
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

11-1-2011

Constraint Problems: Computability Is Equivalent
to Continuity
Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-56

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Ceberio, Martine and Kreinovich, Vladik, "Constraint Problems: Computability Is Equivalent to Continuity" (2011). Departmental
Technical Reports (CS). Paper 632.
http://digitalcommons.utep.edu/cs_techrep/632

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/632?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Constraint Problems: Computability Is

Equivalent to Continuity

Martine Ceberio and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

emails mceberio@utep.edu. vladik@utep.edu

Abstract

In many practical situations, we would like to compute the set of all
possible values that satisfy given constraints. It is known that even for
computable (constructive) constraints, computing such set is not always
algorithmically possible. One reason for this algorithmic impossibility is
that sometimes, the dependence of the desired set on the parameters of the
problem is not continuous, while all computable functions of real variables
are continuous. In this paper, we show that this discontinuity is the only
case when the desired set cannot be computed. Specifically, we provide an
algorithm that computes such a set for all the cases when the dependence
is continuous.

1 Constraint Satisfaction and Constraint Opti-
mization: From a Practical Problems to Con-
structive Mathematics

Constraints are ubiquitous. To describe a state of a physical system, we
measure the values of the physical quantities characterizing this system – its
coordinates, its velocity, its temperature, etc. The state can be then character-
ized by the tuple x = (x1, . . . , xn) consisting of the results x1, . . . , xn of these
measurements.

Not every tuple of n real numbers can represent a state, there are restric-
tions (constraints) on possible combinations x = (x1, . . . , xn). Some of these
constraints are inequalities, i.e., have the type f(x) ≥ c or f(x) ≤ c: e.g., the
velocity of a system cannot exceed the speed of light; the entropy of the closed
system cannot be smaller than the initial value of its entropy, etc. Other con-
straints are equalities, i.e., have the type g(x) = v: e.g., the energy of a closed
system must be always equal to the initial value of this energy.

1

Simplification. In principle, we can have inequality of different types: of the
type f(x) ≥ c, of the type f(x) ≤ 0, and double-sided inequalities a ≤ f(x) ≤ b.
To simplify our analysis, we will reduce them to inequalities of the same type
f(x) ≥ c. This reduction is straightforward:

• a double inequality a ≤ f(x) ≤ b can be represented as a pair of inequali-
ties a ≤ f(x) and f(x) ≤ b, and

• an inequality f(x) ≤ c can be equivalently reformulated as −f(x) ≥ −c.

Comment. It should be mentioned that from the purely mathematical view-
point, an equality f(x) = c can also be described as a degenerate case of a
double inequality c ≤ f(x) ≤ c. We will use this fact in our mathematical
analysis (and in our proofs).

However, it turns out that this representation is not always useful when we
analyze computability. As a result, in the following text, we will consider the
general case when we can have both inequalities and equalities.

Practice-motivated constraints are computable. In all practical cases,
the constraints are computable: given a state x, we can compute the correspond-
ing values f(x) and g(x). Since this value may be

√
2 or π or any other number

which cannot be exactly represented in modern computers, we can reword this
statement in more precise terms: that given a state x and the desired computa-
tion accuracy ε > 0, we can compute the values f(x) and g(x) with the desired
accuracy – for example, we can compute the value r for which |r − f(x)| ≤ ε.

First problem: constraint satisfaction. Once we have found all the con-
straints that the actual state x must satisfy, i.e., constraints of the type
f1(x) ≥ c1, . . . , fn(x) ≥ cn, g1(x) = v1, . . . , gm(x) = vm, it is desirable to
describe all possible tuples x that satisfy these constraints.

What does it mean “to describe all possible tuples x”? Strictly speak-
ing, the constraints themselves already provide the description of the set S of all
possible tuples that satisfy these constraints. The problem with this description
is that it is implicit; what we need is an explicit description of this set.

In some cases, this set consists of a single tuple. For example, we may have
a constraint f(x) = c which has exactly one solution. In such a case, when the
set S consists of a single tuple x, it is very clear what is meant by explicitly
describing this set — we need to produce this tuple x. In other words, given the
desired computation accuracy ε, we must compute a tuple r which is ε-close to
x, i.e., for which d(r, x) ≤ ε (e.g., in the sense of the usual Euclidean metric d).

Similarly, if the set S consists of a finite number of solutions, an explicit
description means that we have to explicitly list all these solutions.

In many practical situations, however, the set S is infinite. This is usually
true, e.g., when all the constraints are inequality constraints. For example, if
the only constraint on the velocity v is that |v| ≤ c, then the set S of possible

2

values of velocity that satisfy this constraint is the entire interval [−c, c]. At
first glance, an interval contains infinitely many points, we cannot list them all.
However, if we take into account that we only want to list the points with a
given accuracy, this becomes feasible: for a given value ε > 0, we can provide a
list of values x(1), . . . , x(N) ∈ [−v, v] such that every point from this interval is

ε-close to one of these points. For example, we can take values x(k) =
k

N
for a

sufficiently large N .
In general, to describe the set S means that for any given accuracy ε > 0,

we should be able to produce a finite list L ⊆ such that for every element s ∈ S,
there is a point x ∈ L for which d(x, s) ≤ ε. Such a set L is called an ε-net; so,
what we are interested in is producing an algorithm that, given ε > 0, would
generate an ε-net for this set S.

