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Mamdani Approach to Fuzzy Control, Logical
Approach, What Else?

Samuel Bravo and Jaime Nava
Dept. Computer Science, University of Texas, El Paso, TX 79968, USA

sbravo09@gmail.com, jenava@miners.utep.edu

Abstract—In fuzzy control, two approaches are mainly used:
Mamdani’s approach, in which we represent the knowledge base
as a disjunction of statements Ai(x)&Bi(u) corresponding to
individual rules, and logical approach, in which the knowledge
base is represented as a conjunction of the rules themselves
Ai(x) → Bi(u). Both approaches are known not to be perfect, so
a natural question arises: what other approaches are possible?
In this paper, we describe all possible approaches; alternative
approaches use an “exclusive or” operation and correspond, e.g.,
to the fuzzy transform idea.

I. INTRODUCTION

Need for fuzzy control. In many application areas, we do not
have the exact control strategies, but we have human operators
who are skilled in the corresponding control. Human operators
are often unable to describe their knowledge in a precise
quantitative form. Instead, they describe their knowledge in
terms of control rules, rules that formulate their expertise by
using words from natural language. These rules usually have
the form “If Ai(x) then Bi(u)”, they relate properties of the
input x with properties of the corresponding control u. For
example, a rule may say “If a car in front is somewhat too
close, break a little bit”.

Fuzzy control is a set of techniques for transforming these
rules into a precise control strategy; see, e.g., [1], [3].
Mamdani approach to fuzzy control. Historically the first
– and still most widely used – idea of fuzzy control was
described by E. Mamdani. Mamdani argued that for a given
input x, a control value u is reasonable if:

• either the first rule is applicable, i.e., its condition A1(x)
is satisfied and its conclusion B1(u) is satisfied,

• or the second rule is applicable, i.e., its condition A2(x)
is satisfied and its conclusion B2(u) is satisfied,

• etc.
Thus, in Mamdani’s approach, the condition R(x, u) meaning
that the control u is reasonable for the input x takes the
following form

(A1(x)&B1(u)) ∨ (A2(x)&B2(u)) ∨ . . . (1)

For a given input x0, to get a desired control value u(x0), we
must now apply an appropriate defuzzification procedure to
the resulting membership function R(x0, u).
Logical approach to fuzzy control. An alternative (more
recent) approach to fuzzy control is to simply state that all
the rules are valid, i.e., that the following statement holds:

(A1(x) → B1(u))& (A2(x) → B2(u))& . . . (2)

For example, we can interpret A → B as ¬A ∨ B, in which
case the formula (2) has the form

(¬A1(x) ∨B1(u))& (¬A2(x) ∨B2(u))& . . . , (3)

or, equivalently, the form

(A′
1(x) ∨B1(u))& (A′

2(x) ∨B2(u))& . . . , (4)

where A′
i(x) denotes ¬Ai(x).

Both approaches have a universality property. Both Mam-
dani’s and logical approaches to fuzzy control have a univer-
sality (universal approximation) property [2], [3], [6] meaning
that an arbitrary control strategy can be, with arbitrary accu-
racy, approximated by controls generated by this approach.

Corresponding crisp universality property. One of the
reasons why the corresponding fuzzy controls have the uni-
versal approximation property is that the corresponding crisp
formulas (1) and (2) have the following universal property: for
finite sets X and U , an arbitrary relation C(x, u) on X × U
can be represented both in the form (1) and in the form (2),
for appropriate properties Ai(x) and Bi(u).

Indeed, an arbitrary crisp property C(x, u) can be described
by the set C ⊆ X × U of all the pairs (x, u) that satisfy
this property. Once this set is given, we can represent the
corresponding property in the form (1) by taking

C(x, u) ⇔ ∨(x0,u0)∈C((x = x0)& (u = u0)) (5)

and in the form (2) (equivalent to (4)) by taking

C(x, u) ⇔ &(x0,u0) ̸∈C((x = x0) → (u ̸= u0)). (6)

(The proof of this equivalence is given in the special Proofs
section.)

