
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

12-1-2011

Constraint Optimization: From Efficient
Computation of What Can Be Achieved to
Efficient Computation of a Way to Achieve The
Corresponding Optimum
Ali Jalal-Kamali
University of Texas at El Paso, ajalalkamali@miners.utep.edu

Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-63

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Jalal-Kamali, Ali; Ceberio, Martine; and Kreinovich, Vladik, "Constraint Optimization: From Efficient Computation of What Can Be
Achieved to Efficient Computation of a Way to Achieve The Corresponding Optimum" (2011). Departmental Technical Reports (CS).
Paper 625.
http://digitalcommons.utep.edu/cs_techrep/625

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/625?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Constraint Optimization: From Efficient
Computation of What Can Be Achieved to

Efficient Computation of a Way to Achieve The
Corresponding Optimum

Ali Jalal-Kamali, Martine Ceberio, and Vladik Kreinovich

Dept. Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA
ajalalkamali@miners.utep.edu, mceberio@utep.edu, vladik@utep.edu

Abstract. In many practically useful cases, we know how to efficiently
compute the exact range of a function over given intervals (and, possibly,
under additional constraints). In other words, we know how to efficiently
compute the minimum and maximum of a given function f(x1, . . . , xn)
on any box. From the practical viewpoint, it is important not only to find
the value of the corresponding maximum or minimum, but also to know
for what values of the parameters xi this optimum is attained. We prove
a general result: that if we can efficiently compute the optimum, then we
can also efficiently find the values at which this optimum is attained.

1 From Computing Maximum Value to Locating Where
Maximum Is Attained

Need for optimization: general reminder. In many practical situations, we
need to select the best alternative: a location of a plant, values of the control
to apply to a system, etc. Let n be the total number of parameters x1, . . . , xn

which are needed to uniquely determine the alternative. For each parameter xi,
we know the range xi = [xi, xi] of its possible values. The “best” alternative”
is defined as the one for which an appropriate objective function f(x1, . . . , xn)
attains the largest possible value. It is reasonable to assume that the objective
function is feasibly computable. Then, the problem is to find the best values
x1, . . . , xn for which the objective function attains the largest possible value.

First step: computing the largest possible value of the objective func-
tion. Before we start solving the above decision problem, it makes sense to first
solve a simpler problem: finding out what we can, in principle, achieve within
the given setting.

This checking is often useful: once we (almost) exhausted the possibilities of
an idea, it may be better to look for new ideas: e.g., instead of trying to further
minimize the pollution caused by a coal-burning steam engine, it may be better
to use a different, less polluting engine design.

In precise terms, we need to compute the maximum y (and, if needed, the
minimum y) of the given function f(x1, . . . , xn) over given intervals xi. The

problem of computing the range [y, y] of the function under interval constraints
xi ∈ xi is known as the problem of interval computations; see, e.g., [2].

Comment. The actual minimum and maximum y and y are, in general, irrational
numbers and thus, cannot be exactly represented in the current computers. So,
what we need is, given any rational number ε > 0, compute the optima with
accuracy ε, i.e., compute rational numbers r and r for which |r − y| ≤ ε and
|r − y| ≤ ε.

Interval computation is, in general, NP-hard. It is known that in general,
the problem of computing the corresponding range is NP-hard; see, e.g., [1]. This
means, crudely speaking, that it is not possible to have a feasible algorithm that
would always compute the desired range. Because of this, it is important to find
practically useful classes of problems for which it is feasibly possible to compute
this range. Many such classes are known.

Need to take additional constraints into account. In practice, in addition
to the constraints xi ≤ xi ≤ xi, we often have additional constraints of equality
or inequality type. In such situations, it is necessary to restrict ourselves only to
values (x1, . . . , xn) which satisfy these constraints.

Need to find location of the maximum. Once we know the value of the
maximum, it is necessary to compute the values of the parameters x1, . . . , xn

that lead to this maximum value.

How this is done now. At present, once we have developed an algorithm for
computing the maximum value y of the given function f(x1, . . . , xn), we need
to develop a second algorithm – for finding the values x1, . . . , xn at which this
maximum is attained.

What we do. In this paper, we describe a general technique for generating the
second algorithm once the first one is known.