Why constructive mathematics. We are interested in algorithms for gen-
erating mathematical objects. So, the first question that we ask is when such an
algorithm is possible and when not. The reason why this question is important
is that, as we will see, such an algorithm is not always possible.

In other words, the first question is whether the desired set S is computable
– in some reasonable sense informally described above (formal definitions will be
given in the next section). A general analysis of the existence of such algorithms
(i.e., of computability of different mathematical objects) is known as constructive
mathematics. Thus, to check solvability of constraint satisfaction problems, we
need to use constructive mathematics.

Second problem: optimization under constraints. In practice, it is often
desirable not only to describe the set S of possible states of a system (i.e., the
set of all tuples x that satisfy a given constraint), it is also desirable to find the
largest value of a certain quantity h(x) depending on this state. For example,
when we design a chemical reactor, we not only need to know the set of all its
possible states x, we would also like to know the largest pressure h(x) for all
possible states – so as to build a reservoir that will be able to withstand this
largest pressure.

In mathematical terms, this means that we need to find the largest possible
value of a given function h(x) under the given constraints f1(x) ≥ c1, . . . ,
fn(x) ≥ cn, g1(x) = v1, . . . , gm(x) = vm. To be more precise, when we say
“to find”, what we really mean is “to compute”. From this viewpoint, the
first natural question is when it is possible to compute this maximum. This
computability question also falls within the scope of constructive mathematics.

2 Definitions of Computable (Constructive) Ob-
jects: Reminder

What we do in this section. To analyze the above two problems, we need
to recall the definitions of computable (constructive) objects – and the basic

3

properties of these definitions. These definitions and properties will be listed in
this section – as well as motivations for these definitions. For more details, see,
e.g., [18, 20] (see also [1, 3, 4, 5, 6, 7, 11, 12]).

Readers who are familiar with the main ideas and results of constructive
mathematics can skip this section and go directly to the next section, when we
start formulating and proving our computability results.

Computable real numbers: motivations. In practice, many quantities
such as weight, speed, etc., are characterized by real numbers. To get informa-
tion about the corresponding value x, we perform measurements. Measurements
are never absolute accurate. As a result of each measurement, we get a mea-
surement result x̃; for each measurement, we usually also know the upper bound

∆ on the (absolute value of) the measurement error ∆x
def
= x̃− x: |x− x̃| ≤ ∆.

To fully characterize a value x, we must measure it with a higher and higher
accuracy. As a result, when we perform measurements with accuracy 2−n with
n = 0, 1, . . ., we get a sequence of rational numbers rn for which |x− rn| ≤ 2−n.

From the algorithmic viewpoint, we can view this sequence as an oracle that,
given an integer n, returns a rational number rn.

Computable real numbers: the resulting definition. A real number x
is called computable if there exists an algorithm that, given a natural number n,
returns a rational number rn which is 2−m-close to x. Equivalently, instead of
specifying the sequence 2−n, we can require the existence of an algorithm that,
given a rational number ε > 0, produces a rational number which is ε-close to
x.

Computable functions of real variables. Similarly, we can define a func-
tion f(x) from real numbers to real numbers as a mapping that, given an integer
n, a rational number xm and its accuracy m, produces either a message that
this information is insufficient, or a rational number yn which is 2−n-close to all
the values f(x) for d(x, xm) ≤ 2−m – and for which, for every x and for each
desired accuracy n, there is an m for which a rational number yn is produced.
We can also define a computable function f(x1, . . . , xk) of several real variables.

Computable metric spaces: motivations. A metric space (X, d) is a set
on which we have a metric d, i.e., a function which assigns, to every two points
x, x′ ∈ X, a real number d(x, x′) called a distance between x and x′. How
can we describe points of a computable metric space? Let us recall that a
computable real number is described by its (rational) approximations. Similarly,
it is reasonable to describe points of an arbitrary set X by their approximations.

From the computational viewpoint, each approximation can be represented
in the computer, and thus, is encoded by a finite sequence of 0s and 1s. There
are countably many such sequences, so we can describe these approximations
as a sequence x1, . . . , xn, . . . of points of X. Every element of the set X can be
approximated, with arbitrary accuracy, by such approximations. Thus, every

4

point from the metric space can be represented as a limit of some subsequence of
{xn} – i.e., in topological terms, this subsequence must be dense in the original
space X.

Thus, we arrive at the following definition.

Computable metric spaces: resulting definition. By a a computable
metric space, we mean a triple (X, d, {xn}), where (X, d) is a metric space,
{x1, x2, . . . , xn, . . .} is a dense subset of X, and there exists an algorithm that,
given two natural numbers i and j, computes the distance d(xi, xj).

