
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

12-1-2011

Why Bernstein Polynomials Are Better: Fuzzy-
Inspired Justification
Jaime Nava
University of Texas at El Paso, jenava@miners.utep.edu

Olga Kosheleva
University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-62

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Nava, Jaime; Kosheleva, Olga; and Kreinovich, Vladik, "Why Bernstein Polynomials Are Better: Fuzzy-Inspired Justification" (2011).
Departmental Technical Reports (CS). Paper 626.
http://digitalcommons.utep.edu/cs_techrep/626

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/626?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Why Bernstein Polynomials Are Better:
Fuzzy-Inspired Justification

Jaime Nava1, Olga Kosheleva2, and
Vladik Kreinovich3

1,3Department of Computer Science
2Department of Teacher Education

University of Texas at El Paso
500 W. University

El Paso, TX 79968, USA
1nava.jaime@gmail.com

2,3{olgak,vladik}@utep.edu

Abstract—It is well known that an arbitrary continuous
function on a bounded set – e.g., on an interval [a, b] – can be,
with any given accuracy, approximated by a polynomial. Usually,
polynomials are described as linear combinations of monomials.
It turns out that in many computational problems, it is more
efficient to represent a polynomial as Bernstein polynomials –
e.g., for functions of one variable, a linear combination of terms
(x− a)k · (b− x)n−k. In this paper, we provide a simple fuzzy-
based explanation of why Bernstein polynomials are often more
efficient, and we show how this informal explanation can be
transformed into a precise mathematical explanation.

I. INTRODUCTION: POLYNOMIAL AND BERNSTEIN
APPROXIMATIONS

Functional dependencies are ubiquitous. Several different
quantities are used to describe the state of the world – or a
state of a system in which are are interested. For example,
to describe the weather, we can describe the temperature,
the wind speed, the humidity, etc. Even in simple cases, to
describe the state of a simple mechanical body at a given
moment of time, we can describe its coordinates, its velocity,
its kinetic and potential energy, etc.

Some of these quantities can be directly measured – and
sometimes, direct measurement is the only way that we can
determine their values. However, once we have measured the
values of a few basic quantities x1, . . . , xn, we can usually
compute the values of all other quantities y by using the known
dependence y = f(x1, . . . , xn) between these quantities. Such
functional dependencies are ubiquitous, they are extremely
important in our analysis of real-world data.

Need for polynomial approximations. With the large amount
of data that are constantly generated by different measuring de-
vices, most of the data processing is performed by computers.
So, we need to represent each known functional dependence
y = f(x1, . . . , xn) in a computer.

In the computer, the only operations which are directly
hardware supported (and are therefore extremely fast) are
addition, subtraction, and multiplication. All other operations,
including division, are implemented as a sequence of addition,
subtractions, and multiplications. Therefore, if we want to

compute a function f(x1, . . . , xn), we must represent it as
a sequence of additions, subtractions, and multiplications. A
function which is obtained from variables x1, . . . , xn and
constants by using addition, subtraction, and multiplication is
nothing else but a polynomial. Indeed, one can easily check
that every polynomial can be computed by a sequence of
additions, subtractions, and multiplications. Vice versa, by in-
duction, one can easily prove that every sequence of additions,
subtractions, and multiplications leads to a polynomial; indeed:

• induction base is straightforward: each variables xi is a
polynomial, and each constant is a polynomial;

• induction step is also straightforward:
– the sum of two polynomials is a polynomial;
– the difference between two polynomials is a polyno-

mial; and
– the product of two polynomials is a polynomial.

Possibility of a polynomial approximation. The possibility
to approximate functions by polynomials was first proven by
Weierstrass (long before computers were invented). Specifi-
cally, Weierstrass showed that for every continuous function
f(x1, . . . , xn), for every box (multi-interval)

[a1, b1]× . . .× [an, bn],

and for every real number ε > 0, there exists a polynomial
P (x1, . . . , xn) which is, on this box, ε-close to the original
function f(x1, . . . , xn), i.e., for which

|P (x1, . . . , xn)− f(x1, . . . , xn)| ≤ ε

for all x1 ∈ [a1, b1], . . . , xn ∈ [an, bn].
Polynomial approximations to a functional dependence have

been used in science for many centuries, they are one of the
main tools in physics and other disciplines. Such approxi-
mations are often based on the fact that most fundamental
physical dependencies are analytical, i.e., can be expanded
in convergent Taylor (polynomial) series. Thus, to get a
description with a given accuracy, it is sufficient to keep only
a few first terms in the Taylor expansion – i.e., in effect,

to approximate the original function by a polynomial; see,
e.g. [1].