Comment. This universality property is well known and ac-
tively used, e.g., in digital design: when we design, e.g.,
a vending machine, then to implement a general logical
condition in terms of “and”, “or”, and “not”-gates, we first
represent this condition in Conjunctive Normal Form (CNF) or
in a Disjunctive Normal Form (DNF). These forms correspond
exactly to our formulas (1) and (4) (equivalent to (2)), and the
possibility to transform each logical condition into one of these
forms is our universality property.

Fuzzy control: what other approaches are possible? Both
Mamdani’s and logical approaches are actively used in fuzzy
control. The fact that both approaches are actively used means



that both have advantages and disadvantages, i.e., none of
these two approaches is perfect. Since both are not perfect,
it is reasonable to analyze what other approaches are possible.

In this paper, we start this analysis by analyzing what type
of crisp forms like (1) and (2) are possible.

II. DEFINITIONS AND THE MAIN RESULT

In the above two representations, we used &, ∨, and →.
These logical connectives are examples of binary operations
in the following precise sense.
Definition 1. By a binary operation, we mean a function

f : {0, 1} × {0, 1} → {0, 1}

that transforms two Boolean values a and b into a new Boolean
value f(a, b).
Comment. In this paper, as usual, we identify “false” with 0
and “true” with 1.
We are looking for general representations of the type

(A1(x)⊙B1(u))⊖ (A2(x)⊙B2(u))⊖ . . . , (7)

for arbitrary pairs of binary operations; we denoted these
general binary operations ⊙ and ⊖. For example, in the above
representations, we used ⊖ = ∨ and ⊖ = &; we want to find
all other binary operations for which such a representation is
possible.

It is important to notice that the operation ⊖ is used to
combine different rules. Therefore, the result of this operation
should not depend on the order in which we present the rules.
Thus, this operation should be commutative and associative.

So, we arrive at the following definitions.
Definition 2. We say that a pair of binary operations (⊙,⊖)
in which the operation ⊖ is commutative and associative has
a universality property if for every two finite sets X and U ,
an arbitrary relation C(x, u) can be represented in the form
(7) for appropriate relations Ai(x) and Bi(u).
Discussion. One can easily check that if the pair (⊙,⊖)
has the universality property, then the pair (⊙′,⊖), where
a ⊙′ b

def
= ¬a ⊙ b, also has the universality property: indeed,

each statement of the type Ai(x)⊙Bi(u) can be equivalently
represented as A′

i(x)⊙′ Bi(u) for A′
i(x)

def
= ¬Ai(x).

Similarly, if the pair (⊙,⊖) has the universality property,
then the pair (⊙′,⊖), where a ⊙′ b

def
= a ⊙ ¬b, also has

the universality property: indeed, each statement of the type
Ai(x)⊙Bi(u) can be equivalently represented as

Ai(x)⊙′ B′
i(u)

for B′
i(u)

def
= ¬Bi(u).

Finally, if the pair (⊙,⊖) has the universality property,
then the pair (⊙′,⊖), where a ⊙′ b

def
= ¬a ⊙ ¬b, also has

the universality property: indeed, each statement of the type
Ai(x)⊙Bi(u) can be equivalently represented as

A′
i(x)⊙′ B′

i(u)

for A′
i(x)

def
= ¬Ai(x) and B′

i(u)
def
= ¬Bi(u).

Thus, from the viewpoint of universality, the relations ⊙
and ⊙′ are similar. So, we arrive at the following definition.
Definition 3. We say that binary operations ⊙ and ⊙′ are
similar if the relation ⊙′ has one of the following forms:

a⊙′ b
def
= ¬a⊙ b, a⊙′ b

def
= a⊙ ¬b, or a⊙′ b

def
= ¬a⊙ ¬b.

Definition 4. We say that pairs (⊙,⊖) and (⊙′,⊖) are similar
if the operations ⊙ and ⊙′ are similar.

The above discussion can be formulated as follows:
Proposition 1. If the binary operations ⊙ and ⊙′ are similar,
then the following two statements are equivalent to each other:

• the pair (⊙,⊖) has the universality property;
• the pair (⊙′,⊖) has the universality property.