Discussion. In other words, we have an algorithm that, given i, j, and an
accuracy k, computes the 2−k-rational approximation to d(xi, xj). Similar to
the previous examples, when we say that a computable metric space is given,
we mean that we are given an algorithm that computes d(xi, xj).

In particular, the set of all real numbers with a standard metric d(x, x′) =
|x−x′| and all rational numbers as approximations {xn} is a computable metric
space.

Computable points in computable metric spaces. Similar to the defini-
tion of a computable real number, a computable point x in a metric space can
be defined by the existence of an algorithm which returns the corresponding
approximations to x.

To be more precise, a point x ∈ X of a computable metric space (X, d, {xn})
is called computable if there exists an algorithm that transforms an arbitrary
natural number k into a natural number i for which d(x, xi) ≤ 2−k. It is said
that this algorithm computes the point x.

When we say that a computable point is given, we mean that we are given
an algorithm that computes this point.

It is easy to show that a distance between two computable points x and y is
computable.

Computable functions: general case. Many real-life quantities x, y are
related by an (efficiently computable) functional relation y = f(x). For example,
the volume V of a cube is equal to the cube of its linear size s: V = f(s) = s3.
This means that, once we know the linear size, we can compute the volume.

At every moment of time, we can only know an approximate value of the
actual quality x ∈ X. Thus, to be able to compute f(x) with a given accuracy
2−k, we must:

• be able to tell with what accuracy we need to know x, and then

• be able to use the corresponding approximation to compute f(x).

We thus arrive at the following definition.

5

Computable function: definition. A function f : X → X ′ from a com-
putable metric space (X, d, {xn}) to a computable metric space (X ′, d′, {x′

n})
is called computable if there exist two algorithms Uf and φ with the following
properties:

• the algorithm φ takes a natural number k and produces a natural number
ℓ = φ(k) such that d(x, y) ≤ 2−ℓ implies that d′(f(x), f(y)) ≤ 2−k;

• Uf takes two natural numbers n and k and produces a 2−k-approximation
to f(xn), i.e., a point x′

ℓ for which d′(x′
ℓ, f(xn)) ≤ 2−k.

Computable compact sets: motivations. Let us recall that a metric space
X is compact if and only if it is complete and totally bounded; see, e.g., [8, 21].
Here, complete means that every converging sequence of points X, i.e., every
sequence yn for which d(yn, ym) ≤ 2−n+2−m has a limit point in X, and totally
bounded means that for every ε > 0, there exists a finite ε-net, i.e., a finite set of
points {z1, . . . , zN} such that every point x ∈ X is ε-close to one of the points
zi. It can be proven that:

• to check compactness, it is sufficient to check the existence of ε-nets only
for some sequence of values εn → 0, in particular, for εn = 2−n;

• it is always possible to select an ε-net from the dense subset {xn} ⊆ X;
and

• to check that a given finite set F is indeed an ε-net, it is sufficient to check
that every point xn from the dense set is ε-close to one of the points of F .

Because of these results, the constructive analogues of the notion of compactness
are usually formulated as the possibility to constructively design an 2−k-net for
a given k.

Computable compact set: definition. A computable metric space
(X, d, {xn}) is called a computable compact space if there exists an algorithm
that, given an arbitrary natural number k, returns a finite set of indices
Fk ⊂ {1, 2, . . . , n, . . .} such that for every i there is a f ∈ Fk for which
d(xi, xf) ≤ 2−k.

Properties of computable compact sets. An important feature of com-
putable compact spaces X is that for every computable function f : X → R
from X to real numbers, it is possible to efficiently compute its maximum and
its minimum.

Another property that we will use is that for every computable function
f(x) from a computable compact set X to real numbers, and for every two
computable numbers a < b, there exists a computable real number c ∈ (a, b) for
which the level set {x : f(x) ≥ c} is a computable compact set; see, e.g., [4, 5].

6

3 Hausdorff Metric: Definition and Basic Prop-
erties

The Hausdorff distance dH(A,B) between the two sets A and B in a metric
space is defined as the infimum of all the values ε > 0 for which the following
two properties hold:

• for every point a from the set A there is a point b from the set B for which
d(a, b) ≤ ε; and

• for every point b from the set B there is a point a from the set A for which
d(a, b) ≤ ε.

This definition is equivalent to

dH(A,B) = max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
.

For compact sets A andB, infimum can be replaced by minimum, and supremum
by maximum, so

dH(A,B) = max

(
max
a∈A

min
b∈B

d(a, b),min
b∈B

max
a∈A

d(a, b)

)
.

It is known (and easy to prove) that Hausdorff distance is a metric, i.e., that
it is symmetric (dH(A,B) = dH(B,A)) and satisfies the triangle inequality
dH(A,C) ≤ dH(A,B) + hH(B,C).

Hausdorff distance has the following two properties:

Proposition 1. If A ⊆ B ⊆ C, then dH(A,B) ≤ dH(A,C) and dH(B,C) ≤
dH(A,C).

