
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

8-1-2011

High-Concentration Chemical Computing
Techniques for Solving Hard-To-Solve Problems,
and Their Relation to Numerical Optimization,
Neural Computing, Reasoning Under Uncertainty,
and Freedom Of Choice
Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Olac Fuentes
University of Texas at El Paso, ofuentes@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-44
To appear in: Evgeny Katz (ed.), Molecular and Biomolecular Information Processing, Wiley-VCH.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Kreinovich, Vladik and Fuentes, Olac, "High-Concentration Chemical Computing Techniques for Solving Hard-To-Solve Problems,
and Their Relation to Numerical Optimization, Neural Computing, Reasoning Under Uncertainty, and Freedom Of Choice" (2011).
Departmental Technical Reports (CS). Paper 644.
http://digitalcommons.utep.edu/cs_techrep/644

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/644?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


High-Concentration Chemical Computing

Techniques for Solving Hard-To-Solve Problems,

and Their Relation to Numerical Optimization,

Neural Computing, Reasoning Under

Uncertainty, and Freedom Of Choice

Vladik Kreinovich and Olac Fuentes
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

{vladik, ofuentes}@utep.edu

Abstract

Chemical computing – using chemical reactions to perform computa-
tions – is a promising way to solve computationally intensive problems.
Chemical computing is promising because it has the potential of using
up to 1023 molecules as processors working in parallel – and thus, has a
potential of an enormous speedup. Unfortunately, for hard-to-solve (NP-
complete) problems a natural chemical computing approach for solving
them is exponentially slow. In this chapter, we show that the corre-
sponding computations can become significantly faster if we use very-
high-concentration chemical reactions, concentrations at which the usual
equations of chemical kinetics no longer apply. We also show that the
resulting method is related to numerical optimization, neural computing,
reasoning under uncertainty, and freedom of choice.

1 What Are Hard-so-Solve Problems and Why
Solving Even One of Them Is Important

What is so good about being able to solve hard-to-solve problems
from some exotic class? In this paper, we will talk about applying chemical
computing to a specific class of hard-to-solve (NP-complete) problems.

To a person who is not very familiar with the notions of NP-completeness,
this may sound like a very exotic (and thus not very interesting) topic. For
example, this person may ask: OK, we spend all these efforts and solve prob-
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lems from this exotic class, how will this help me solve my own hard-to-solve
problems, problems which are formulated in completely different terms?

• A short answer to this equation is: once we learn how to solve problems
from one class, then we will be able to solve all hard-to-solve problems.

• A detailed answer to this question – with appropriate explanations – is
given in this section.

Since this volume is devoted to chemical computing, we expect most readers to
be familiar with at least the basics of chemistry. Because of this, in our descrip-
tion of NP-completeness, we will try (whenever possible) to use examples from
(computational) chemistry. Since some potential readers are computational sci-
entists, who may not be very familiar with the details of computational chem-
istry problems, we will try to explain the related chemistry problems as much
as possible.

Comment. Readers who are already very well familiar with the notions of P,
NP, and NP-completeness are welcome to skip this section. Readers interested
in more details can read, e.g., [9, 14].

In many applications areas – in particular, in chemistry – there are
many well-defined complex problems. In many application areas, we face
well-defined problems. Many such problems are known in chemistry.

For example, it is known that from the physical viewpoint, chemical reac-
tions are interactions between electrons of different atoms. Thus, to get a good
understanding of the chemical reactions, it is desirable to describe possible elec-
tronic states and their energies. There exist known fundamental equations –
partial differential equations originally proposed by Schrödinger – that exactly
describe these states.

On a more large-scale level, changes in concentrations that occur during a
complex chemical reaction are described by a system of ordinary differential
equations – equations of chemical kinetics. If we also want to take into account
spatial inhomogeneities, we need to use the corresponding partial differential
equations, etc.

In some applications, we need to solve optimization problems. For example,
in bioinformatics applications, we know how to describe, for each possible folding
of a protein, the resulting potential energy. Based on this description, we need
to find the folding for which this potential energy is the smallest possible –
because this is the shape into which proteins fold within a cell.

In principle, there exist algorithms for solving these problems. In
computational mathematics, there exist algorithms for solving the correspond-
ing problems: i.e., algorithms for solving systems of ordinary or partial differ-
ential equations, algorithms for finding where a complex function attains its
minimum, etc.
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These algorithms may take too much time to be practical. The prob-
lem is that often, these algorithms, when applied to practical chemistry-related
(and other) problems, require too much time to be practically useful.

Feasible and unfeasible algorithms: general idea. When the algorithm
takes too much time, the big question is how much. For some problems, the
required computation time is, e.g., ten or hundred times larger that what we
have accessible now. In this case, there is a good chance that this problem will
be soon solved:

• it can either be solved right away, by running the algorithm on a high-
performance supercomputer – which is usually several orders of magnitude
faster than usual university computers,

• or it can be solved in a few years, since the computer speed approximately
doubles every few years or so (this empirical fact is known in Computer
Science as Moore’s law).

Informally, we can say that such algorithms may not be practical on a typical
computer, they may not be practical on all existing computers – but they are
feasible in the sense that in reasonable amount of time, and with appropriate
resources, these algorithms can be implemented.

On the other hand, there are other algorithms for which required computa-
tion time may be 1020 times larger than what we have available; an example will
be given soon. For such an algorithms, we can use the fastest supercomputers,
we can wait 10 years – none of this will overcome this enormous gap between
the desired computation speed and the available speed of computations. From
the practical viewpoint, such algorithms are unfeasible.

Let us give examples of feasible and unfeasible algorithms.

Solving equations of chemical kinetics: an example of a feasible al-
gorithm. Let us consider the most realistic case of equations that take into
account the spatial inhomogeneity. These partial differential equations describe
the dependence ci(x, y, z, t) of the concentration of each substance i at different
spatial points (described by spatial coordinates x, y, and z) at different moments
of time.

Most computational techniques for solving partial differential equations are
based on the following straightforward idea:

• instead of considering all infinitely many moments of time, we consider
only moments on a grid, e.g., moments t0, t1 = t0 + ∆t, t2 = t1 + ∆t =
t0 + 2∆t, . . . , tk = t0 + k ·∆t, . . . , for some small step ∆t;

• similarly, instead of considering all infinitely many values (x, y, z), we
consider finitely many points on a grid – e.g., values with x = x0+kx ·∆x,
y = y0 + ky ·∆y, and z = z0 + kz ·∆z.
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Of course, this is an over-simplified description. In more sophisticated algo-
rithms, such as Finite Element methods, instead of using a pre-determined grid,
we select points as we go – more points in areas of drastic change and fewer
points in areas where there is practically no spatial dependence.

In this discrete approximation, the original partial differential equation be-
comes a difference equation, and we can solve it by consequently computing the
values at moment t0, at moment t1, etc. If N is a total number of grid points in
each of the four directions x, y, z, and t, then we have N4 possible combinations
of these values, i.e., N4 nodes on a 4-D grid at each of which we need to perform
appropriate computations.