Comment. One can easily check that the similarity relation is
symmetric and transitive, i.e., in mathematical terms, that it
is an equivalence relation. Thus, to classify all pairs with the
universality property, it is sufficient to consider equivalence
classes of binary operations ⊙ with respect to the similarity
relation.
Discussion. Our definition of a universal property requires
that the rule-combining operation ⊖ be commutative and
associative. It turns out that there are only six such operations.
Proposition 2. Out of all binary operations, only the following
six are commutative and associative:

• the “zero” operation for which f(a, b) = 0 for all a
and b;

• the “one” operation for which f(a, b) = 1 for all a and b;
• the “and” operation for which f(a, b) = a& b;
• the “or” operation for which f(a, b) = a ∨ b;
• the “exclusive or” operation for which f(a, b) = a⊕ b;
• the “equivalence” operation a ≡ b

def
= a⊕ ¬b.

Comments.
• The proof of this proposition is given in the following

section.
• The “exclusive or” operation is actively used in digital

design: e.g., when we add two binary numbers which
end with digits a and b, the last digit of the sum is a⊕ b
(and the carry is a& b). In view of this, “exclusive or” is
also called addition modulo 2.

• It is interesting to mention that the “exclusive or” oper-
ation a ⊕ b and the “equivalence” operation a ≡ b are
similar to each other – in the sense of our Definition
3. This is the only such pair. For example, an operation
a&¬b is similar to the “and” operation a& b, but while
the “and” operation is commutative, the operation a&¬b
is not commutative.

• Due to Proposition 2, it is sufficient to consider only these
six operations ⊖. The following theorem provides a full
classification of all resulting pairs of operations.



Theorem. Every pair of operations with the universality
property is similar to one of the following pairs: (∨,&),
(&,∨), (⊕,∨), (⊕,&), (≡,∨), (≡,&), and all these six pairs
of operations have the universality property.
Discussion. Thus, in addition to the Mamdani and logical
approaches, we have four other possible pairs with the uni-
versality property.

What is the their meaning? As we will see from the proof,
for each operation ⊙, the combination

(A1(x)⊙B1(u)) ≡ (A2(x)⊙B2(u)) ≡ . . . ≡ (An(x)⊙Bn(u))

is equal to

(A1(x)⊙B1(u))⊕ (A2(x)⊙B2(u))⊕ . . . (An(x)⊙Bn(u))

for odd n and to the negation of this relation for even n.
Thus, for odd n, the use of the “equivalence” operation ≡ to

combine the rules is equivalent to using the original “exclusive
or” operation ⊕. For even n, in order to represent an arbitrary
property C(x, u), we can use the ⊕ combination to represent
its negation ¬C(x, u) – this is equivalent to representing the
original property by ≡.

Thus, in essence, in addition to forms (1) and (2), we only
have two more forms:

(A1(x)&B1(u))⊕ (A2(x)&B2(u))⊕ . . . (8)

and
(A1(x) ∨B1(u))⊕ (A2(x) ∨B2(u))⊕ . . . (9)

The meaning of these forms is that, crudely speaking, we
restrict ourselves to the cases when exactly one rule is ap-
plicable. The case of fuzzy transforms (f-transforms, for short)
[4], [5]), where we consider rules “if Ai(x) then Bi(u)” for

which
n∑

i=1

Ai(x) = 1, can be therefore viewed as a natural

fuzzy analogue of these cases.

III. PROOFS

0◦. Let us first prove the formula (6). Indeed, for negation
¬C(x, u), the formula (5) takes the form

¬C(x, u) ⇔ ∨(x0,u0) ̸∈C((x = x0)& (u = u0)).

Thus, C(x, u) ⇔ ¬(¬C(x, u)) ⇔

¬
(
∨(x0,u0 )̸∈C((x = x0)& (u = u0))

)
.

Applying de Morgan laws, we can move the negations inside
the right-hand side formula and conclude that

C(x, u) ⇔ &(x0,u0) ̸∈C(¬(x = x0) ∨ (u ̸= u0)).

Since ¬A ∨ B is the same as A → B, we get exactly the
desired formula (6).
1◦. In order to prove Proposition 2 and Theorem, let us first
recall all possible binary operations. By definition, to describe
a binary operation, one needs to describe four Boolean values:
f(0, 0), f(0, 1), f(1, 0), and f(1, 1). Each of these four
quantities can have two different values: 0 and 1; thus, totally,
we have 24 = 16 possible operations.