Proof. To prove that dH(A,B) ≤ dH(A,C), we need to prove:

• that for every point a ∈ A, there is a point b ∈ B for which d(a, b) ≤
dH(A,C), and

• that for every b ∈ B, there is a point a ∈ A for which d(a, b) ≤ dH(A,C).

Indeed:

• On the one hand, since A ⊆ B, for given a ∈ A, we can simply take b = a,
then d(a, b) = 0 ≤ dH(A,C).

• On the other hand, if we have a point b ∈ B, then, since B ⊆ C, we have
b ∈ C. By definition of the Hausdorff distance dH(A,C), we conclude that
there exists a point a ∈ A for which d(a, b) ≤ dH(A,C).

Thus, indeed, dH(A,B) ≤ dH(A,C).
The proof that dH(B,C) ≤ dH(A,C) is similar. The proposition is proven.

7

Proposition 2. If dH(A,Xα) ≤ ε for all α, then dH

(
A,

∪
α
Xα

)
≤ ε.

Proof. If a ∈ A, then, for every α, since dH(A,Xα) ≤ ε, there exists a point
x ∈ Xα for which d(a, x) ≤ ε. Since x ∈ Xα, we also have x ∈

∪
α
Xα, so there

exists a point x ∈
∪
α
Xα for which d(a, x) ≤ ε.

On the other hand, let x ∈
∪
α
Xα. This means that for some α, we have

x ∈ Xα. Since dH(A,Xα) ≤ ε, this means that there exists a point a for which
d(a, x) ≤ ε. The proposition is proven.

From the definition of Hausdorff distance, once can easily see that a finite
list L ⊆ S is an ε-net for S if and only if dH(L, S) ≤ ε. This reformulation
of the notion of an ε-net enables us to compute Hausdorff distance between
computable compacts:

Proposition 3. There exists an algorithm that, given two computable compact
sets A and B, computes the Hausdorff distance dH(A,B).

Comment. In other words, Hausdorff distance is computable.

Proof of Proposition 3. For computable finite lists L and L′, the above for-
mula for the distance dH(L,L′) provides an explicit way to compute this distance
– since minimum and maximum of two computable numbers is also computable.
Thus, to compute the distance between two computable computable compact
sets A and B with a given rational accuracy ε > 0, we can do the following:

• first, we use the fact that A is a computable compact set and compute a
ε

3
-net LA for A; here, dH(A,LA) ≤

ε

3
;

• similarly, we use the fact that B is a computable compact set and compute

a
ε

3
-net LB for B; here, dH(B,LB) ≤

ε

3
;

• finally, we compute the Hausdorff distance dH(LA, LB) between the com-

putable finite lists LA and LB with the accuracy
ε

3
, i.e., we compute a

rational number r for which |r − dH(LA, LB)| ≤
ε

3
.

Let us show that |r−dH(A,B)| ≤ ε, i.e., that r ≤ dH(A,B)+ε and dH(A,B) ≤
r + ε.

Indeed, on the one hand, by the choice of r, we have r ≤ dH(LA, LB) +
ε

3
.

Due to the triangle inequality, we have

dH(LA, LB) ≤ dH(LA, A) + dH(A,B) + dH(B,LB).

8

Since dH(A,LA) ≤
ε

3
and dH(B,LB) ≤

ε

3
, we have dH(LA, LB) ≤ dH(A,B) +

2ε

3
. Thus, r ≤ dH(LA, LB) +

ε

3
implies that

r ≤
(
dH(A,B) +

2ε

3

)
+

ε

3
= dH(A,B) + ε.

On the other hand, we have dH(LA, LB) ≤ r+
ε

3
. From the triangle inequal-

ity, we conclude that

dH(A,B) ≤ dH(A,LA) + dH(LA, LB) + dH(LB , B) ≤ dH(LA, LB) +
2ε

3
,

and hence, that dH(A,B) ≤
(
r +

ε

3

)
+

2ε

3
= r + ε.

The proposition is proven.

Proposition 4. Let us assume that A is a compact set in a computable metric
space for which there is an algorithm that, given a natural number n, produces
a computable compact An in such a way that dH(An, A) ≤ 2−n. Then, A is a
computable compact A.

Comment. In other words, if we have an algorithm that, given a rational num-
ber ε, computes an ε-approximation to the desired compact set A, then this set
A is itself computable.

Proof of Proposition 4. To construct a computable compact set means that,
given a rational number ε > 0, we should be able to construct a ε-net for the
desired compact set A. Let k be such that 6 · 2−k ≤ ε, and let Lk be a 2−k-net
for the constructive compact set Ak. We will construct a finite list that contains
exactly as many points as the list Lk – one point for each point ak ∈ Lk – and
we will show that the resulting list is the desired ε-net for the limit compact
set A.

Let ak be a point from the list Lk ∈ Ak.

• Since dH(Ak, Ak+1) ≤ 2−k + 2−(k+1) < 2 · 2−k, we can construct a point
ak+1 ∈ Ak+1 for which d(ak, ak+1) ≤ 2 · 2−k.