How to represent polynomials in a computer: traditional
approach. A schoolbook definition of a polynomial of one
variable is that it is a function of the type

f(x) = c0 + c1 · x+ c2 · x2 + . . .+ cd · xd.

From the viewpoint of this definition, it is natural to represent
a polynomial of one variable as a corresponding sequence of
coefficients c0, c1, c2 . . . , cd. This is exactly how polynomials
of one variable are usually represented.

Similarly, a polynomial of several variables x1, . . . , xn is
usually defined as linear combination of monomials, i.e.,
expressions of the type xd1

1 · . . . · xdn
n . Thus, a natural way

to represent a polynomial

f(x1, . . . , xn) =
∑

d1,...,dn

cd1...dn · xd1
1 · . . . · xdn

n

is to represent it as a corresponding multi-D array of coeffi-
cients cd1...dn .

Bernstein polynomials: a description. It has been shown that
in many computational problems, it is more efficient to use
an alternative representation. This alternative representation
was first proposed by a mathematician Bernstein, and so
polynomials represented in this form are known as Bernstein
polynomials. For functions of one variable, Bernstein proposed
to represent a function as a linear combination

d∑
k=0

ck · (x− a)k · (b− x)d−k

of special polynomials

pk(x) = (x− a)k · (b− x)d−k.

For functions of several variables, Bernstein’s representation
has the form

f(x1, . . . , xn) =
∑

k1...kn

ck1...kn · pk11(x1) · . . . · pknn(xn),

where
pkii(xi)

def
= (xi − ai)

ki · (bi − xi)
d−ki .

In this representation, we store the coefficients ck1...kn in the
computer.

Bernstein polynomials are actively used, e.g., in computer
graphics and computer-aided design, where they are not only
more computationally efficient, but they also lead – within
a comparable computation time – to smoother and more
stable descriptions than traditional computer representations
of polynomials.

Bernstein polynomials are useful in interval and fuzzy
computations. In particular, Bernstein polynomials are useful
in interval computations (see, e.g., [8]), computing the range

f([a1, b1], . . . , [an, bn]
def
=

{f(x1, . . . , xn) : x1 ∈ [a1, b1], . . . , xn ∈ [an, bn]}

of a function f(x1, . . . , xn) over a given box. The efficiency
of Bernstein polynomials in interval computations is shown in
[2], [3], [4], [5], [9], [13].

Such interval computations are extremely useful in fuzzy
computations (see, e.g., [6], [12]), when we know fuzzy values
of the inputs x1, . . . , xn (i.e., the corresponding membership
functions µi(xi)), and we need to find the corresponding fuzzy
value of y = f(x1, . . . , xn) (i.e., the membership function
µ(y)). It turns out that for every α, the α-cut

y(α) = {y : µ(y) ≥ α}

is equal to the range of the function f(x1, . . . , xn) over the
corresponding α-cuts xi(α) = {xi : µi(xi) ≥ α}:

y(α) = f(x1(α), . . . ,xn(α)).

This is how fuzzy computations are usually performed – by
performing interval computations over the corresponding α-
cuts, for different values α ∈ [0, 1].

Bernstein polynomials: open problem. Empirically, it is
known that Bernstein polynomials are often more computa-
tionally efficient. However, in spite of many efforts to explain
this empirical efficiency, no convincing explanation has been
found so far.

What we do. In this paper, we first show that by using
fuzzy techniques, we can get a reasonable explanation of
why Bernstein polynomials are efficient. Then, we show how
this informal explanation can be transformed into a precise
mathematical justification.

II. BERNSTEIN POLYNOMIALS: FUZZY EXPLANATION

Preliminary step: reducing all intervals to the interval
[0, 1]. We want to use fuzzy logic to analyze polynomial
approximations. In fuzzy logic, traditionally, possible truth
values form an interval [0, 1]. In some intelligent systems,
other intervals are used – e.g., in the historically first expert
system MYCIN the interval [−1, 1] was used to describe
possible degrees of confidence. It is well known that it does
not matter much what interval we use since we can easily
reduce values x from an interval [a, b] to values t from the

interval [0, 1] by taking t =
x− a

b− a
; vice versa, once we know

the new value t, we can easily reconstruct the original value
x as x = a+ t · (b− a).