A natural way to classify these operations is to describe
how many 1s we have as values f(a, b). Out of 4 values, we
can have 0, 1, 2, 3, and 4 ones. Let us describe these cases
one by one.
1.1◦. When we have zero 1s, this means that all the values
f(a, b) are zeros. Thus, in this case, we have a binary operation
that always returns zero: f(a, b) = 0 for all a and b. It is
easy to show that this operation cannot lead to the universality
property:

• if we use this operation as ⊙, then the formula (7) turns
into a constant 0⊖ 0⊖ . . . independent on x and u; thus,
it cannot have the universality property;

• if we use this operation as ⊖, then the formula (7)
turns into a constant 0, and thus, also cannot have the
universality property.

1.2◦. Similarly, when we have four 1s, this means that
f(a, b) = 1 for all a and b, and we do not have a universality
property.
1.3◦. When we have a single one, this means that we have an
operation similar to “and”. Indeed, if f(1, 1) = 1 and all other
values f(a, b) are 0s, this means that f(a, b) is true if and only
if a is true and b is true, i.e., that f(a, b) ⇔ a& b. Similarly,
if f(1, 0) = 1, then f(a, b) ⇔ a&¬b; if f(0, 1) = 1, then
f(a, b) ⇔ ¬a& b; and if f(0, 0) = 1, then f(a, b) ⇔ ¬a&¬b.

1.4◦. Similarly, we can prove that when we have three ones,
this means that we have an operation similar to “or”.
2◦. To complete our classification, it is sufficient to describe
all the cases when we have exactly two 1s. By enumerating all
possible binary operations, we can check that in this case, we
have six options: f(a, b) = a, f(a, b) = ¬a, f(a, b) = b,
f(a, b) = ¬b, f(a, b) = a ⊕ b, and f(a, b) = a ≡.
By analyzing these operations f(a, b) one by one and by
testing commutativity f(a, b) = f(b, a) and associativity
f(a, f(b, c)) = f(f(a, b), c) for all possible values a, b, and
c, we can describe all commutative and associative operations
– i.e., prove Proposition 2.
3◦. Arguments similar to the ones that we just gave enables
us to prove the statement listed after the formulation of the
Theorem: that for any statements S1, . . . , Sn:

• for odd n, we have

S1 ≡ . . . ≡ Sn ⇔ S1 ⊕ . . .⊕ Sn;

• for even n, we have

S1 ≡ . . . ≡ Sn ⇔ ¬(S1 ⊕ . . .⊕ Sn).

Indeed, as we have mentioned, S ≡ S′, i.e., S ⊕ ¬S′, is
equivalent to S⊕S′⊕1. Thus, for every n, due to associativity
and commutativity of both operations ⊕ and ≡, we have:

S1 ≡ S2 ≡ S3 ≡ . . . ≡ Sn ⇔

(. . . ((S1 ≡ S2) ≡ S3) ≡ . . . ≡ Sn ⇔

(. . . ((S1 ⊕ S2 ⊕ 1)⊕ S3 ⊕ 1)⊕ . . .⊕ Sn ⊕ 1 ⇔



S1 ⊕ S2 ⊕ 1⊕ S2 ⊕ 1⊕ . . .⊕ Sn ⊕ 1 ⇔

(S1 ⊕ S2 ⊕ S3 ⊕ . . .⊕ Sn)⊕ (1⊕ 1⊕ . . .⊕ 1)(n− 1 times).

Here, 1⊕ 1 = 0, So, for odd n, when n− 1 is even, we have

(1⊕1⊕. . .⊕1)(n−1 times) = (1⊕1)⊕(1⊕1)⊕. . .⊕(1⊕1) =

0⊕ 0⊕ . . .⊕ 0 = 0

and thus
S1 ≡ S2 ≡ S3 ≡ . . . ≡ Sn ⇔

(S1⊕S2⊕S3⊕ . . .⊕Sn)⊕ (1⊕ 1⊕ . . .⊕ 1)(n− 1 times) ⇔

S1 ⊕ S2 ⊕ S3 ⊕ . . .⊕ Sn.