If we have n substances i, and we only consider reactions with two inputs
(i.e., of the type i + j → . . .), the the right-hand side of the corresponding
equations of chemical kinetics contains terms like ci · cj . Since we have n dif-
ferent substances, there are no more than n2 such terms, and thus, the total
computation time grows with number of substances as n2.

In this case, if we double the number of substances – e.g., take into con-
sideration important short-term intermediate substances whose study is very
important for studying catalysis – the whole computation time increases only
by a factor of four. We can usually afford such an increase – either by waiting
four times longer for the computations to finish, or by going to a need to a four
times faster computer, or by waiting 2+2 = 4 years during which, according to
Moore’s law, computers will twice double in speed and thus, become 2× 2 = 4
times faster.

If we take into account reactions with 3 inputs, then the computation time
starts growing as n3. If we double n, the total computation time increase by a
factor of eight – still feasible.

So, straightforward algorithms for solving equations of chemical kinetics are
feasible.

Straightforward solution of Schrödinger equation: an example of an
unfeasible algorithm. Schrödinger’s equation is the main equation of quan-
tum physics. To describe an atom with n electrons in quantum physics, we
need to describe a complex-valued function Ψ(t, x1, y1, z1, . . . , xn, yn, zn) called
wave function. Here, xi, yi, and zi are spatial coordinates of the i-th particle.
A straightforward way to solve this partial differential equation is the same as
for chemical kinetics: select a grid and consider only points from a grid. The
difference is that when we select N options for x1, N options for y1, N options
for z1, . . . , and N options for zn, then we get N3n+1 possible combinations
(grid points) (t, x1, y1, z1, . . . , xn, yn, zn). Processing each grid point requires at
least one computational step, so the overall number of computational steps –
and thus, the overall computation time – grows exponentially with n, as cn for
some constant c.

Such computations are realistically possible for the hydrogen H for which
there is one electron (n = 1), possible for the helium He for which n = 2,
but, e.g., for the iron Fe, with n = 26, even for the simplest case when we
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take only two points N = 2 in each direction, we need 23n+1 = 279 ≈ 3 · 1024
steps. The fastest supercomputer performs 1012 operations per second, so in
a year, it can perform 3 · 107 sec/year ·1012 oper/sec = 3 · 1019. Thus, we
need 30 000 years to finish these computations – and we only considered a
rather useless approximation with only two values per spatial dimension. For
a somewhat better (but still lousy) approximation, we can take N = 10 points
per dimension, in this case we need 1079 steps: much more than the fastest
computer can perform during the lifetime of the Universe.

This algorithm is clearly unfeasible.

Straightforward approach to protein folding: another example of an
unfeasible algorithm. A guaranteed way to find a global minimum of a
function of n variables is to compute its values on all the points of a grid and to
find the smallest of these values. This methods requires Nn steps and is, thus,
feasible, e.g., for n = 1, n = 2, even n = 3 variables. However, in the protein
folding, we need to find spatial locations of several thousand atoms forming the
protein, so n ≈ 103, and the value Nn is not even astronomical: it is much much
larger that the lifetime of the Universe.

Feasible and unfeasible algorithms: towards a formal description. In
the above examples, for some algorithms, the computation time grows polyno-
mially with the number n of inputs, as C ·nk for some k; these algorithms were
feasible. For some algorithms, the computation time grows exponentially with
n, as cn; these algorithms were unfeasible.

This distinction underlies the current formal definition of a feasible algo-
rithm: an algorithm is called feasible if there exists a polynomial P such that
on every input of size n, this algorithm finishes computations in time ≤ P (n).
All other algorithms are considered unfeasible.

Comment. It is well known that this definition does not always properly cap-
ture the intuitive idea of feasibility. For example, an algorithm that requires
computation time 1040 ·n is not practically feasible but it is feasible in the sense
of the above definition. On the other hand, an algorithm that requires time
exp(10−9 · n) is practically feasible but not feasible in the sense of the above
definition – since the exponential function cannot be bounded from above by
any polynomial. However, this is the best definition we have :-(

Maybe the problem itself is hard-to-solve? When an algorithm for solv-
ing a problem is not feasible, a natural idea is to look for a faster algorithm.
But maybe it is not the algorithm’s fault? maybe the problem itself is hard to
solve, so that no feasible algorithm is possible that would solve all particular
cases of this problem?

To be able to decide whether a problem is hard to solve, we need to first
provide precise definition of what is a problem and what does it mean for a
problem to be hard to solve. Let us start with describing what is a problem.
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What is a problem in the first place? In the previous discussion, we tried
our best to relate to chemistry. However, when we analyze what is a problem,
we want our answer to be as general as possible – to make sure that we do
not miss important real-life problems. Thus, let us now consider the activity of
other disciplines as well.

What is a problem: mathematics. For example, the main activity of a
mathematician is proving theorems. We are given a mathematical statement x,
and we need to find a proof y:

• either a proof that x is true

• or, if x is not true, a proof that the original statement x is false.

Mathematicians are usually interested in proofs which can be checked by human
researchers, and are, thus, of reasonable size. This notion of “reasonable size”
can be formalized in the same way as in the definition of a feasible algorithm:
as the existence of a polynomial Pl for which the length len(y) of the proof y
does not exceed the result Pl(len(x)) of applying this polynomial to the length
len(x) of the input x.

In the usual formal systems of mathematics, the correctness of a formal proof
can be checked in polynomial time. So, the main problem of mathematics can
be formulated as follows:

A description of a general problem.

• A description of a general problem. We are given:

– a feasible algorithm C(x, y) that, given two strings x and y, returns
“true” or “false”; and

– a polynomial Pl.

• A description of the particular case (instance) of the general problem.

– we are given a string x;

– we must find a string y of length len(y) ≤ Pl(len(x)) for which
C(x, y) =“true” – or produce the corresponding message if there
is no such string.

Comment. The possibility that we have neither a proof of x nor a proof of its
negation x is quite real: there are known statements x which are independent
of the axioms.

What about other activity areas? The above description was derived from
the analysis of mathematics, but, as we will now show, a similar description
applies to other activity areas as well.
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What is a problem: theoretical physics. In theoretical physics, one of the
main challenges is to find a formula y that describe the observed data x. The size
of such a formula cannot exceed the amount of data: otherwise, we could simply
enumerate all the observations and call it a formula. So, here, len(y) ≤ len(x),
i.e., we have the above inequality for Pl(n) = n. Once a formula y is proposed,
it is easy to check whether it is consistent with all the observations x: this can
be done observation-by-observation, so this checking can be performed in linear
time. If we denote by C(x, y) the statement “the formula y is consistent with
observations x”, then we get exactly the above formulation.

What is a problem: engineering. In engineering, one of the main chal-
lenges is to find a design y that satisfies given specifications x. For example,
a design for a bridge must be able to withstand winds up to a certain speed
and loads up to a certain amount, and its building cost should not increase the
amount allocated in the budget.

This design has to be practical, so its description cannot be too long; thus,
a condition of the type len(y) ≤ Pl(len(x)) sounds quite reasonable. Once a
design y is proposed, we can use known engineering software tools to efficiently
check whether the design y satisfies the specifications x; so, we have a feasible
checking algorithm C(x, y). Thus, we also get exactly the above formulation.