To facilitate the use of traditional fuzzy techniques, let us
therefore reduce all the intervals [ai, bi] to the interval [0, 1].
In other words, instead of the original function

f(x1, . . . , xn) : [a1, b1]× . . .× [an, bn] → IR,

we consider a new function

F (t1, . . . , tn) : [0, 1]
n → IR,

which is defined as

F (t1, . . . , tn) = f(a1+ t1 · (b1−a1), . . . , an+ tn · (bn−an)).

Vice versa, if we find a good approximation F̃ (t1, . . . , tn)
to the new function F (t1, . . . , tn), we can easily gener-
ate an approximation f̃(x1, . . . , xn) to the original function
f(x1, . . . , xn) as follows:

f̃(x1, . . . , xn) = F̃

(
x1 − a1
b1 − a1

, . . . ,
xn − an
bn − an

)
.

Fuzzy-based function approximations: reminder. Fuzzy
techniques have been actively used to approximate functional
dependencies: namely, such dependencies are approximated by
fuzzy rules; see, e.g., [6], [7], [12]. The simplest case is when
each rule has a fuzzy condition and a crisp conclusion, i.e.,
has the type

“if x is P , then y = c”,

where P is a fuzzy property (such as “small”) characterized
by a membership function µ(x), and c is a real number. For
the case of several inputs, we have rules of the type

“if x1 is P1, x2 is P2, . . . , and xn is Pn, then y = c.”

The degree to which a given input xi satisfies the property Pi

is equal to µi(xi), where µi(x) is the membership function
corresponding to the property Pi. The degree to which the
tuple (x1, . . . , xn) satisfies the condition of the rule – i.e., the
statement

“x1 is P1, x2 is P2, . . . , and xn is Pn”

– is therefore equal to f&(µ1(x1), . . . , µn(xn)), where f& is
an appropriate t-norm (“and”-operation). One of the simplest
t-norms is the product f&(a, b) = a · b. For this t-norm, the
degree d to which the above rule is satisfied is equal to the
product µ1(x1) · . . . ·µn(xn) of the corresponding membership
degrees.

When we have several rules, then we get different conclu-
sions c1, . . . , cr with degrees d1, . . . , dr; we need to come
up with a single values that combines these conclusions.
The larger the degree di, the more weight we should give
to the conclusion ci. A natural way is thus simply to take
the weighted average c1 · d1 + . . . + cr · dr. This weighted
average can be interpreted in fuzzy terms if we interpret the
combination as the following statement:

• “either (the condition for the 1st rule is satisfied and its
conclusion is satisfied)

• or (the condition for the 2nd rule is satisfied and its
conclusion is satisfied)

• or . . .
• or (the condition for the r-th rule is satisfied and its

conclusion is satisfied),”
where we describe “and” as multiplication and “or” as addi-
tion.

Resulting interpretation of the usual polynomial represen-
tation. The functions of one variable, the traditional computer
representations of a polynomial has the form

c0 + c1 · x+ c2 · x2 + . . .+ cm · xm.

The corresponding approximation can be interpreted as the
following set of fuzzy rules:

• c0 (with no condition);
• if x, then c1;
• if x2, then c2; . . .
• if xm, then cm.

In fuzzy logic, if we take x as the degree to which x ∈ [0, 1]
is large, then:

• x2 is usually interpreted as “very large”,
• x4 = (x2)2 is interpreted as “very very large”,
• x8 = (x4)2 = ((x2)2)2 is interpreted as “very very very

large”, etc., and
• intermediate powers x3, x5, x7, etc., are interpreted as as

some intermediate hedges.
Thus, the above rules have the form:

• c0;
• if x is large, then c1;
• if x is very large, then c2, etc.
Similarly, for polynomials of several variables, we have as

many rules as there are monomials ck1...kn ·x
k1
1 · . . . ·xkn

n . For
example, a monomial

c012 · x0
1 · x1

1 · x2
2 = c012 · x2 · x2

3

corresponds to the following rule:

“if x2 is large and x3 is very large, then c012.”

Fuzzy interpretation reveals limitations of the traditional
computer representation of polynomials. From the fuzzy
viewpoint, there are two limitations to this interpretation.

The first limitation is related to the fact that an accurate
representation requires polynomials of higher degrees, with
several distinct coefficients corresponding to different hedges
such as “very”, “very very”, etc. In practice, we humans
can only meaningfully distinguish between a small number
of hedges, and this limits the possibility of meaningfully
obtaining such rules from experts.