Similarly, for even n, when n− 1 is odd, we have

(1⊕1⊕. . .⊕1)(n−1 times) = (1⊕1)⊕(1⊕1)⊕. . .⊕(1⊕1)⊕1 =

0⊕ 0⊕ . . .⊕ 0⊕ 1 = (0⊕ 0⊕ . . .⊕ 0)⊕ 1 = 0⊕ 1 = 1

and thus
S1 ≡ S2 ≡ S3 ≡ . . . ≡ Sn ⇔

(S1⊕S2⊕S3⊕ . . .⊕Sn)⊕ (1⊕ 1⊕ . . .⊕ 1)(n− 1 times) ⇔

(S1⊕S2⊕S3⊕ . . .⊕Sn)⊕1 ⇔ ¬(S1⊕S2⊕S3⊕ . . .⊕Sn).

4◦. Due to Proposition 2, we only have to consider the six
operations ⊖ described in this Proposition when checking the
universality property.

We have already shown, in Part 1 of this proof, that pairs
with ⊖ = 0 and ⊖ = 1 do not have the universality property.

We have also shown that a pair (⊙,≡) has a universality
property if and only if the pair (⊙,⊕) has the universality
property.

Thus, it is sufficient to consider only three possible opera-
tions ⊖: &, ∨, and ⊕. In the following text, we will analyze
these three cases one by one, and for each of these three cases,
we will consider all possible operations ⊙.
5◦. For ⊙, as we have mentioned in the discussion from
the main text, it is sufficient to consider only one operation
from each class of operations which are similar to each other.
According to the general classification (Part 1 of this proof),
this leaves us with the operations 0, 1, &, ∨, ⊕, and the
degenerate operations – i.e., operations f(a, b) which only
depend on one of the two variables a or b.
5.1◦. We have already shown (in Part 1) that we cannot have
⊙ = 0 or ⊙ = 1. Thus, for ⊙, we have to consider cases when
⊙ = &, when ⊙ = ∨, when ⊙ = ⊕, and when a ⊙ b is one
of the four “degenerate” operations a ⊙ b = a, a ⊙ b = ¬a,
a⊙ b = b, and a⊙ b = ¬b.
5.2◦. Let us prove that the pairs (⊙,⊖) for which a⊙ b = a,
a ⊙ b = ¬a, a ⊙ b = b, or a ⊙ b = ¬b, cannot have the
universality property.
Indeed, e.g., for a⊙b = a, each expression Ai(x)⊙Bi(u) has
the form Ai(x). Thus, the ⊖-combination of these expressions
A1(x) ⊖ A2(x) ⊖ . . . ⊖ An(x) does not depend on u at all

and thus, cannot represent any property C(x, u) that actually
depends on u. Similarly, for a⊙b = ¬a, we get the expression
¬A1(x)⊖¬A2(x)⊖ . . .⊖¬An(x) which also does not depend
on u and thus, cannot represent any property C(x, u) that
actually depends on u.

For a ⊙ b = b and a ⊙ b = ¬b, we get, correspondingly,
expressions

B1(u)⊖B2(u)⊖ . . .⊖Bn(u)

and ¬B1(u)⊖¬B2(u)⊖. . .⊖¬Bn(u) which do not depend on
x and thus, cannot represent any property C(x, u) that actually
depends on x.
5.3◦. Because of what we have proved in Parts 5.1 and 5.2, it
is sufficient to consider only three operations ⊙ for combining
the premise Ai(x) and the conclusion Bi(u) of each rule: &,
∨, and ⊕.
6◦. Let us first consider the case when ⊖ = &. In accordance
with Part 5 of this proof, it is sufficient to analyze the
universality property for the three subcases when ⊙ = &,
⊙ = ∨, and ⊙ = ⊕. Let us consider these subcases one by
one.
6.1◦. When ⊖ = & and ⊙ = &, the general expression

(A1(x)⊙B1(u))⊖ (A2(x)⊙B2(u))⊖ . . .

takes the form

(A1(x)&B1(u))& (A2(x)&B2(u))& . . .