2 Main Result: If We Can Feasibly Compute the
Maximum, Then We Can Also Feasibly Locate Where
This Maximum Is Attained

Constraint result: formulation. Let us assume that we can feasibly com-
pute the maximum. To be precise, we assume that for some class F of functions
f(x1, . . . , xn) and for some class C of constraints, there exists a feasible (poly-
nomial time) algorithm that, given:

– a function f(x1, . . . , xn) ∈ F and constraints C ∈ C,
– rational-valued intervals [x1, x1], . . . , [xn, xn], and
– a rational number ε > 0,

computes rational values r and r which are ε-close to the endpoints y and y of
the range

[y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn], (x1, . . . , xn) ∈ C}

of the given function under given constraints. Our result is that in this case, we
can feasibly locate the point where the maximum is attained. To be precise, we
describe a feasible algorithm that, given:

– a function f(x1, . . . , xn) ∈ F and constraints C ∈ C,
– rational-valued intervals [x1, x1], . . . , [xn, xn], and
– rational numbers ε > 0 and δ > 0,

computes rational values r1, . . . , rn for which there exist δ-close values x1, . . . , xn

which satisfy the constraints C and for which f(x1, . . . , xn) ≥ y − ε.

Mathematical comment. In general, the maximum of a function f(x1, . . . , xn)
can be attained at values xi which are not rational and therefore, cannot be
exactly represented in a usual computer. From this viewpoint, the fact that we
produce δ-approximations to these points makes perfect sense – in general.

Interval-related comments. In situations when there are no additional constraints
and we can also feasibly compute the bound M on all partial derivatives of a
function f , we can also feasibly produce, given a rational number η > 0, rational
values r1, . . . , rn for which f(r1, . . . , rn) ≥ y − η.

At first glance, the fact that we can use interval computations to locate the
maximum is not surprising – such a location is one of the main applications
of interval computations in optimization; see, e.g., [2]. The main idea is that
we use interval computations to find the enclosure of a function on subboxes
while keeping track of its values in the subboxes’ midpoints, and then dismiss
the subboxes for which the upper bound is smaller than the maximum so far
(= the maximum of all values computed at midpoints). The main difference
between this idea and what we are proposing is that the traditional idea does
not necessarily lead to a feasible algorithm – computations can take exponential
time by requiring us to consider 2n sub-boxes – while the computation time for
our algorithm is always feasible (polynomial).

Constraints-related comment. Our result is in line with the fact that solving
a constraint satisfaction problem – of finding some values that satisfy given
constraints – is usually simpler than solving a constraint optimization problem
– of finding, among all possible solutions of a constraint satisfaction problem,
the one withe the largest value of a given objective function f(x1, . . . , xn). Once
we can compute the actual constraint maximum y of the objective function, the
problem of finding the values where the maximum is attained can be solved by
adding an additional constraint f(x1, . . . , xn) = y (or f(x1, . . . , xn) ≥ y − ε) to
the original list of constraints. Thus, to locate the maximum, it is sufficient to
solve an easier-to-solve constraint satisfaction problem.

Description of the algorithm. At each stage of this algorithm, we will have
a box Bk. We start with the original box B0 = B. Then, we will decrease the
x1-size of this box in half several times until this size becomes smaller than or
equal to 2δ. (In the following text, we describe how this bisection is done.) After
this, we decrease the x2-size of this box in half, etc., until all n sizes are bounded
by 2δ.

For each side, we start with the interval [xi, xi] of width wi = xi − xi. After
si bisection steps, the width decreases to wi · 2−si . One can see that we need⌈
ln

(wi

2δ

)⌉
steps to reach the desired size (≤ 2δ) of the i-th side. Overall, we

need s =
n∑

i=1

ln
(⌈wi

2δ

⌉)
bisection steps.

Each bisection step of the algorithm is as follows. Suppose that we have a
box Bk with an xi-size [bi, bi], and we need to bisect the xi-size. We divide this
box in two by bisecting the i-th side into two equal intervals [bi,mi] and [mi, bi],

where mi =
bi + bi

2
. This divides the original box

Bk = . . .× [bi−1, bi−1]× [bi, bi]× [bi+1, bi+1]× . . .

into two subboxes

B′
k = . . .× [bi−1, bi−1]× [bi,mi]× [bi+1, bi+1]× . . . and

B′′
k = . . .× [bi−1, bi−1]× [mi, bi]× [bi+1, bi+1]× . . .