The second limitation is that for the purposes of computa-
tional efficiency, it is desirable to have a computer representa-
tion in which as few terms as possible are needed to represent
each function. This can be achieved if in some important
cases, some of the coefficients in the corresponding computer
representation are close to 0 and can, therefore, be safely
ignored. For the above fuzzy representation, all the terms are
meaningful, and there seems to be no reason why some of
these terms can be ignored.

How can we overcome limitations of the traditional com-
puter representation: fuzzy analysis of the problem. From
the fuzzy viewpoint, the traditional computer representation
of polynomials corresponds to taking into account the opin-
ions of a single expert. Theoretically, we can achieve high
accuracy this way if we have an expert who can meaningfully
distinguish between “large”, “very large”, “very very large”,
etc. However, most experts are not very good in such a
distinction. A typical expert is at his or her best when this

expert distinguishes between “large” and “not large”, any more
complex distinctions are much harder.

Since we cannot get a good approximation by using a single
expert, why not use multiple experts? In this case, there is
no need to force an expert into making a difficult distinction
between “very large” and “very very large”. So, we can as well
use each expert where each expert is the strongest: by requiring
each expert to distinguish between “large” and “very large”.
In this setting, once we have d experts, for each variable xi,
we have the following options:

• The first option is when all d experts believe that xi

is large: the 1st expert believes that x is large, the 2nd
believes that xi is large, etc. Since we have decided to
use product for representing “and”, the degree to which
this condition is satisfied is equal to xi · . . . · xi = xd

i .
• Another option is when d − 1 experts believe that xi

is large, and the remaining expert believes that x is not
large. The corresponding degree is equal to xd−1

i ·(1−xi).
• In general, we can have ki experts believing that believing

that xi is large and d− ki experts believing that x is not
large. The corresponding degree is equal to

xki
i · (1− xi)

d−ki .

For this variable, general weighted combinations of such rules
lead to polynomials of the type

∑
ki

cki ·x
ki
i · (1−xi)

d−ki , i.e.,

to Bernstein polynomials of one variable.
For several variables, we have the degree pkii(xi) =

xki
i · (1 − xi)

d−ki with which each variable xi satisfies the
corresponding condition. Hence, the degree to which all n
variables satisfy the corresponding condition is equal to the
product pk11(x1) · . . . · pknn(xn) of these degrees. Thus, the
corresponding fuzzy rules lead to polynomials of the type∑

k1,...,kn

ck1...kn · pk11(x1) · . . . · pknn(xn),

i.e., to Bernstein polynomials.
So, we indeed get a fuzzy explanations for the emergence

of Bernstein polynomials.

Why Bernstein polynomials are more computationally
efficient: a fuzzy explanation. Let us show that the above
explanation of the Bernstein polynomials leads to the desired
explanation of why the Bernstein polynomials are more com-
putationally efficient than the traditional computer representa-
tion of polynomials.

Indeed, the traditional polynomials correspond to rules in
which conditions are “x is large”, “x is very large”, “x is
very very large”, etc. It may be difficult to distinguish between
these terms, but there is no reason to conclude that some of
the corresponding terms become small.

In contrast, each term xki
i · (1 − xi)

d−ki from a Bernstein
polynomial, with the only exception of cases ki = 0 and ki =
D, corresponds to the condition of the type

• “xi is large (very large, etc.) and
• xi is not large (very not large, etc.)”.

While in fuzzy logic, such a combination is possible, there
are important cases when this value is close to 0 – namely, in
the practically important cases when we are either confident
that xi is large or we are confident that xi is not large. In
these cases, the corresponding terms can be safely ignored,
and thus, computations become indeed more efficient.

III. FROM FUZZY EXPLANATION TO A MORE PRECISE
EXPLANATION

Main idea. Let us show that terms xki
i · (1 − xi)

d−ki cor-
responding to ki ∈ (0, d) are indeed smaller and thus, some
of them can indeed be safely ignored. To prove this fact, let
us pick a threshold ε > 0 (ε ≪ 1) and in each computer
representation of polynomials, let us only keep the terms for
which the largest possible value of this term does not exceed ε.

Traditional computer representation of polynomials: anal-
ysis. In the traditional representation, the terms are of the type
xk1
1 · . . . · xkn

n . When xi ∈ [0, 1], each such term is a product
of the corresponding terms xki

i . The resulting non-negative
function is increasing in all its variables, and thus, its largest
possible value is attained when all the variables xi attain their
largest possible value 1. The corresponding largest value is
equal to 1k1 · . . . · 1kn = 1.