Due to commutativity and associativity of the “and” operation,
this expression is equivalent to

(A1(x)&A2(x)& . . .)& (B1(u)&B2(u)& . . .),

i.e., to A(x)&B(u), where A(x)
def
= A1(x)&A2(x)& . . .

and
B(u)

def
= B1(u)&B2(u)& . . . .

One can easily see that not every property C(x, u) can be
represented as A(x)&B(u). Indeed, let us take arbitrary sets
X and U with at least two elements each, and let x0 ∈ X and
u0 ∈ U be arbitrary elements from these sets. Let us prove, by
contradiction, that the property (x = x0)∨(u = u0) cannot be
represented in the form A(x)&B(u). Indeed, let us assume
that for some properties A(x) and B(u), for every x ∈ X and
u ∈ U , we have

((x = x0) ∨ (u = u0)) ⇔ (A(x)&B(u)). (10)

In particular, for x = x0 and u = u1 ̸= u0, the left-hand
side of this equivalence (10) is true, hence the right-hand side
A(x0)&B(u1) is true as well. Thus, both statements A(x0)
and B(u1) are true.

Similarly, for x = x1 ̸= x0 and u = u0, the left-hand
side of the equivalence (10) is true, hence the right-hand side
A(x1)&B(u0) is true as well. Thus, both statements A(x1)
and B(u0) are true.

Since A(x1) and B(u1) are both true, the conjunction
A(x1)&B(u1) is also true, so due to (10), we would conclude



that (x1 = x0)∨ (u1 = u0), which is false. The contradiction
proves that the representation (10) is indeed impossible and
thus, the pair (&,&) does not have the universality property.
6.2◦. For ⊖ = & and ⊙ = ∨, the universality property is
known to be true – this is one of the two basic cases with
which we started our analysis.
6.3◦. Let us prove that the subcase ⊖ = & and ⊙ = ⊕ does
not lead to the universality property.
In this case, the general expression

(A1(x)⊙B1(u))⊖ (A2(x)⊙B2(u))⊖ . . .

takes the form

(A1(x)⊕B1(u))& (A2(x)⊕B2(u))& . . . (11)

Let us prove, by contradiction, that for every x0 ∈ X and
u0 ∈ U , the property C(x, u) ⇔ x ̸= x0 ∨ u ̸= u0 cannot
be represented in the form (11). Indeed, let us assume that
this representation is possible, for some properties Ai(x) and
Bi(u).

For the above property C(x, u), the set S of all the values
for which this property is true contains all the pairs (x, u)
from X ×U except for the pair (x0, u0). Due to equivalence,
this same set S is also the set of all the pairs for which the
formula (11) holds.

Due to the known properties of the “and” operations, the
set S of all the values (x, u) for which the formula (11) holds
is equal to the intersection of the sets

Si = {(x, u) : Ai(x)⊕Bi(u)}.

Thus, each of the sets Si is a superset of the set S: S ⊆ Si.
By our construction, the set S is missing only one element;
thus, it has only two supersets: itself and the set X ×U of all
the pairs. If all the sets Si coincided with X × U , then their
intersection would also be equal to X × U , but it is equal to
S ̸= X × U . Thus, at least for one i, we have Si = S. For
this i, we have the equivalence

((x ̸= x0) ∨ (u ̸= u0)) ⇔ (Ai(x)⊕Bi(u)). (12)

Let us now reduce this equivalence to the case when Ai(x0)
is true (i.e., when Ai(x0) = 1). Specifically, if Ai(x0) is false
(Ai(x0) = 0), then, since A⊕B ⇔ ¬A⊕¬B, we can replace
the original equivalence with the new one

((x ̸= x0) ∨ (u ̸= u0)) ⇔ (A′
i(x)⊕B′

i(u)),

where A′
i(x)

def
= ¬Ai(x) and B′

i(u)
def
= ¬Bi(u), and A′

i(x0) =
¬Ai(x0) =“true”. So, we can assume that Ai(x0) = 1.

Now, for x = x0 and u = u0, the left-hand side of the
equivalence (12) is false, hence the right-hand side Ai(x0)⊕
Bi(u0) is false as well. Since we assumed that Ai(x0) =
1, by the properties of “exclusive or”, we thus conclude that
Bi(u0) = 1.

