., Cormen et al. (2009). The term itself comes
from history, where divide-and-conquer strategy was one of the main ways how big
empires were built. For example, when in the 13th century the Mongols conquered
Russia and China, they did not do it by winning a big battle in which the Mongol
army overcame the Russian army: in such a battle underpopulated Mongolia did
not have a chance. They won because both Russia and China were divided into
smaller states hostile to each other. By exploiting these divisions, the Mongols
succeeded in conquering these smaller states one by one. This is also how England
conquered India and, going further into history, how a small city of Rome became
the center of a powerful Roman empire.

In politics, the divide-and-conquer strategy was often used for “negative” things
like conquering, but in computer science, similar ideas are used for “positive” pur-
poses – to solve difficult problems.

Bisection: example. Let us consider the same example for which the mean valued
form did not work well: estimating the range of the function f(x) = x · (1 − x)
when x ∈ x = [0, 1]. Applying bisection means that we split the original interval
x = [0, 1] into two half-intervals: x′ = [0, 0.5] and x′′ = [0.5, 1].

On the first half-interval, the range of the derivative is equal to 1 − 2 · x =
1 − 2 · [0, 0.5] = [0, 1]. The lower endpoint of this range is non-negative, so the
function f(x) is increasing on this interval and thus, its range is equal to f(x′) =
[f(0), f(0.5)] = [0, 0.25].

On the second half-interval, the range of the derivative is equal to 1 − 2 · x =
1 − 2 · [0.5, 1] = [−1, 0]. The upper endpoint of this range is non-positive, so the
function f(x) is decreasing on this interval and thus, its range is equal to f ↓ and
f(x′′) = [f(1), f(0.5)] = [0, 0.25].

The union of these ranges f(x′) ∪ f(x′′) = [0, 0.25] is an enclosure for the whole
interval [0, 1]. One can easily check that in this example, this enclosure coincides
with the desired range.

Bisection: discussion. Of course, in general, we may have excess width. In this
case, if we want a more accurate enclosure, we can further subdivided one or both
sub-intervals, etc. In the general case of functions of several variables, we can bisect
by each of these variables – there are several semi-heuristic techniques for selecting
the variable over which we bisect.

Fourth idea: Taylor arithmetic. The above methods are based on explicitly
using the linear terms in Taylor expansion. Sometimes, we can get better results
by using quadratic and higher order terms; this idea is called Taylor arithmetic;
see, e.g., Neumaier (2002) and references therein.
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