Since the largest value of each term is 1, and 1 is larger than
the threshold ε, all the terms will be retained. If we restrict
ourselves to terms of order ≤ d for each variable xi, we get:

• d+ 1 possible terms for one variable:

x0
i = 1, x1

i = x, x2
i , . . . , xd

i ,

• (n+ 1)2 terms xk1
1 · xk2

2 for two variables,
• . . . , and
• (d+ 1)n terms in the general case of n variables.

This number of retained terms grows exponentially with the
number of variables n.

Bernstein polynomials: analysis. For Bernstein polynomials,
each term has the product form pk11(x1) · . . . · pknn(xn),
where pkii(xi) = xki

i · (1 − xi)
d−ki . The product of non-

negative numbers pkii(xi) is a monotonic function of its
factors. Thus, its maximum is attained when each of the
factors pkii(xi) = xki

i · (1 − xi)
d−ki is the largest possible.

Differentiating this expression with respect to xi, taking into

account that the derivative of f(x) = xk is equal to
k

x
· f(x),

and equating the resulting derivative to 0, we conclude that

ki
xi

· pkii(xi)−
d− ki
1− xi

· pkii(xi) = 0,

i.e., that
ki
xi

=
d− ki
1− xi

. Multiplying both sides of this equality

by the common denominator of the two fractions, we get

ki · (1− xi) = (d− ki) · xi,

i.e., ki − ki · xi = d · xi − ki · xi. Adding ki · xi to both sides

of this equation, we get ki = d · xi hence xi =
ki
d

. Thus, the

largest value of this term is equal to

xki
i · (1− xi)

d−ki =

(
ki
d

)ki

·
(
1− ki

d

)d−ki

.

This value is the largest for ki = 0 and ki = d, when the
corresponding maximum is equal to 1; as a function of ki,
it first decreases and then increases again. So, if we want to
consider values for which this term is large enough, we have
to consider value ki which are close to 0 (i.e., ki ≪ d) or
close to d (i.e., d− ki ≪ d).

For values ki which are close to 0, we have(
1− ki

d

)d−ki

≈
(
1− ki

d

)d

. It is known that for large d, this

value is asymptotically equal to exp(−ki). Thus, the logarithm

of the corresponding maximum
(
ki
d

)ki

·
(
1− ki

d

)d−ki

is

asymptotically equal to the logarithm of
(
ki
d

)ki

· exp(−ki),

i.e., to −ki · (ln(d)− ln(ki) + 1). Since we have ki ≪ d, we
get ln(ki) ≪ ln(d) and therefore, the desired logarithm is
asymptotically equal to −ki · ln(d).

For the values ki ≈ d, we can get a similar asymptotic
expression −(d−ki)·ln(d). Both expressions can be described
as −∆i · ln(d), where ∆i denotes min(ki, d− ki), i.e.,

• ∆i = ki when ki ≪ d, and
• ∆i = d− ki when d− ki ≪ d.

We want to find all the tuples (k1, . . . , kn) for which the
product of the terms pkii(xi) corresponding to individual
variables is larger than or equal to ε. The logarithm of the
product is equal to the sum of the logarithms, so the logarithm

if the product is asymptotically equal to −
n∑

i=1

∆i ·ln(d). Thus,

the condition that the product is larger than or equal to ε is
asymptotically equivalent to the inequality

−
n∑

i=1

∆ · ln(d) ≥ ln(ε),

i.e., to the inequality
n∑

i=1

∆i ≤ C
def
=

| ln(ε)|
ln(d)

.

The number of tuples of non-negative integers ∆i that satisfy

the inequality
n∑

i=1

∆i ≤ C can be easily found from combina-

torics.
Namely, we can describe each such tuple if we start with

C zeros and then place ones:
• we place the first one after ∆1 zeros,
• we place the second one after ∆2 zeros following the first

one,
• etc.

As a result, we get a sequence of C +n symbols of which C
are zeros. Vice versa, if we have a sequence of C+n symbols
of which C are zeros (and thus, n are ones), we can take:

• as ∆1 the number of 0s before the first one,

• as ∆2 the number of 0s between the first and the second
ones,

• etc.
Thus, the total number of such tuples is equal to the number
of ways that we can place C zeros in a sequence of C + n
symbols, i.e., equal to(

C + n

C

)
=

(n+ C) · (n+ C − 1) · . . . · (n+ 1)

1 · 2 · . . . · C
.