Class NP. In all these general problems, once we guess a solution candidate
y, we can check, in polynomial time, whether this guess y is indeed a solution.
In theoretical computer science, computations with guessing steps are called
nondeterministic. Thus, this class is called Nondeterministic Polynomial, or,
for short, NP.

Class P and the P
?
=NP problem. For some of the problems from the class

NP, there exist algorithms which solve these problems in polynomial time (i.e.,
feasibly). The class of all such problem is denoted by P.

By definition, the class P is a subset of the class NP: P⊆NP. A natural
question is: is P a proper subclass of NP? In other words, do there exist problems
from the class NP that cannot be solved in polynomial time – or, vice versa,
every problem from the class NP can be feasibly solved and thus, P=NP? The
answer to this question is unknown. Checking whether P is equal to NP is an
open problem for 40 years already. Most computer scientists believe that these
classes are different, but no one knows for sure.

Exhaustive search: why it is possible and why it is not feasible. In
principle, since the length len(y) of a possible solution is a priori restricted (by
the value Pl(len(x))), we can simply try all the words y of length ≤ Pl(len(x))
until we find a string y that satisfies the desired condition C(x, y). There are
finitely many words of given length, so this procedure always produces the
desired result.
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This “exhaustive search” algorithm works for small lengths, but in general,
this algorithm is not feasible. Indeed, even for the binary alphabet, we need
to try 2Pl(len(x)) possible words y, and we have already shown that even for
reasonable values m, it is not feasible to perform 2m computational steps.

Notion of NP-complete problems. The fact that no one knows whether
P is equal to NP does not mean that we have no information about the relative
complexity of different problems from the class NP. There are known reducibility
relations between different problems A and A′: sometimes, every instance of the
problem A can be feasibly reduced to an instance of the problem A′. In this
case, the problem A′ is harder than – of the same hardness as – the problem
A, in the sense that if we can efficiently solve every instance of the problem A′,
then we can also solve every instance of the problem A.

For example, if we know how to solve systems with three unknowns, then
we can solve every system with two unknown – by introducing a dummy third
variable and applying the algorithm for solving systems with three unknowns.
Thus, solving systems with three unknowns is harder than (or of the same
hardness as) solving systems of two unknowns.

Similarly, if we know how to solve a system of linear inequalities, then we can
also solve systems of linear equalities – since each equality f = 0 is equivalent
to two inequalities f ≥ 0 and f ≤ 0. Thus, solving systems of linear inequalities
is harder than (or of the same hardness as) solving systems of linear equalities.

An important discovery made in the early 1970s – a discovery that started
the whole area of research about P, NP, and NP-completeness – that in the class
NP, there exist problems to which every other problem from the class NP can
be reduced. Thus, each of these problems is harder than (or of the same quality
as) the complete class NP. Such hard-to-solve problems are called NP-complete.

Why solving even one NP-complete (hard-to-solve) problem is very
important. Because of the reduction-related definition of NP-completeness,
once we know how to efficiently solve one NP-complete problem, we will then
be able to efficiently solve all problems from the class NP. Similarly, once we
have an algorithm that efficiently solves many instances of one NP-complete
problem, we can the reduction to solve many instances of other problems from
the class NP.

Thus, any progress in solving one of NP-complete problems automatically
leads to a progress in all of them. As a result, solving even one NP-complete
problem — no matter how exotic is looks, no matter how unrelated it seems to
the problems in which we are actually interested – is very important because it
will help other problems.

Propositional satisfiability: historically the first NP-complete prob-
lem. At present, thousands of different NP-complete problems are known.
Historically, the first problem for which NP-completeness was proved was the
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propositional satisfiability problem. This problem is still actively studied as an
example of an NP-complete problem, so let is describe this problem.

For convenience, instead of describing the original satisfiability problem, we
will describe an easy-to-describe class 3-SAT which is also known to be NP-
hard. We start with n propositional variables v1, . . . , vn, i.e., variables each of
which can take only two values: “true” (usually represented, in the computers,
by 1) and “false” (usually represented, in the computers, by 0). By a literal a,
we mean a variable vi or its negation vi. By a clause C, we means an expression
of one of the following types: a ∨ b or a ∨ b ∨ c, where a, b, and c are literals.
Finally, by a formula F , we mean an expression of the type C1 &C2 & . . . &Cm,
where C1, . . . , Cm are clauses.

To illustrate this concept, let us give a simple example of the formula:

(v1 ∨ v2)& (v1 ∨ v2 ∨ v3).

This formula had m = 2 clauses: v1 ∨ v2 and v1 ∨ v2 ∨ v3.
The problem is: given a formula F , find the values of the variables v1, . . . , vn

that make this formula true (i.e., for which the formula F is satisfied) – or
return a message that such values do not exist. Once we have a sequence of
values v1, . . . , vn, we can plug these values into the formula F and easily check
whether the formula is true. Thus, this problem belongs to the class NP. (The
proof that this problem is NP-complete is beyond the scope of this chapter.)

What we do. In this chapter, we study the above-described propositional
satisfiability problem: namely, we show how chemical computing can solve this
problem.

2 How Chemical Computing Can Solve a Hard-
to-Solve Problem of Propositional Satisfiabil-
ity

Chemical computing: main idea. When a person needs to perform a com-
plex task – e.g., build a house, dig a ditch – and realizes that it would take too
much time for him to do it alone, he gets himself a helper. When they work
simultaneously, in parallel, they finish the task faster. To perform this task even
faster, we can get many helpers, the more helpers (up to a certain limit), the
better.

Similarly, when a computational problem requires too much computation
time, a natural way to finish computations faster is to have many computers
working in parallel. From this viewpoint, what can be faster than having all
≈ 1023 molecules work in parallel to perform the desired computations? In other
works, ideally, we should make chemical reactions – on the level of individual
molecules – perform the desired computations.

This is the main idea behind chemical computing.
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Why propositional satisfiability was historically the first problem for
which a chemical computing scheme was proposed. This may be not a
widely known fact, but the main idea of chemical computing was first proposed
by Yuri Matiyasevich exactly for the purpose of solving a hard-to-solve problem
of propositional satisfiability. This idea was first presented at a meeting; it was
first published in [13].

It makes sense to have selected a hard-to-solve problem: these problem re-
quire a lot of computations time, and thus, for them, the need to reduce this
time is the most ungent. But why propositional satisfiability and not any other
hard-to-solve problem? The answer is that, surprisingly, the propositional sat-
isfiability problem can be naturally represented in terms which are very similar
to chemistry.

To explain this representation, let us recall the meaning of each clause. A
clause a ∨ b means that either a is true or b is true. Thus, if a is false, then b
is true; similarly, if b is false, then a should be true. In other words, this clause
can be represented by two implications

a → b; b → a.

Vice versa, if both these implications are true, this means that the clause a ∨ b
is true. Indeed, in general, either a is true or a is false.

• If a is true, then the clause a ∨ b is also true.