For x = x1 ̸= x0 and u = u0, the left-hand side
of the equivalence (12) is true, hence the right-hand side
Ai(x1) ⊕ Bi(u0) is true as well. Since, as we have already
proven, Bi(u0) is true, we conclude that Ai(x1) is false.

Similarly, for x = x0 and u = u1 ̸= u0, the left-hand
side of the equivalence (12) is true, hence the right-hand side
Ai(x0) ⊕ Bi(u1) is true as well. Since Ai(x0) is true, we
conclude that Bi(u1) is false.

Now, for x = x1 and u = u1, both formulas Ai(x1) and
Bi(u1) are false, hence their combination Ai(x1) ⊕ Bi(u1)
is also false. So, due to (12), we would conclude that the
statement (x1 ̸= x0)∨ (u1 ̸= u0) is false, but this statement is
actually true. The contradiction proves that the representation
(12) is indeed impossible, and so, the pair (⊕,&) does not
have the universality property.
7◦. Let us now consider the case when ⊖ = ∨. In accordance
with Part 5 of this proof, it is sufficient to analyze the
universality property for the three subcases when ⊙ = &,
⊙ = ∨, and ⊙ = ⊕. Let us consider them one by one.
7.1◦. For ⊖ = ∨ and ⊙ = &, the universality property is
known to be true – this is one of the two basic cases with
which we started our analysis.
7.2◦. When ⊖ = ∨ and ⊙ = ∨, the general expression

(A1(x)⊙B1(u))⊖ (A2(x)⊙B2(u))⊖ . . .

takes the form

(A1(x) ∨B1(u)) ∨ (A2(x) ∨B2(u)) ∨ . . .

Due to commutativity and associativity of the “or” operation,
this expression is equivalent to

(A1(x) ∨A2(x) ∨ . . .) ∨ (B1(u) ∨B2(u) ∨ . . .),

i.e., to A(x)∨B(u), where A(x)
def
= A1(x)∨A2(x)∨ . . . and

B(u)
def
= B1(u) ∨B2(u) ∨ . . . .

Let us prove, by reduction to a contradiction, that a property
(x = x0)& (u = u0) cannot be represented as A(x) ∨B(u):

((x = x0)& (u = u0)) ⇔ (A(x) ∨B(u)). (13)

Indeed, for x = x0 and u = u1 ̸= u0, the left-hand side of
(13) is false, hence the right-hand side A(x0)∨B(u1) is false
as well. Thus, both statements A(x0) and B(u1) are false.

Similarly, for x = x1 ̸= x0 and u = u0, both statements
A(x1) and B(u0) are false. Since A(x0) and B(u0) are both
false, the disjunction A(x0) ∨ B(u0) is also false, so due to
(13), we would conclude that the statement

(x0 = x0)& (u0 = u0)

is false, while in reality, this statement is true. The contradic-
tion proves that the pair (∨,∨) does not have the universality
property.
7.3◦. Let us prove that the subcase ⊖ = ∨ and ⊙ = ⊕ does
not lead to the universality property.
In this case, the general expression

(A1(x)⊙B1(u))⊖ (A2(x)⊙B2(u))⊖ . . .

takes the form

(A1(x)⊕B1(u)) ∨ (A2(x)⊕B2(u)) ∨ . . . (14)



Let us prove, by contradiction, that for every x0 ∈ X and
u0 ∈ U , the property C(x, u) ⇔ (x = x0 &u = u0) cannot be
represented in the form (14). To prove it, let us assume that this
property can be represented in this form, for some properties
Ai(x) and Bi(u), and let us show that this assumption leads
to a contradiction.

For the above property C(x, u), the set S of all the values
for which this property is true consists of a single pair (x0, u0).
Due to equivalence, this same set S is also the set of all the
pairs for which the formula (14) holds.