• Similarly, since dH(Ak+1, Ak+2) ≤ 2−(k+1)+2−(k+2) < 2 · 2−(k+1), we can
construct a point ak+2 ∈ Ak+2 for which d(ak+1, ak+2) ≤ 2 · 2−(k+1), etc.

As a result, we have a sequence of points ak, ak+1, . . . , aℓ, . . . for which
d(aℓ, dℓ+1) ≤ 2 · 2−ℓ. Thus, for every ℓ < ℓ′, we get

d(aℓ, aℓ′) ≤ d(aℓ, aell+1) + d(aℓ+1, aℓ+2) + . . .+ d(aℓ′−1, aℓ′) ≤

2 · (2−ℓ + 2−ℓ−1 + . . .+ 2−(ℓ′−1)).

9

Here,
2−ℓ + 2−ℓ−1 + . . .+ 2−(ℓ′−1) ≤ 2−ℓ + 2−ℓ−1 + . . . = 2 · 2−ℓ;

thus, d(aℓ, aℓ′) ≤ 4 · 2−ℓ. The sequence aℓ is therefore a Cauchy sequence, and
therefore, it has a limit a∞. This limit point belongs to the limit compact A.
By taking ℓ′ → ∞, we conclude that d(aℓ, a∞) ≤ 4 · 2−ℓ.

Thus, for every rational number δ, we can compute a δ-approximation to
a∞ as follows: find a natural number ℓ for which 4 · 2−ℓ ≤ δ, and take aℓ as the
desired approximation. So, a∞ is a computable point.

To complete our proof, we need to show that the resulting list of points
a∞, b∞, . . . indeed forms an ε-net for the limit compact set A, i.e., that for
each point a ∈ A, there is the corresponding limit point which is ε-close to this
point a. Indeed, from dH(Ak, A) ≤ 2−k, by definition of the Hausdorff metric,
we conclude that there exists a point a′ ∈ Ak for which d(a, a′) ≤ 2−k. By
definition of a 2−k-net, there exists a point ak ∈ Lk for which d(a′, ak) ≤ 2−k.
For the corresponding limit point a∞, we get d(ak, a∞) ≤ 4 · 2−k. Thus, by the
triangle inequality, we get

d(a, a∞) ≤ d(a, a′) + d(a′, ak) + d(ak, a∞) ≤ 2−k + 2−k + 4 · 2−k = 6 · 2−k ≤ ε.

The proposition is proven.

4 In General, the Set of Solutions Is Not Com-
putable

Reminder. To compute a solution set means that for every accuracy ε > 0,
we can compute an ε-approximation (i.e., an ε-net) to the desired solution set.
From this viewpoint, our first algorithmic impossibility result takes the following
form:

Proposition 5. There exists a computable function f(x) from an interval [a, b]
to real numbers for which no algorithm is possible that, given computable real
numbers c and ε, returns an ε-net for the set {x : f(x) ≥ c}.

Discussion. In other words, it is not possible to have a computable mapping
that maps a computable real number c into a computable compact set

{x : f(x) ≥ c}.

The proof of this statement comes from the following lemma:

Lemma 1. There exists a computable function f(x) for which the mapping
c → {x : f(x) ≥ c} is not continuous (in Hausdorff metric).

10

Proof of Lemma 1. Indeed, we can take the following piecewise-linear func-
tion on the interval [0, 4]:

• f(x) = 1− x for 0 ≤ x ≤ 1,

• f(x) = x− 1 for 1 ≤ x ≤ 2, and

• f(x) = 3− x for 2 ≤ x ≤ 4.

For this function, for c < 0, {x : f(x) ≥ c} = [3 + c, 4], while for c = 0, we have
{x : f(x) ≥ c} = {1} ∪ [3, 4]. Thus, when c < 0, we have

dH({x : f(x) ≥ c}, {x : f(x) ≥ 0}) = 2 + c.

When c → 0, this distance tends to 2, and not to the limit distance

dH({x : f(x) ≥ 0}, {x : f(x) ≥ 0}) = 0.

The lemma is proven.

Proof of Proposition 5. Proposition 5 now follows from the known fact that
every computable function is continuous; see, e.g., [12, 20].

Comment 1. For a single function f(x), continuity of the level sets {x : f(x) ≥
c} and {x : f(x) = c} means that the function f(x) has no local maxima or
minima; a general topological analysis of such level sets is performed in Mores
theory; see, e.g., [13, 14, 17].

Comment 2. In the above example, the mapping c → {x : f(x) ≥ c} are not
computable if we allow arbitrary computable values c. If we only allow algebraic
values c (i.e., values which satisfy a polynomial equation P (c) = 0 with non-
zero integer coefficients) and algebraic functions y = f(x) (i.e., functions which
satisfy a polynomial equation P (x, y) = 0 with non-zero integer coefficients),
then we can use the Tarski-Seidenberg algorithm to explicitly describe the level
set as a computable compact set; see, e.g., [2, 15, 19].

5 Continuity Implies Computability

Discussion. In the above example, discontinuity prevented computability of
the solution set. A natural question is: what if the dependence is continuous,
will we then be able to compute the solution?