• If a is false, then, due to the implication a → b, the literal b is true.

In both cases, the clause is true. (Notice that we used only one implication.)
Similarly, a clause a ∨ b ∨ c means that one of the three literals a, b, and c

must be true. Thus, if both a and b are false, then c must be true; if a and c
are both false, then b must be true; and if b and c are both false, then a must
be true. In other words, this clause can be represented by three implications:

a, b → c; a, c → b; b, c → a.

Vice versa, one can check that if these implications are true, then the original
clause is true is well. (Actually, it is sufficient to require that one of these
implications is true.)

For example, the above formula (v1 ∨ v2)& (v1 ∨ v2 ∨ v3) can be represented
by the following five implications:

v1 → v2; v2 → v1; v1, v2 → v3; v1, v3 → v2; v2, v3 → v1.

How to apply chemical computing to propositional satisfiability:
Matiyasevich’s original idea. Matiyasevich noticed that these implications
look exactly like chemical reactions involving substances vi and vi. Thus, he
proposed to solve the original propositional satisfiability problem with vari-
ables v1, . . . , vn by finding 2n substances which have exactly these implications
a, b → c as chemical reactions a+ b → c. For each variable vi:
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• the larger concentration of the substance vi in comparison with the con-
centration of the “opposite” substance vi indicates that this variable vi is
true, while

• the larger concentration of substance vi in comparison with the concen-
tration of vi indicates that vi is false.

These reactions work in such a way as to make all the implications true, and
thus, the whole formula true. For example, the reaction a → b means that if we
have a prevalence of the substance a (i.e., if, in our interpretation, a is false),
then this reaction would create a prevalence of the substance b – i.e., b will
become true as well. Once all the implications are true, this means that all the
clauses are true, and thus, the original formula is satisfied.

Of course, the original propositional formula may be always false. In this
case, no matter what truth values we plug in, we will always get false. Therefore,
once we get the values “true” and “false” from chemical computations, we must
check whether they make the formula true. If they do, we return these values; if
they do not, we return the message that the original formula was not satisfiable.

A precise description of Matiyasevich’s chemical computer: first ex-
ample. To analyze the behavior of Matiyasevich’s chemical computer, they
wrote down – and analyzed – the corresponding system of chemical kinetic equa-
tions. For simplicity, they assumed that the chemical reactions corresponding
to each implication has the exact same intensity.

Before we describe a general formula, let us describe these chemical kinetic
equations on the example of the above simple propositional formula. In these
equations, we will denote concentrations of each substance vi by ci, and con-
centration of the “opposite” substance vi by c−i.

None of the above five chemical reactions consumes v1 and two reactions
produce v1: the reactions v2 → v1 and v2 + v3 → v1. According to chemical
kinetics, the rate of the first reaction is proportional to c2 and the rate of the
second reaction is proportional to the product c−2 · c−3. Thus, the differential
equation describing the changes in the concentration c1 of the substance v1 has
the form

ċ1 = c2 + c−2 · c−3.

For the substance v1, the opposite is true: none of the reactions produces this
substance, but we have three reactions that consume it: v1 → v2, v1, v2 → v3,
and v1, v3 → v2. The rate of the first reaction is c−1, the rate of the second
reaction is c−1 · c−2, and the rate of the third reaction is c−1 · c−3. Thus,

ċ−1 = −c−1 − c−1 · c−2 − c−1 · c−2.

For the substance v2, we have one reaction that produces it: the reaction
v1, v3 → v2, and one reaction that consumes it: the reaction v2 → v1. Thus, we
get

ċ2 = c−1 · c−3 − c2.
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Similarly, we have

ċ−2 = c−1 − c−1 · c−2 − c−1 · c−3; ċ3 = c−1 · c−2; ċ−3 = −c−1 · c−3 − c−2 · c−3.

From this system of equations, it is easy to see why the chemical reactions
will lead to values vi that satisfy the original formula. Indeed, in these reactions,
the substance v1 is only produced and never consumed, and the substance v1 is
always consumed and never produced. Thus, after a sufficiently long time, the
concentration of the substance v1 will becomes larger than the concentration
of the substance v1. According to our interpretation, this means that we will
select v1 to be true.

Similarly, the substance v3 is only produced, and the substance ¬v3 is only
consumed, which means that the substance v3 will prevail – i.e., that we will
select x3 to be true as well.

We cannot make a similar conclusion about v2 without performing detailed
computations, but we do not actually need to perform these computations: if
we select v1 and v3 to be true, then, no matter what value we select for v2, both
clauses are satisfied and thus, the original formula is satisfied.

A precise description of Matiyasevich’s chemical computer: second
example. The conclusion is not always as simple and as straightforward as in
the above example. For example, for a formula (v1 ∨ v2)& (v1 ∨ v2), by trying
all four possible combinations, we can see that it has two possible solutions:

• v1 =“true” and v2 =“false”; and

• v1 =“false” and v2 =“true”.

The corresponding equations of chemical kinetics take the form

ċ1 = c−2 − c1; ċ−1 = c2 − c−1; ċ2 = c−1 − c2; ċ−2 = c2 − c−2.

According to our interpretation, what we are really interested in whether c1 >
c−1 and whether c2 > c−2. From this viewpoint, it makes sense to consider the

differences ∆c1
def
= c1 − c−1 and ∆c2

def
= c2 − c−2: for each i, we select vi to be

true if ∆ci > 0 and to be false if ∆ci < 0.
By subtracting the above expressions for the rate changes of the concentra-

tions ci and c−i, we can get the expressions for the rate changes of the differences
∆ci:

∆ċ1 = −(c2 − c−2)− (c1 − c−1); ∆ċ2 = −(c1 − c−1)− (c2 − c−2),

i.e.,
∆ċ1 = −∆c1 −∆c2; ∆ċ2 = −∆c1 −∆c2.

By adding these two equations, we conclude that for ∆
def
= ∆c1 + ∆c2, we get

∆̇ = −2∆, hence ∆(t) = ∆(0) · exp(−2t). When t → ∞, we get ∆(t) → 0; thus,
for large t, we have ∆(t) ≈ 0. By definition of ∆, this means that ∆c1+∆c2 ≈ 0,
i.e., that ∆c2 ≈ −∆c1. Thus:
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• If ∆c1 > 0, i.e., if v1 is true, then we should have ∆c2 < 0, i.e., v2 should
be false.

• Vice versa, if ∆c1 < 0, i.e., if v1 is false, then we should have ∆c2 > 0,
i.e., v2 should be true.

So, for this formula, chemical kinetic equations lead to both solutions; which
one we get depends on the initial conditions.

A precise description of Matiyasevich’s chemical computer: general
formula. In general, similar ideas results in the following formula for the rate
which the concentration ca of each literal changes:

ċa =
∑

C:a∈C

 ∏
b∈C,b ̸=a

c b

− ca ·
∑

C:a∈C,|C|=3

 ∑
b∈C & b̸=a

c b

−

ca ·#{C : a ∈ C & |C| = 2}.
Here, C goes over all the clauses, |C| is the number of literals in the clause, and
#S is the number of elements in the set S.

