
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

8-1-2011

A New Justification for Weighted Average
Aggregation in Fuzzy Techniques
Jaime Nava
University of Texas at El Paso, jenava@miners.utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-47
To appear in Journal of Uncertain Systems, 2012, Vol. 6, No. 2.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Nava, Jaime, "A New Justification for Weighted Average Aggregation in Fuzzy Techniques" (2011). Departmental Technical Reports
(CS). Paper 641.
http://digitalcommons.utep.edu/cs_techrep/641

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/641?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Journal of Uncertain Systems
Vol.6, No.x, pp.xx-xx, 2012
Online at: www.jus.org.uk

A New Justification for Weighted Average Aggregation in Fuzzy

Techniques

Jaime Nava
2Department of Computer Science, University of Texas at El Paso

El Paso, TX 79968, USA, jenava@miners.utep.edu

Received 1 June 2011; Revised 14 July 2011

Abstract

In many practical situations, we need to decide whether a given solution is good enough, based on the
degree ai to which different criteria are satisfied. In this paper, we show that natural requirements lead to
the weighted average decision, according to which a solution is acceptable if

∑
wi ·ai ≥ t for some weights

wi and threshold t.
c⃝2012 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

In many practical situations, we need to decide whether to accept or to continue improving.
In many practical situations, we want to come up with a good solution, so we start with some solution and
keep improving it until we decide that this solution is good enough.

For example, this is how software is designed: we design the first version, test it, if the results are
satisfactory, we release it, otherwise, if this version still has too many bugs, we continue improving it. Similarly,
when a legislature works on a law (e.g., on an annual state budget), it starts with some draft version. If the
majority of the legislators believe that this budget is good enough, the budget is approved, otherwise, the
members of the legislature continue working on it until the majority is satisfied. Yet another example is home
remodeling: the owners hire a company, the company produces a remodeling plan. If the owners are satisfied
with this plan, the remodeling starts, if not, the remodeling company makes changes and adjustments until
the owners are satisfied.

In many such situations, we only have fuzzy evaluations of the solution’s quality. In some cases,
the requirements are precisely formulated. For example, for software whose objective is to control critical
systems such as nuclear power plants or airplanes, we usually have very precise specifications, and we do not
release the software until we are 100% sure that the software satisfies all these specifications.

However, in most other situations, the degree of satisfaction is determined subjectively. Usually, there are
several criteria that we want the solution to satisfy. For example, the budget must not contain too many
cuts in important services, not contain drastic tax increases, be fair to different parts of the population and
to different geographic areas. In many situations, these criteria are not precise, so the only way to decide to
what extent each of these criteria is satisfied it to ask experts.

It is natural to describe the experts’ degree of satisfaction in each criterion by a real number from the
interval [0, 1] so that 0 means no satisfaction at all, 1 means perfect satisfaction, and intermediate values
mean partial satisfaction. This is exactly what fuzzy techniques start with.

Many methods are known to elicit the corresponding values from the experts; see, e.g., [1]. For example,
if each expert is absolutely confident about whether the given solution satisfies the given criterion or not,
we can take, as degree of satisfaction, the proportion of experts who considers this solution satisfactory. For
example, if 60% of the experts considers the given aspect of the solution to be satisfactory, then we say that
the expert’s degree of satisfaction is 0.6. This is how decisions are usually made in legislatures.

In many practical situations, however, experts are not that confident; each expert, instead of claiming that
the solution is absolutely satisfactory or absolutely unsatisfactory, feels much more comfortable marking his
or her degree of satisfaction on a scale – e.g., on a scale from 0 to 5. This is, e.g., how in the US universities,
students evaluate their professors. If a student marks 4 on a scale from 0 to 5 as an answer to the question
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“Is a professor well organized?”, then we can say that the student’s degree of satisfaction with the professor’s
organization of the class is 4/5 = 0.8. The degrees corresponding to several students are then averaged to
form the class evaluation. Similarly, in general, the experts’ estimates are averaged.

Formulation of the problem. Let us assume that we have several (n) criteria. For a given solution, for
each of these criteria, we ask the experts and come up with a degree ai to which – according to the experts
— this particular criterion is satisfied. We need to come up with a criterion that enables us, based on these
n numbers a1, . . . , an ∈ [0, 1], to decide whether solution as a whole is satisfactory to us.

2 Solution

Towards a formal description of the problem. We need to divide the unit cube [0, 1]n – the set of all
possible values of the tuple a = (a1, . . . , an) – into two complimentary sets: the set S of all the tuples for
which the solution is accepted as satisfactory, and the set U of all the tuples for which the solution is rejected
as unsatisfactory.

Natural requirements. Let us assume that we have two groups of experts whose tuples are a and b, and
that, according to both tuples, we conclude that the solution is satisfactory, i.e., that a ∈ S and b ∈ S. It is
then reasonable to require that if we simply these two groups of experts together, we will still come up with
a satisfactory decision.

Similarly, it is reasonable to conclude that if two groups decide that the solution is unsatisfactory, then
by combining their estimates, we should still be able to conclude that the solution is unsatisfactory.

According to our description, when we have two groups of experts consisting of na and nb folks, then, to
form a joint tuple, we combine the original tuples with the weights proportional to these numbers, i.e., we
consider the tuple

c =
na

na + nb
· a+

nb

na + nb
· b.

Thus, we conclude that if a, b ∈ S and r ∈ [0, 1] is a rational number, then r · a+ (1− r) · b ∈ S.
It is also reasonable to require that if, instead of simply averaging, we use arbitrary weights to take into

account that some experts are more credible, we should also be able to conclude that the combined group
of experts should lead to a satisfactory decision. In other words, we conclude that if a, b ∈ S and r is an
arbitrary number from the interval [0, 1] is a rational number, then we should have r · a+ (1− r) · b ∈ S. In
mathematical terms, this means that the set S is convex.

Similarly, if a, b ∈ U and r ∈ [0, 1], then r ·a+(1− r) · b ∈ U . Thus, the complement U to the set S should
be convex.

Analysis of the requirement. Two disjoint convex sets can always be separated by a half-plane; see, e.g.,
[2]. In this case, all the satisfactory tuples are on one side, all unsatisfactory points are on the other side.
A general hyper-plane can be described by linear equations

∑
wi · xi = t, so all the S-points correspond to∑

wi · xi ≥ t and all the U points to
∑

wi · xi ≤ t,

Conclusion. We have shown that reasonable conditions on decision making indeed leads to the weighted
average.
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