When n is large, this number is asymptotically equal to

const · nC .

Each value ∆i corresponds to two different values ki:
• the value ki = ∆i and
• the value ki = d− ki.

Thus, to each tuple (∆1, . . . ,∆n), there correspond 2n differ-
ent tuples (k1, . . . , kn). So, the total number of retained tuples
(k1, . . . , kn) – i.e., tuples for which the largest value of the
corresponding term is ≤ ε – is asymptotically equal to 2n ·nC .

Conclusion: Bernstein polynomials are more efficient. As
we have shown:

• In the traditional computer representation of a polyno-
mial of degree ≤ d in each of the variables, we need
asymptotically (d+ 1)n terms.

• For Bernstein polynomials, we need 2n · nC terms.
For large n, the factor nC grows much slower than the
exponential term 2n, and 2n ≪ (d+1)n. Thus, in the Bernstein
representation of a polynomial, we indeed need much fewer
terms than in the traditional computer representation – and
therefore, Bernstein polynomials are indeed more efficient.

Comment. There exist other explanations of why Bernstein
polynomials are more computationally efficient; see, e.g., [10]
and references therein; the main advantage of our explanation
is that it comes from fuzzy analysis and is, therefore, intu-
itively clearer than previously known explanations.

ACKNOWLEDGMENT

This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 (Cyber-ShARE Cen-
ter of Excellence) and DUE-0926721, and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

REFERENCES

[1] R. P. Feynman, R. B. Leighton, and M. Sands, Feynman Lectures on
Physics, Addison-Wesley, Boston, Massachusetts, 2005.

[2] J. Garloff, “The Bernstein algorithm”, Interval Computation, 1993, Vol. 2,
pp. 154–168.

[3] J. Garloff, “The Bernstein expansion and its applications”, Journal of the
American Romanian Academy, 2003, Vol. 25–27, pp. 80–85.

[4] J. Garloff and B. Graf, “Solving strict polynomial inequalities by Bern-
stein expansion”, In N. Munro, editor, The Use of Symbolic Methods
in Control System Analysis and Design, volume 56 of IEE Contr. Eng.,
London, 1999, pp. 339–352.

[5] J. Garloff and A. P. Smith, “Solution of systems of polynomial equations
by using Bernstein polynomials”, In: G. Alefeld, J. Rohn, S. Rump,
and T. Yamamoto (eds.), Symbolic Algebraic Methods and Verification
Methods: Theory and Application, Springer-Verlag, Wien, 2001, pp. 87–
97.

[6] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[7] V. Kreinovich, G. C. Mouzouris, and H. T. Nguyen, “Fuzzy rule based
modeling as a universal approximation tool”, In: H. T. Nguyen and
M. Sugeno (eds.), Fuzzy Systems: Modeling and Control, Kluwer, Boston,
Massachusetts, 1998, pp. 135–195.

[8] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM Press, Philadelphia, Pennsylvania, 2009.

[9] P. S. V. Nataraj and M. Arounassalame, “A new subdivision algorithm for
the Bernstein polynomial approach to global optimization”, International
Journal of Automation and Computing, 2007, Vol. 4, pp. 342–352.

[10] J. Nava and V. Kreinovich, Theoretical Explanation of Bernstein Poly-
nomials’ Efficiency: They Are Optimal Combination of Optimal Endpoint-
Related Functions, University of Texas at El Paso, Department of Com-
puter Science, Technical Report UTEP-CS-11-37, July 2011, available as
http://www.cs.utep.edu/vladik/2011/tr11-37.pdf

[11] H. T. Nguyen and V. Kreinovich, Applications of continuous mathemat-
ics to computer science, Kluwer, Dordrecht, 1997.

[12] H. T. Nguyen and E. A. Walker, First Course In Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[13] S. Ray and P. S. V. Nataraj, “A New Strategy For Selecting Subdivision
Point In The Bernstein Approach To Polynomial Optimization”, Reliable
Computing, 2010, Vol. 14, pp. 117–137.

[14] L. A. Zadeh, “Fuzzy sets”, Information and control, 1965, Vol. 8,
pp. 338–353.

	University of Texas at El Paso
	DigitalCommons@UTEP
	12-1-2011

	Why Bernstein Polynomials Are Better: Fuzzy-Inspired Justification
	Jaime Nava
	Olga Kosheleva
	Vladik Kreinovich
	Recommended Citation