Indeed, a substance corresponding to the literal a is produced if a belongs
to a clause. Each such clause a ∨ b ∨ c leads to the chemical reaction b+ c → a
and thus, to the term c b · c c in the expression for ȧ.

Similarly, a substance corresponding to the literal a is consumed if the nega-
tion a belongs to a clause. Each such clause a∨b∨c leas to the chemical reaction
a+ b → c, and thus, to the term −ca · c b in the expression for ȧ. If the negation
a belongs to a clause a ∨ b, then the consuming chemical reaction is a → b,
which leads to the term −ca in the expression for ċ.

A simplified version (corresponding to catalysis). In the above system
of chemical reactions, each substance is both produced and consumed. To make
the analysis of the resulting system of equations simpler, is may be desirable to
avoid consumption and consider only production. We can do this if we introduce
a new universal substance U and, to each implication a, b → c, assign a modified
chemical reaction U + a+ b → a+ b+ c. In this reaction, the input substances
a and b are not consumed: in chemical terms, they play a role of catalysts
that enhance the transformation of the universal substance into the generated
substance c.

In principle, in this case, we should also take into account the changes in
the concentration of substance U . To maximally simplify the situation, we
assume that we have a large (practically unlimited) supply of the substance U ,
so that the consumption of U during our reactions is negligible in comparison
with its original concentration. In this case, we only need to take into account
production of each substance, and the resulting differential equations take a
simplified form:

ċa =
∑

C:a∈C

 ∏
b∈C,b ̸=a

c b

 .
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This simplification makes perfect sense from the logical viewpoint:

• In chemical kinetics, a reaction a+b → cmeans not only that c is produced
but also that a and b are consumed.

• In contrast, in logic, an implication a, b → c means that if we have some
reasons to believe in a and b are true, this increases our belief in c, but it
does not mean that we somehow decrease our beliefs in a and b.

The above modification of the original system of chemical kinetics equations
allows us to avoid this discrepancy.

Simplified equations: example. Let us give an example of such simplified
equations. For the above propositional formula (v1 ∨ v2)& (v1 ∨ v2 ∨ v3), the
corresponding equations of chemical kinetics take the following simplified form:

ċ1 = c2+c−2 ·c−3; ċ−1 = 0; ċ2 = c−1 ·c−3; ċ−2 = c−1; ċ3 = c−1 ·c−2; ċ−3 = 0.

Chemical computations implementing Matiyasevich’s idea are too
slow. Yu. Matiyasevich is a star of the mathematical world, he has a dis-
tinction of having solved one of the 23 famous Hilbert’s problems – 23 im-
portant problems that, at the 1900 World Congress of Mathematics, the 19th
century mathematics proposed as a challenge for the next 20th century. What-
ever Matiyasevich writes is therefore taken seriously by mathematicians and
computer scientists. Immediately, Yuri Gurevich, one of the world leaders in
theoretical computer science, engaged his colleagues in the analysis of Matiya-
sevich’s idea: how efficient is it?

Alas, the results of this analysis, published in [1], were not very promising:
even for simple propositional formulas, for which simple algorithms produce
satisfying propositional values v1, . . . , vn, Matiyasevich’s system requires expo-
nential time to converge to a correct solution – i.e., to concentrations ci and
ci for which the vector v1, . . . , vn for which vi is true if and only if ci > c−i is
indeed satisfying.

Natural idea: let us use high-concentration chemical reactions in-
stead. Since the original chemical reactions are too slow, we need to speed
them up. The reaction rate is proportional to the product of the concentra-
tions. Thus, to drastically speed up the reaction, we need to drastically speed
up the concentrations ci and c−i.

The interesting thing is that when the concentrations become very high, the
formulas for the rate of chemical reaction change. Indeed, the usual formulas of
chemical kinetics are based on the natural idea: that when concentrations are
small, then, for the reaction to take place, all the molecules have to physically
meet. For example, for a reaction a+b → c to take place, we need the molecules
of a and b to meet.

The total number of molecules of a is proportional to the concentration ca
of the substance a. For each molecule of a the probability of meeting a molecule
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of b is proportional to the concentration cb of the molecules b. Thus, the total
number of reactions per unit time is proportional to the product ca · cb of these
concentrations.

In the case of very high concentrations, the molecules are there already, so
the reaction always takes place. The rate of this reaction is thus proportional
to the total number of pairs (a, b).

• If the concentration ca of the substance a is higher, then the rate is deter-
mined by a concentration cb of the substance b.

• If the concentration cb of the substance b is higher, then the rate is deter-
mined by a concentration ca of the substance a.

We can describe both cases by saying that the reaction rate is proportional to
the minimum min(ca, cb) of the two concentrations.

This argument may be not absolutely clear when presented on the example
of chemical kinetic where we do not have much of an intuition, but it can be
made clearer if we use an example of similar predator-prey equations. When
the concentrations of rabbits and wolves are small, the rate with which wolves
consume rabbits is proportional to the product cw · cr of the concentration of
wolves cw and the concentration of rabbits cr. Indeed, in this case, a wolf has
to run around the forest to find his rabbit meal.

On the other hand, if we place all the wolves and all the rabbits together
– in a small area where rabbits cannot run and cannot hide – then each wolf
will immediately start consuming a rabbit – provided, of course, that there are
enough rabbits for all the wolves. So, if the number of rabbits is larger than
the number of wolves, the reaction speed will be determined by the number of
wolves – hence, by the concentration of wolves cw: each wolf eats a rabbit. In
the opposite situation cw > cr, when there are more wolves than rabbits, this
rate will be proportional to the concentration of rabbits: each rabbit is being
eaten by a wolf. In both cases, the reaction rate is proportional to min(cw, cr).

Resulting equations. The main difference between usual chemical kinetics
equations and equations corresponding to high concentrations is that we now
have minimum instead of the product. Thus, by applying this high-speed high-
concentration kinetics to the (simplified) chemical reactions emerging from a
propositional formula, we get the following system of differential equations:

ċa =
∑

C:a∈C

(
min

b∈C,b ̸=a
c b

)
.

For our example of a propositional formula (v1∨v2)& (v1∨v2∨v3), we thus
get the following equations:

ċ1 = c2 +min(c−2, c−3); ċ−1 = 0; ċ2 = min(c−1, c−3); ċ−2 = c−1;

ċ3 = min(c−1, c−2); ċ−3 = 0.
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Discrete-time version of these equations have already been shown to
be successful in solving the propositional satisfiability problem. How
good is a new system of differential equations? Is it indeed faster than the
original one?

The ideal answer to this question would come if we could actually find the
substance that have these chemical reactions. Alas, finding such substances is
difficult, so we have to restrict ourselves to simulating this system of equations
on a computer.