It turns out that this is indeed the case.

Case when we only have inequalities. The situation is the simplest in the
case when we only have inequalities. In this case, as the following result shows,
it is sufficient to know that the dependence is continuous:

11

Proposition 6. Let f1, . . . , fn be computable functions from a computable
compact set X to real numbers. Let [c1, c1], . . . , [cn, cn] be computable inter-
vals for which the set {x : f1(x) ≥ c1, . . . , fn(x) ≥ cn} continuously depends on
c1, . . . , cn. Then, there exists an algorithm that:

• given computable values c1 ∈ (c1, c1), . . . , cn ∈ (cn, cn),

• computes the set {x : f1(x) ≥ c1, . . . , fn(x) ≥ cn}.

Proof. We want to prove that the desired level set

A
def
= {x : f1(x) ≥ c1, . . . , fn(x) ≥ cn}

is a computable compact set. According to Proposition 4, to prove this, it is
sufficient to provide an algorithm that, given a rational number ε > 0, produces
a computable compact set A′ for which dH(A′, A) ≤ ε. In other words, it is
sufficient to be able to compute, for each ε, an ε-approximation to the desired
level set A.

Indeed, each inequality fi(x) ≥ ci is equivalent to the condition that differ-
ence between the left-hand and the right-hand sides of this inequality is non-
negative: fi(x) − ci ≥ 0. Thus, all n inequalities are satisfied if and only if
the smallest of these differences is non-negative, i.e., when f(x) ≥ 0, where we

denoted f(x)
def
= min(f1(x) − c1, . . . , fn(x) − cn). So, A = {x : f(x) ≥ 0}.

Since the functions fi(x) and the values ci are computable, the function f(x) is
computable as well.

By the known property of a computable compact, for every integer k, we
can algorithmically find values −δ− ∈ (−2−k, 0) and δ+ ∈ (0, 2−k) for which the

level sets S−
k

def
= {x : f(x) ≥ −δ−} and S+

k
def
= {x : f(x) ≥ δ+} are computable

compacts. Since the sets S−
k and S+

k are computable compacts, we can compute

the Hausdorff distance dk
def
= dH(S−

k , S+
k).

In terms of the original functions fi(x), these computable level sets take the
form

S−
k = {x : f1(x) ≥ c1 − δ−, . . . , fn(x) ≥ cn − δ−}

and
S+
k = {x : f1(x) ≥ c1 + δ+, . . . , fn(x) ≥ cn + δ+}.

Since the dependence of the original level sets on ci is continuous, the Hausdorff
distance dk between these two level sets S−

k and S+
k tends to 0 as k → ∞. Thus,

if we repeat this procedure for k = 1, 2, . . ., we will eventually find a value k for

which dk = dH(S−
k , S+

k) ≤ ε

2
.

Since S+
k ⊆ A ⊆ S+

k , Proposition 1 now implies that dH(A′, A) ≤ 2−k for
A′ = S−

k . The proposition is proven.

12

Comment. When we have several constraints, the set of all the values that sat-
isfy all these constraints is an intersection of the sets corresponding to individual
constraints. If we were simply interested in when the set is compact or not, we
could reduce the case of several constraints to problem to a simpler case of a
single constraint, by using a known fact that the intersection of compact sets
is a compact set. However, a similar reduction is not possible for computable
compact sets, because, as will see in a second, there is no algorithm that would
take two computable compact sets and produce an algorithm showing that their
intersection is a computable compact set. Indeed, let us take A = {0, 1} and
Aε = {0, 1 + ε} for some small ε. The corresponding function ε → A ∩ Aε is
discontinuous and thus, not computable: indeed, its value is equal to {0} when
ε ̸= 0 and to {0, 1} when ε = 0.

General case. In the general case, when we have both equalities and inequal-
ities, we have a similar – but slightly more complex-to-formulate – result. Let
us recall that a modulus of continuity of a function F (x) is a function δ(ε) that,
given a positive real number ε > 0, produces a positive real number δ > 0 for
which d(x, x′) ≤ δ implies d(F (x), F (x′)) ≤ ε.

Proposition 7. Let f1, . . . , fn, g1, . . . , gm be computable functions from a com-
putable compact set X to real numbers. Let

[c1, c1], . . . , [cn, cn], [v1, v1], . . . , [vm, vm]

be computable intervals for which the dependence of the set

{x : f1(x) ≥ c1, . . . , fn(x) ≥ cn, g1(x) = v1, . . . , gm(x) = vm}

on the parameters c1, . . . , cn, v1, . . . , vm is continuous, with a known computable
modulus of continuity. Then, there exists an algorithm that:

• given computable values

c1 ∈ (c1, c1), . . . , cn ∈ (cn, cn), v1 ∈ (v1, v1), . . . , vm ∈ (vm, vm),

• computes the set

{x : f1(x) ≥ c1, . . . , fn(x) ≥ cn, g1(x) = v1, . . . , gm(x) = vm}.