To both subboxes, we apply the original range estimation algorithm, and get

two rational numbers r′k and r′′k which are
ε

2s
-close to the (constraint) maxima

y′k and y′′k of the function f(x1, . . . , xn) over these subboxes. As the next box
Bk+1, we then choose either B′

k or B′′
k depending on which of the two rational

numbers r′k and r′′k is larger:

– if r′k ≥ r′′k , we select B′
k,

– else, we select B′′
k .

Once all the sides have been decreased, we return the coordinates of the midpoint
of the final box Bs as the desired values r1, . . . , rn.

Proof that our algorithm is correct. Let yk denote the (constraint) maxi-
mum of the function f(x1, . . . , xn) over the box Bk. We will prove, by induction,

that for each box Bk, we have yk ≥ y − k

s
· ε. Then, after all s steps, we will

be able to conclude that ys ≥ y − ε. By definition of ys, this means that there
exist a point (x1, . . . , xn) ∈ Bs which satisfies the given constraints and at which
f(x1, . . . , xn) = ys ≥ y− ε. Since the box is of width ≤ 2δ in all directions, each
value xi is δ-close to the midpoint ri. So, to prove correctness, it is sufficient to

prove that yk ≥ y − k

s
· ε.

The induction base is clear: for k = 0, when B0 is the original box and
therefore, the maximum y0 over this box is simply equal to y.

Let us prove the induction step. Assume that the desired inequality yk ≥

y− k

s
· ε holds for the box Bk. Let us show that this inequality also holds for the

next box Bk+1. Indeed, since the box Bk is the union of two subboxes B′
k and B′′

k ,
the maximum yk of the function f(x1, . . . , xn) over the box Bk is equal to the

largest of the two maxima y′k and y′′k over the two subboxes: yk = max(y′k, y
′′
k).

For computed approximate maxima r′k and r′′k , we have r′k ≥ y′k − ε

2s
and

r′′k ≥ y′′k − ε

2s
. Thus, we have

max(r′k, r
′′
k) ≥ max(y′k, y

′′
k)−

ε

2s
= yk − ε

2s
.

According to our algorithm, we select the box Bk+1 for which the corresponding
estimate of the maximum is the largest, i.e., for which this estimate is equal

to rk+1 = max(r′k, r
′′
k). Thus, we conclude that rk+1 ≥ yk − ε

2s
. Since yk+1 is

ε

2s
-close to the estimate rk+1, we conclude that

yk+1 ≥ rk+1 −
ε

2s
≥

(
yk − ε

2s

)
− ε

2s
= yk − ε

s
.

So, from yk ≥ y − k

s
· ε, we can now conclude that

yk+1 ≥ yk − ε

s
≥

(
y − k

s
· ε
)
− ε

s
= y − k + 1

s
· ε.

The inequality is proven, and so is the algorithm’s correctness.

Proof that our algorithm is feasible. The number of steps s feasibly (polyno-
mially) depends on the size of the input; the range estimation algorithm that we
use on each step is also polynomial-time. Thus, all we do is repeat a polynomial-
time algorithm polynomially many times. The computation time of the resulting
algorithm is bounded by the product of the two corresponding polynomials and
is, thus, itself polynomial. Thus, our algorithm is indeed feasible.

What if know the bounds on the derivatives. In this case, since

|f(r1, . . . , rn)− f(x1, . . . , xn)| ≤
n∑

i=1

∣∣∣∣ ∂f∂fi
∣∣∣∣ · |xi − ri| ≤ n ·M · δ,

we conclude that f(r1, . . . , rn) ≥ f(x1, . . . , xn) − n · M · δ ≥ y − ε − n · M · δ.
So, if we want to find the values r1, . . . , rn for which f(r1, . . . , rn) ≥ y − η, it is

sufficient to apply the above algorithm with ε =
η

2
and δ =

η

2 · n ·M
(so that

n ·M · δ = η/2).

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and DUE-0926721, by Grant 1 T36 GM078000-
01 from the National Institutes of Health.

References

1. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and
feasibility of data processing and interval computations, Kluwer, Dordrecht (1998)

2. Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis, SIAM
Press, Philadelphia, Pennsylvania (2009)

	University of Texas at El Paso
	DigitalCommons@UTEP
	12-1-2011

	Constraint Optimization: From Efficient Computation of What Can Be Achieved to Efficient Computation of a Way to Achieve The Corresponding Optimum
	Ali Jalal-Kamali
	Martine Ceberio
	Vladik Kreinovich
	Recommended Citation