In order to simulate a system of differential equations ẋi = fi(x1, . . . , xn),
we can use the fact that the derivative ẋi is defined as a limit of the ratios
xi(t+∆t)− xi(t)

∆t
. By definition of the limit, this means that when ∆t is small,

the ratio is approximately equal to the derivative:

xi(t+∆t)− xi(t)

∆t
≈ fi(x1, . . . , xn),

hence xi(t+∆t) = xi(t) + ∆t · fi(x1(t), . . . , xn(t)).
Thus, if we know the values xi(t) for some moment of time, we can use this

formula to compute the values of all the variables xi in the next moment of
time t+∆t. Based on the values xi(t+∆t), we compute the values xi(t+2∆t),
etc. If we start at a moment t0 and we are interested in the values of xi at the

moment tf , then we need k =
tf − t0
∆t

iterations of this procedure.

For our system of equations, this means that once we know the values of the
concentrations at each moment of time, we can compute the new values of the
concentrations as

c′a = ca +∆t ·
∑

C:a∈C

(
min

b∈C,b ̸=a
c b

)
.

We repeat this iterative procedure many times, and then select each variable vi
to be true if and only if ci > c−i.

Interestingly, we get the exact same formulas that were proposed by Sergey
Maslov in 1980 [12]; see a detailed description and analysis in [10, 11]. In par-
ticular, in [10, 11], it was shown that (in contrast to the original Matiyasevich’s
equations) Maslov’s method performs very well on many classes of propositional
formulas. For example, for many classes of propositional formulas for which ef-
ficient algorithms are known, Maslov’s method also comes up with a solution in
feasible time.

Thus, we arrive at the following conclusion:

Conclusion. The use of high-concentration chemical computations is indeed
an efficient approach to hard-to-solve problems.

Historical comment. Maslov’s method was originally proposed on a purely
heuristic basis, without mentioning chemical computing. The high-
concentration interpretation of this method – providing an explanation of why

16



these formulas are used, and a physical justification of why this method should
be faster than, e.g., Matiyasevich’s approach – is described in [3, 4, 5, 7, 8].

Pragmatic comment. Since Maslov’s method was known before, what do we
gain by finding out that it coincides with the result of fast chemical computing?

• First, we gain a new justification: Maslov’s method is heuristic, and to
be able to explain its formulas and explain why they work fast is an
advantage.

• We also gain the possibility to naturally modify the original method – e.g.,
by applying it to the original system of chemical reactions instead of the
reactions with a universal substance U – and maybe to find a modification
which will work even faster.

• Third, we gain an understanding of how to optimally select a parameter of
the Maslov’s method: since this interpreted as an integration step of the
system of differential equations, we can use known techniques to optimally
select this step; see below.

• Fourth, we gain an ability to extend Maslov’s technique to problems be-
yond propositional satisfiability – as long as these problems can be natu-
rally interpreted in terms of chemical processes. For example, in [3, 4, 5, 8],
a similar approach was used to find so-called stable models of logic pro-
grams. The main difference between a propositional formula and a logic
program is that in a formula, an implication a, b → c automatically leads
to a,¬c → ¬b – this is why we used three implications and three chemical
reactions for each clause; in a logic program, this is not automatically true:
rules involving negations have to be explicitly formulated. This difference
is easy to describe in chemical computing terms: just add only the rules of
the original logic program as chemical reactions (and not the extra rules).
As a result, we get an efficient way of computing stable models of logic
programs.

• Finally, last but not the least, if we find actual substances that have these
chemical reactions, then, by performing these reactions, we can actually
solve hard-to-solve problems.

Auxiliary result: how to select the parameter ∆t. In our chemical com-
puting model, we start with some concentrations ci and c−i of the substances
corresponding to vi and vi. For these arbitrary concentrations, selecting each
propositional variable vi to be true when ci > c−i will not, in general, lead to
the values that satisfy the original propositional formula F . In the process of
chemical reactions, the original inequalities ci > c−i and cj < c−j change and
eventually, the process (hopefully) stabilizes in the sense that the differences
∆ci = ci − c−i no longer change sign. Once the process stabilizes, there is no
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need to perform further simulations, we can already find the appropriate values
of the propositional variables vi.

Let us denote, by T , the time that it takes for a process to stabilize. In
terms of T , if we select a value ∆t, then we will need T/∆t iteration steps to
find the desired solution to the original propositional satisfiability problem. The
smaller ∆t, the more iterations we need; from this viewpoint, if we want to find
the solution faster, we must choose the largest possible value ∆t. However, we
cannot take ∆t too large: otherwise, a linear approximation xi(t) + ∆t · ẋi will
not be a good approximation for xi(t + ∆t). So, we need to select the largest
∆t for which the error of this linear approximation is not too large.

The above linear approximation can be viewed as the sum of the first two
terms of the Taylor expansion

xi(t+∆t) = xi(t) + ∆t · ẋi(t) +
1

2
· (∆t)2 · ẍi(t) + . . .

The approximation error of the linear approximation is equal to the sum of all
the terms that we ignored in this linear approximation, i.e.:

xi(t+∆t)− (xi(t) + ∆t · ẋi(t)) =
1

2
· (∆t)2 · ẍi(t) + . . .

In this expansion, each term is (for sufficiently small ∆t) much smaller than
the next one. Thus, the first (quadratic) term in the right-hand side provides a
good approximation for the size of the approximation error. So, to make sure
that this approximation error is small, we should require that it does not exceed
a certain given portion δ > 0 of the linear approximation, e.g., that∥∥∥∥12 · (∆t)2 · ẍi

∥∥∥∥ ≤ δ · ∥∆t · ẋi∥,

where ∥ai∥ =
√
a21 + . . .+ a2N denotes the length of a vector a = (a1, . . . , aN ).

From this inequality, we can find the largest value of ∆ for which this inequality
is still satisfied, i.e., the largest value of ∆t for which linear approximation still
works well, as

∆t = 2 · δ · ∥ẋi(t)∥
∥ẍi(t)∥

.

In our case, the variables xi are concentrations ca corresponding to different
literals a. We already have the formula for the first derivatives of these variables:

ċa =
∑

C:a∈C

(
min

b∈C,b ̸=a
c b

)
.

To find the formula for the second derivatives c̈a, we need to differentiate the
expression for ċa. A (minor) problem here is that this expression contains
minimum. For each t, the minimum of several terms coincides with the smallest
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of these terms. Thus, the derivative of the minimum is simply equal to the
derivative of the smallest term. This leads to the following formula

c̈a =
∑

C:a∈C

ċ bC,a
,

where b(C, a) denotes the literal for which the value c b is the smallest value
among all b ∈ C that are different from a. Once we know the values b(C, a),
we can compute the value ċ bC,a

by using the above general formula for the first

derivative ċa.
As a result, we select the value

∆t = 2 · δ · ∥ċ∥
∥c̈∥

,

where

∥ċ∥ def
=

√∑
a

(ċa)
2
and ∥c̈∥ def

=

√∑
a

(c̈a)
2
.

3 The Resulting Method for Solving Hard Prob-
lems Is Related to Numerical Optimization,
Neural Computing, Reasoning Under Uncer-
tainty, and Freedom Of Choice

Relation to optimization: why it is important. The fact that Maslov’s
method turned out to be equivalent to fast chemical computations is nice, but
this fact only shows that this method is faster than other chemistry-motivated
methods of solving the propositional satisfiability problem. Chemical computing
has a clear advantage when implemented in vitro – that we drastically paral-
lelize computations. However, if we simply simulate the corresponding chemical
reactions on a computer, then there is no convincing reason to restrict ourselves
to algorithms that come from such simulations. Instead, we should search for
the methods which are the fastest among all algorithms, chemistry-motivated
or not.