Proof. We want to prove that the desired level set

A
def
= {x : f1(x) ≥ c1, . . . , fn(x) ≥ cn, g1(x) = v1, . . . , gm(x) = vm}

is a computable compact set. According to Proposition 4, to prove this, it is
sufficient to provide an algorithm that, given a rational number ε > 0, produces
a computable compact set A′ for which dH(A′, A) ≤ ε. In other words, it is
sufficient to be able to compute, for each ε, an ε-approximation to the desired
level set A.

13

Indeed, similarly to the proof of Proposition 6, each inequality fi(x) ≥ ci is
equivalent to the condition that difference between the left-hand and the right-
hand sides of this inequality is non-negative: fi(x) − ci ≥ 0. Each equality
gi(x) = vi is equivalent to two inequalities: gi(x) ≥ vi and vi ≥ gi(x), i.e.,
to gi(x) − vi ≥ 0 and vi − gi(x) ≥ 0. Thus, all n + m original constraints is
satisfied if and only if the smallest of these differences is non-negative, i.e., when
f(x) ≥ 0, where we denoted

f(x)
def
= min(f1(x)− c1, . . . , fn(x)− cn,

g1(x)− v1, v1 − g1(x), . . . , gm(x)− vm, vm − gm(x)).

So, A = {x : f(x) ≥ 0}. Since the functions fi(x) and gj(x) and the values ci
and vj are computable, the function f(x) is computable as well.

Since the modulus of continuity δ(ε) corresponding to the dependence of the
solution set on the parameters is computable, we can compute the value δ for
which if all the parameters are δ-close, the resulting solution sets are ε-close.

By the known property of a computable compact, for every rational number
δ > 0, we can algorithmically find the value −δ− ∈ (−δ, 0) for which the level

set S− def
= {x : f(x) ≥ −δ−} is a computable compact.

In terms of the original functions fi(x) and gj(x), this level set takes the
form

S− = {x : f1(x) ≥ c1 − δ−, . . . , fn(x) ≥ cn − δ−,

g1(x)−v1 ≥ −δ−, v1−g1(x) ≥ −δ−, . . . , gm(x)−vm ≥ −δ−, vm−gm(x) ≥ −δ−}.

One can easily show that for every j, the inequalities gj(x) − vj ≥ −δ− and
vj − gj(x) ≥ −δ− are equivalent to the double inequality vj − δ− ≤ gj(x) ≤
vj + δ−. Thus,

S− = {x : f1(x) ≥ c1 − δ−, . . . , fn(x) ≥ cn − δ−,

v1 − δ− ≤ g1(x) ≤ v1 + δ−, . . . , vm − δm ≤ gm(x) ≤ vm + δ−}.

By considering all possible values v′j ∈ [vj − δ−, vj + δ−], we conclude that this
set S− is a union of the sets

Sv′ = {x : f1(x) ≥ c1 − δ−, . . . , fn(x) ≥ cn − δ−, g1(x) = v′1, . . . , gm(x) = v′m}

corresponding to all possible combinations of values v′j ∈ [vj − δ−, vj + δ−]. For
each of the sets Sv′ , the values ci − δ− and v′j are δ-close to the values ci and
vj . Thus, by the choice of δ, each of the sets Sv′ is ε-close to the desired set
A (in the sense of Hausdorff metric). Thus, by Proposition 2, the union S− of
the sets Sv′ is also ε-close to the desired set A. So, we have computed, for each
ε > 0, a computable set S− which is ε-close to A. According to Proposition 4,
this implies that the set A itself is computable. The proposition is proven.

14

Comment. The above proof provides an algorithm, but does not provide us
with any upper bound on the number of computation steps. In constructive
mathematics, such algorithms are called based on Markov principle (see, e.g.,
[12, 20]) – after a principle formulated by A. A. Markov that if it is not true that
an algorithm does not halt, then we conclude that this algorithm halts (even if
we do not have any upper bound on the time that it takes for this algorithm to
finish its computations). This is worth mentioning since there exist versions of
constructive mathematics that only allow algorithms with explicitly computable
bounds on computation time.

Optimization under constraints. In the previous text, we showed that the
first problem – of computing the set S of all the values x that satisfy given
constraints – is computable if the dependence is continuous. What about the
second problem – of computing the maximum (or a minimum) of a computable
function f(x) over the set S (i.e., under the given constraints)? It turns out
that this problem is computable too – because:

• computability of the solution set S means that this set S is a computable
compact set, and

• as we have mentioned, there is an algorithm that computes the maxi-
mum and the minimum of a given computable continuous function over a
computable compact S.

Comment: possible application to processing “fuzzy” (imprecise) data. The re-
sults about optimization under constraints may be helpful in processing fuzzy
data, a known efficient way of representing imprecise expert knowledge; see, e.g.,
[9, 16]. The meed for special techniques for processing such expert knowledge
comes from the fact that experts often express their estimates of the values
of different quantities not by exact numbers, but by using words from natural
language such as “small”, “the size of an apple”, etc. One way to describe this
knowledge in terms understandable by a computer is to assign, to each possible
value x of the corresponding quantity, a number µ(x) from the interval [0, 1]
describing to what extent the experts believe that this value is, e.g., small. This
degree can be elicited from the experts – or estimated as a ratio of experts
who believe that x is small to the total number of interviewed experts. The
function µ(x) that describes how this degree depends on the value x is called a
membership function.