Due to the known properties of the “or” operations, the set
S of all the values (x, u) for which the formula (14) holds is
equal to the union of the sets Si = {(x, u) : Ai(x)⊕Bi(u)}.
Thus, each of the sets Si is a subset of the set S: Si ⊆ S. By
our construction, the set S consists of only one element; thus,
it has only two subsets: itself and the empty set. If all the sets
Si coincided with the empty set, then their intersection would
also be equal to the empty set ∅, but it is equal to S ̸= ∅.
Thus, at least for one i, we have Si = S. For this i, we have
the equivalence

((x = x0)& (u = u0)) ⇔ (Ai(x)⊕Bi(u)). (15)

Similarly to Part 6.3 of this proof, we can reduce this equiva-
lence to the case when Ai(x0) is true, i.e., when Ai(x0) = 1.
So, in the remaining part of this subsection, we assume that
Ai(x0) = 1.

Now, for x = x0 and u = u0, the left-hand side
of the equivalence (15) is true, hence the right-hand side
Ai(x0) ⊕ Bi(u0) is true as well. Since we assumed that
Ai(x0) = 1, by the properties of “exclusive or”, we thus
conclude that Bi(u0) = 0.

For x = x1 ̸= x0 and u = u0, the left-hand side of the
equivalence (15) is false, hence the right-hand side of this
equivalence Ai(x1) ⊕ Bi(u0) is false as well. Since, as we
have already proven, Bi(u0) is false, we conclude that Ai(x1)
is false.

Similarly, for x = x0 and u = u1 ̸= u0, the left-hand
side of the equivalence (15) is false, hence the right-hand side
Ai(x0) ⊕ Bi(u1) is false as well. Since Ai(x0) is true, we
conclude that Bi(u1) is true.

Now, for x = x1 and u = u1, Ai(x1) is true and
Bi(u1) are false, hence their combination Ai(x1) ⊕ Bi(u1)
is true. So, due to (15), we would conclude that the statement
(x1 = x0)& (u1 = u0) is true, but this statement is actually
false. The contradiction proves that the representation (15) is
indeed impossible, and so, the pair (⊕,∨) does not have the
universality property.

8◦. The last case is when ⊖ = ⊕. Similarly to the previous
two cases, we will analyze the three subcases when ⊙ = &,
⊙ = ∨, and ⊙ = ⊕ one by one.

8.1◦. The following explicit formula enables us to show that
the pair (&,⊕) has the universality property:

C(x, u) ⇔ ⊕(x0,u0)∈C((x = x0)& (u = u0)). (16)

Indeed, we know that a similar formula (5) holds with “or”
instead of “exclusive or”. Here, the properties

(x = x0)& (u = u0)

corresponding to different pairs (x0, u0) are mutually ex-
clusive, and thus, for these properties, “or” coincides with
“exclusive or”.
8.2◦. To prove that the pair (∨,⊕) has the universality
property, we need the following auxiliary result:

((x = x0)& (u = u0)) ⇔

((x = x0) ∨ (u = u0))⊕ (x = x0)⊕ (u = u0). (17)

Indeed, this can be proven by considering all four possible
cases: x = x0 and u = u0, x = x0 and u ̸= u0, x ̸= x0 and
u = u0, x ̸= x0 and u ̸= u0. Thus, the expression (10) can
be reformulated in the following equivalent form:

C(x, u) ⇔

⊕(x0,u0)∈C(((x = x0) ∨ (u = u0))⊕ (x = x0)⊕ (u = u0)).

Hence, the pair (∨,⊕) indeed has the universality property.
8.3◦. When ⊖ = ⊕ and ⊙ = ⊕, the general expression

(A1(x)⊙B1(u))⊖ (A2(x)⊙B2(u))⊖ . . .

takes the form

(A1(x)⊕B1(u))⊕ (A2(x)⊕B2(u))⊕ . . .

Due to commutativity and associativity of the “exclusive or”
operation, this expression is equivalent to

(A1(x)⊕A2(x)⊕ . . .)⊕ (B1(u)⊕B2(u)⊕ . . .),

i.e., to A(x)⊕B(u), where A(x)
def
= A1(x)⊕A2(x)⊕ . . . and

B(u)
def
= B1(u)⊕B2(u)⊕ . . . .

We have already shown, in Parts 6.3 and 7.3 of this proof,
that not every property C(x, u) can be represented in the form
A(x)⊕B(u): for example, the property (x = x0)& (u = u0)
cannot be thus represented. So, the pair (⊕,⊕) does not have
the universality property. The theorem is proven.
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