In such a search, we can use the experience of computational mathematics.
We cannot directly use this experience, because propositional satisfiability –
and probably any other NP-complete problem – is not something we normally
solve in numerical methods. This absence of hard problems from the numerical
methods experience makes perfect sense:

• Numerical methods are designed to solve feasible problems like optimiza-
tion (when it is feasible), solving systems large systems of equations or
solving a system of ordinary differential equations, problems in which,
in principle, an algorithm is known, but because of the large size of the
problem, we need to find a faster modification. For these problems, it is
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possible to find general modifications which allow us to solve the original
problems much faster.

• In contrast, for hard-to-solve (NP-complete) problems, there is no general
feasible algorithm, solving each of these problems requires creative think-
ing. Thus, there is no hope (unless P=NP) that we can find a general
feasible modification for solving these problems faster.

Since we cannot use a direct experience of solving the original propositional
satisfiability problem, we must therefore use – indirectly – the experience of
solving more traditional numerical problems. We have already mentioned that
we can use the experience of solving systems of differential equations. Let us
now show that we can also use an experience of solving optimization problems.

Relation to optimization: main idea. [7, 16] In the propositional satisfi-
ability problem, we need to find truth values of all the literals a that make the
formula C1 &C2 & . . . &Cm true, i.e., that makes all the clauses C1, . . . , Cm

true.
In the computer, everything is represented as 0s and 1s. In particular, a truth

value is represented as 0 or 1: “true” corresponds to 1, and “false” corresponds
to 0. Let us denote, by ca, the truth value of a literal a. If the literal a is true,
then its negation a is false, and vice versa; in both cases, we have ca + c a = 1.

A clause a ∨ b ∨ c is true if and only if at least one of the three literals a, b,
and c is true. (Similarly, a clause a ∨ b is true if at least one of the two literals
a and b is true.) To make it easier to compare with the chemical approach, in
which each clause leads to equations a+ b+U → b+ c+ a that mostly contain
negations, let us reformulate the above condition in terms of negations: a clause
a ∨ b ∨ c is true if and only if at least one of the literals a, b, and c is false. In
terms of truth values c a, c b, and c c this means that a clause is true if at least
one of the non-negative values c a, c b, and c c is equal to 0. This, in turn, is
equivalent to requiring that the minimum min

a∈C
c a of these values is equal to 0.

In general, we want the (non-negative) expressions min
a∈C

c a corresponding to

all the clauses C to be equal to 0. This is equivalent to requiring that the sum
J of all these expressions is equal to 0, where we denoted

J
def
=

∑
C

(
min
a∈C

c a

)
.

It is possible that the original formula does not have any satisfying propositional
values v1, . . . , vn. In this case, the value J will never become equal to 0. Thus,
we can reformulate the original problem as follows: find the values ca ∈ {0, 1},
with ca + c a = 1 for all a, for which the expression J attains its minimum. If
this minimum is 0, then we get satisfying values vi. If this minimum is not zero,
this means that the original propositional formula cannot be satisfied.

We have reduced the original propositional satisfiability problem to a discrete
optimization problem, in which the set of possible values of each variable ca is

20



discrete: it actually consists of two values 0 and 1. This is not exactly what we
wanted:

• our goal was to use the experience of numerical methods;

• however, in general, discrete optimization problems are at least as hard as
NP-complete problems (see, e.g., [9, 14]); thus, they are not usually solved
by numerical methods.

So, to use the desired experience, we must reduce the above discrete optimization
problem to a continuous one. In the above formulation, this can be easily done:
just replace each discrete range ca ∈ {0, 1} by a continuous range ca ∈ [0, 1].
Thus, we arrive at the following problem: find the values ca ∈ [0, 1], with
ca + c a = 1 for all a, for which the expression J attains its minimum.

Now we can use the experience of numerical optimization. There exist many
techniques for minimizing a function f(x1, . . . , xn). Most of these techniques use
derivatives of the minimized function f . Among the techniques which only use
the first derivatives of f , the fastest is the gradient descent method, in which,
at each iteration, we replace the original values xi with new values

x′
i = xi − λ · ∂f

∂xi
,

for an appropriate value λ.
In principle, we could directly use this formula to the above function J , by

computing

∂J

∂ca
= lim

∆→0

J(. . . , cb, ca +∆, cc, . . .)− J(. . . , cb, ca, cc, . . .)

∆
.

However, this would mean, in general, that we use the values ca+∆, ca ∈ {0, 1}
that were artificially added to the original values ca ∈ {0, 1}. To make these
computations more adequate for the original problem, it may be better to only
consider values from the original set {0, 1}, i.e., to use the following discrete

approximation
DJ

Dca
to the partial derivative

∂J

∂ca
:

DJ

Dca

def
=

J(. . . , cb, 1, cc, . . .)− J(. . . , cb, 0, cc, . . .)

1− 0
=

J(. . . , cb, 1, cc, . . .)− J(. . . , cb, 0, cc, . . .).

Then, we can take c′a = ca − λ · DJ

Dca
.

The minimized function J is the sum of several terms tC corresponding to
different clauses C. One can easily check that the discrete derivative of the sum
of several terms is equal to the sum of discrete derivatives of each term. For each

term tC of the type min(ca, cb, cc), we have
DtC
dca

= min(1, cb, cc)−min(0, cb, cc).

Here, all the values cb and cc are in the interval [0, 1], thus,

min(1, cb, cc) = min(cb, cc), min(0, cb, cc) = 0,
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and therefore,
DtC
dca

= min(cb, cc). So, we conclude that

c′a = c a − λ ·
∑

C:a∈C

(
min

b∈C,b ̸=a
c b

)
.

Since ca + c a = 1, any term subtracted from c a means that an equal term is
added to ca, so we have:

c′a = ca + λ ·
∑

C:a∈C

(
min

b∈C,b ̸=a
c b

)
.

This is exactly the chemical kinetics formulas, with λ instead of ∆t.

Relation to numerical optimization: conclusion. We can conclude that
the chemistry-motivated formulas for solving hard-to-solve problems can also be
justified by the experience of numerical optimization.

Relation to numerical optimization: what do we gain from it? We
can ask the same pragmatic question that we asked before: what did we gain
by this optimization justification? Well, first, we gained a new justification, but
– similar to the previous section – there are more pragmatic gains as well:

• First, we now use the experience of numerical optimization to come up
with a new method for selecting ∆t = λ (and for checking whether the
selected parameter ∆t is adequate). Namely, we can estimate the qual-
ity of each iteration ca if we normalize the corresponding values to the

condition ca + c a = 1, by taking c̃a =
ca

ca + c a
and computing the value

J({c̃a}) of the minimized function. If the value of J on the next itera-
tion is larger than the value on the previous iteration, this means that we
moved too fast, and we should decrease the value λ; numerical optimiza-
tion techniques recommend halving λ. Vice versa, if the value J on the
next iteration is smaller, this means that maybe we can move faster, so
we can try doubling λ and seeing what happens.