One of the reasons why we may ask the experts to estimate the values of
the quantities x1, . . . , xn is that we may want to use the values of these easier-
to-estimate quantities estimates to find the value of a related more-difficult-to-
estimate quantity y. For that, we need to know the relation between xi and
y, i.e., we need to know a data processing algorithm y = f(x1, . . . , xn) that
transforms the values of xi into the desired estimate for y. Once we know this
algorithms, and we know the membership functions µi(xi) corresponding to the
inputs, we need to estimate the resulting membership function µ(y). Reasonable

15

arguments (see, e.g., [10]) lead to the following formula for µ(y):

µ(y) = max{min(µ1(x1), . . . , µn(xn)) : f(x1, . . . , xn) = y}.

In other words, estimating the value µ(y) requires that we find the max-
imum of a computable function min(µ1(x1), . . . , µn(xn)) under a constraint
f(x1, . . . , xn) = y. Thus, general algorithms for optimization under constraints
can be used for processing imprecise (“fuzzy”) data.

Finding optimal solutions under constraints. In some practical situa-
tions, in addition to finding the optimal value v of a function f(x) under given
constraints, it is also desirable to find the values x for which this optimal is at-
tained. For example, in decision making, we are not just interested in knowing
how good a situation can be if we make an appropriate choice x, we also want
to know exactly what alternative x we should choose.

If we describe this requirement literally, this would mean that we are looking
for the set {x : f(x) = v}. In practice, a very small deviation from the optimum
does not change anything – especially since the function f(x) that describes
the dependence of the benefits on the alternative x is usually only known ap-
proximately anyway. Thus, from the practical viewpoint, it makes more sense to
consider a set {x : f(x) ≥ v−ε} for some small ε > 0. This value we can already
compute – provided that the dependence of the level set on ε is continuous.

Remaining open problems. In this paper, we consider “unconditional” con-
straints of the type f(x) ≥ c, f(x) ≤ c, and f(x) = c. In some applications,
we have “conditional” constraints, i.e., constraints that only hold under certain
conditions. For example, we can have constraints of the type “if f(x) ≥ c,
then g(x) = v”. It would be nice to extend our computability results to such
conditional constraints.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721 and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

References

[1] O. Aberth, Precise Numerical Analysis Using C++, Academic Press, New
York, 1998.

[2] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry,
Springer-Verlag, Berlin, 2006.

[3] M. J. Beeson, Foundations of constructive mathematics, Springer-Verlag,
N.Y., 1985.

[4] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.

16

[5] E. Bishop and D. S. Bridges, Constructive Analysis, Springer, N.Y., 1985.

[6] D.S. Bridges, Constructive Functional Analysis, Pitman, London, 1979.

[7] D. S. Bridges and S. L. Via, Techniques of Constructive Analysis, Springer-
Verlag, New York, 2006.

[8] J. L. Kelley, General Topology, Springer Verlag, Berlin-Heidelberg-New
York, 1975.

[9] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[10] V. Kreinovich, “Relation between interval computing and soft comput-
ing”, In: C. Hu, R. B. Kearfott, A. de Korvin, and V. Kreinovich (eds.),
Knowledge Processing with Interval and Soft Computing, Springer Verlag,
London, 2008, pp. 75–97.

[11] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complex-
ity and feasibility of data processing and interval computations, Kluwer,
Dordrecht, 1998.

[12] B. A. Kushner, Lectures on Constructive Mathematical Analysis, Amer.
Math. Soc., Providence, Rhode Island, 1984.

[13] Y. Matsumoto, An Introduction to Morse Theory, American Mathematical
Society, Providence, Rhode Island, 2001.

[14] J. Milnor, Morse Theory, Princeton University Press, Princeton, New Jer-
sey, 1963.

[15] B. Mishra, “Computational real algebraic geometry”, in: Handbook on Dis-
creet and Computational Geometry, CRC Press, Boca Raton, Florida, 1997.

[16] H. T. Nguyen and E. A. Walker, First Course In Fuzzy Logic, CRC Press,
Boca Raton, Florida, 2006.

[17] L. Nicolaescu, An Invitation to Morse Theory, Springer Verlag, New York,
2007.

[18] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics,
Springer, Berlin, 1989.

[19] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd
ed., Berkeley and Los Angeles, 1951, 63 pp.

[20] K. Weihrauch, Computable Analysis, Springer-Verlag, Berlin, 2000.

[21] S. Willard, General Topology, Dover Publ., New York, 2004.

17

	University of Texas at El Paso
	DigitalCommons@UTEP
	11-1-2011

	Constraint Problems: Computability Is Equivalent to Continuity
	Martine Ceberio
	Vladik Kreinovich
	Recommended Citation