• Another idea is that instead of gradient methods that only use the first
derivatives, we can use faster second-order methods that use second deriva-
tives as well; see, e.g., [2, 16, 17].

Relation to neural computing. Neural computing is a way to perform
computations by simulating how such computations are performed in the human
brain. In the human brain, the state of each neuron is usually well represented
by a real number – the frequency with which this neuron generates pulses. When
the neuron is active, it generates a lot of pulses; when the neuron is inactive, it
generates only a few pulses. Neurons send these pulses to other neurons, and
the received signal changes the state of receiving neurons.
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In the first approximation, we can say that a neuron can be in two states:
active and inactive. For example, a neuron receiving optical signals from the
eye is active if there is light coming to the corresponding portion of the eye, and
inactive if there is no light coming to this portion. Similarly, when we think
about an object or a person, certain neurons are activated. Thus, it makes sense
to assume that when we think about how to solve a propositional satisfiability
problem with propositional variables v1, . . . , vn, it makes sense to assume that
to each variables, there is an appropriate neuron that becomes active when we
have reasons to believe that this variable is true, and inactive if there are no
such reasons.

In the brain, frequently, two different neurons (or groups of neurons) cor-
respond to each property. For example, when we are asleep, neurons that are
normally very active are de-activated, but, on the other hand, other neurons
– who are normally not active at all – become very active. So, it makes sense
to assign neurons also to negations vi: such neurons becomes active when vi is
true (i.e., when vi is false). Thus, we assign a neuron to each literal a.

Each rule b, c → a means that if we have reasons to believe in b and in c, then
this gives us extra reasons to believe in a. In neural terms, this means that if
the neurons b and c are active, then the neuron a also becomes more activated,
i.e., we add a term to the original activation level ca. This term is added only
when both neurons are activated, i.e., when c b > 0 and c c > 0. Similarly to our
analysis of the optimization relation, we can show that this combined condition
is equivalent to min(c b, c c) > 0. Thus, it makes sense to add to the original

activation level ca, for each implication of the type b, c → a, a term proportional
to this minimum.

As a result, when we take into account all the implications corresponding
to all the clauses, we get the same Maslov’s formula as in the case of chemical
computing. Thus, this formula can also be interpreted in neural terms.

Comment. Minimum min(a, b) is, of course, not the only function with the
property that it is positive only if both a and b are positive; we can therefore
try other such functions as well. In particular, Maslov himself proposed to use
functions fr(a, b) = (ar+br)−1/r for r > 0. When r → ∞, these functions tends
to min(a, b). When using these functions instead of minimum in the iterative
method of solving the propositional satisfiability problems, he also got very good
results; the justification of using this family of functions is given in [7].

Historical comment. S. Maslov himself presented this heuristical neural deriva-
tion of his iterative method in numerous talks, but he never published it. The
details of Maslov’s derivation were first published in [15].

Relation to reasoning under uncertainty. In the traditional mathematical
reasoning, each statement is either tree of false. In reasoning under uncertainty –
e.g., in reasoning about expert knowledge – it is important to take into account
that we may have different degree of confidence in different statements. For
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example, a medical expert can say that a bleeding large-size irregularly shaped
skin tumor is probably cancerous, but this expert understands well that this
statement is sometimes false.

A natural idea is to represent this degree of certainty by a number from the
interval [0, 1], so that:

• a complete certainty – meaning that the statement is true – corresponds
to 1,

• the absence of any argument in favor of this statement (meaning probably
that this statement is false) corresponds to 0, and

• intermediate degrees of certainty are represented by numbers from the
interval (0, 1).

We may have different arguments in favor of a statement a and in favor of its
negation a; in this case, when we need to make a definite decision:

• we select a if our confidence ca in the statement a is larger than our
confidence c a in its negation a, i.e., if ca > c a;

• we select a if our confidence in the negation a is larger, i.e., if c a > ca.

In these terms, an implication a, b → c means that if we believe in both a and b,
then we have additional reason to believe in c, i.e., that our degree of certainty
in c increases. Arguments similar to the neural case show that it is reasonable
to add, to the degree of certainty of a, a term proportional to min(cb, cc) (or to
f(cb, cc) for some other combination function). Thus, we also arrive at Maslov’s
iterative formulas.

Relation to freedom of choice. Freedom of choice was the original motiva-
tion of Maslov’s iterative method – it is explicitly mentioned in the title of his
first paper [12] describing this method; see [6, 11] for details.

This idea is easy to explain: Initially, we have a large search space, whose size
grows exponentially with the length of the input. For example, for propositional
satisfiability with n Boolean variables v1, . . . , vn, this search space includes 2n

possible combinations of “true” and “false” values. Because of the huge size
of this space, we cannot test all its elements. Instead, we must test only a
few “most possible” candidates for a solution. For example, for propositional
formulas, we can cut the size of the search space in half if we fix a value of one
of the Boolean variables vi to a certain value εi (“true” or “false”).

Since we are not testing all the elements of the search space, we may miss
a solution. So, we must select a subclass with the smallest “probability” of
losing a solution. In particular, for propositional satisfiability, we must select a
variable vi and a value εi for which the probability of losing the solution is the
smallest possible. After each choice (vi, εi), there may be several solutions.

If we knew exactly the number of solutions N(vi, εi) left after each choice,
then we could simply take a solution for which N(vi, εi) > 0. In reality, however,
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we do not know these values N(vi, εi). At best, we know the estimates Ñ(vi, εi)
for these numbers.

Usually, we have no information about the errors Ñ(vi, εi)−N(vi, εi) of these
estimates. Therefore, it is natural to assume that larger values of error are less
probable than smaller ones. Hence, the larger the estimate Ñ(vi, εi), the larger
the probability that for this choice (vi, εi), the actual number of solutions will
be positive, and therefore, that we will not miss a solution.

As a result, a reasonable method is to look for a choice (vi, εi) after which

the estimated number of solutions Ñ(vi, εi) is the largest possible. In other
words, we must make a choice after which the remaining freedom of choice
is the largest possible. Maslov called this idea “the strategy of increasing the
freedom of choice”.

Let us denote the estimate Ñ(vi, εi) by ci if εi =“true” and by c−i when
εi =“false.

Each clause a ∨ b ∨ c can be reformulated in the form ¬a&¬b → c. From
the viewpoint of the freedom of choice strategy, this means that if, according to
our estimate, there are many solutions for which ¬a and ¬b are true, then the
estimate for the number of solutions for which c is true must also increase. By
arguing like in the neural case, we conclude that for the corresponding estimates
ca, we get exactly Maslov’s iterations.

Thus, Maslov’s iterative formulas can be justified based on freedom of choice
as well.

Comment. While Maslov’s method prompted by this freedom of choice princi-
ple is new, the principle itself have been formulated, in various forms, by differ-
ent researchers. For example, David Marr, a well-known researcher in computer
vision, described a similar principle as the Principle of Least Commitment.
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