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Abstract

In the analysis of dynamic financial quantities such as stock prices,
equity prices, etc., reasonable results are often obtained if we only consider
local maxima (“peaks”) and local minima (“troughs”) and ignore all the
other values. The empirical success of this strategy remains a mystery. In
this paper, we provide a possible explanation for this success.

1 Formulation of the Problem

Peak-and-trough analysis. In the early 20th century, a theory – known as
Dow Theory – was developed for forecasting the behavior of different prices,
such as stock prices, equity prices, etc. The main idea behind this theory is
that:

• similarly to calculus, where the important first step in the analysis of a
function is finding its local minima and maxima,

• the important information about the changes in stock market prices can be
obtained if we mark local maxima (“peaks”) and local minima (“troughs”);
see, e.g., [4, 6].

This analysis is still in use. The resulting peak-and-trough analysis was
widely used in the 1920s and early 1930s, until a paper [3] showed the deficiency
of the corresponding forecasting techniques.
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This paper used then-prevalent expected-return values to analyze the quality
of the Dow Theory recommendations. By the 1990s, however, it became clear
that when comparing different stock recommendations, it is important to also
take into account the corresponding risks.

It turns out that if we take risk into account, then the Dow Theory rec-
ommendations are not inferior at all, these predictions are actually reasonably
good; see, e.g., [7]. As a result, the peak-and-trough analysis has been revived
– and it is still used in financial analysis.

Comment. The actual dependence of the stock prices (and other prices) on time
t comes with noise: random fluctuations caused by many random factors. From
the purely mathematical viewpoint, this means that the dependence oscillates
all the time, so almost every moment of time has it local minima and local
maxima. What the peak-and-trough analysis suggest, of course, is not to use
all these moments of time, but only to use moments of true local minima and
maxima, i.e., moments when we can be sure that the local extremum is not
cause by the noise itself.

So, to apply this analysis, we need first to be able to distinguish between
local extrema which may be due to noise and the real local extrema. There exist
efficient algorithms for making this distinction. For example, in situations when
all we know about the noise n(t) is that its absolute value |n(t)| is bounded
by some value n0 (|n(t)| ≤ n0), there is an efficient (linear time) algorithm for
detecting real local extrema; see, e.g., [12].

Similar ideas works well in engineering as well. When we only take into
account the local extrema, this means that:

• for all the moments of time between a local maximum and the following
local minimum, the value x(t) decreases; we do not have any information
about how exactly it decreases, we only know that is decreases;

• similarly, for all the moments of time between a local minimum and the
following local maximum, the value x(t) increases; we do not have any
information about how exactly it increases, we only know that is increases.

In other words, for each moment of time t, we only have one of the following three
pieces of information about how the signal x(t) changes in the small vicinity of
this moment t:

• we may know that there is a local extremum in this vicinity; in this case,
in this vicinity, the value x(t) practically does not change,

• we may know that the value x(t) decreases in this vicinity,

• or, alternatively, we may know that the value x(t) increases in this vicinity.

Interestingly, many efficient methods of signal compression – starting with the
so-called delta-modulation – are based on recording, for each moment of time, ex-
actly one of these three situations: 0 (no change), − (decrease), or + (increase);
see, e.g., [1, 2, 5, 8, 10, 13].
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Why is peak-and-trough analysis efficient? What is not clear is why the
peak-and-trough analysis, an analysis that ignores all monotonicity segments
and only takes into account the local extrema, is efficient.

Comment. Similarly to financial applications, from the theoretical viewpoint,
the engineering-oriented empirical success of delta-modulation techniques is also
largely a mystery.

What we do in this paper. In this paper, we provide a possible explanation
for the efficiency of peak-and-trough techniques.

2 Our Explanation

In the first approximation, it is reasonable to only process the most
important values. Ideally, we should take into account the values x(t) of the
stock price at all moments of time t. The problem is that there is a large amount
of these data points, and without a clear understanding of the underlying pro-
cesses, it is difficult to meaningfully process all this data.

It is therefore reasonable, in the first approximation, to only concentrate on
the most important stock price values and ignore the less important values.

Which values should we take into account? As the stock price fluctuates,
it attains different values x. Some values appear more frequently, some values
appear more rarely. It therefore makes sense to concentrate on the prices that
appear the largest number of times.

Of course, from the practical viewpoint, very close values x can be viewed
as identical. So, when we talk about the time that a value x appears, we mean
the time when the value x(t) is within an interval [x − δ, x + δ] for some small
δ > 0.

How to decide which values are most frequent? The values x(t) are rarely
stable, then usually change with time. Thus, the time period during which the
value is within a given interval [x − δ, x + δ] is small. If we had x(t0) = x for
some moment t0, this means that the neighboring moments of time t at which
x(t) ∈ [x−δ, x+δ] are close to t0, i.e., have the form t = t0+∆t, where ∆t ≪ t0.
For such small values ∆t, we can ignore quadratic and higher order terms in the
dependence of x(t) on t, and use the linear approximation

x(t0 +∆t) ≈ x(t0) + x′(t0) ·∆t = x+ x′(t0) ·∆t. (1)

Thus, the length ℓ of the time interval during which

x(t) = x(t0 +∆t) ∈ [x− δ, x+ δ]

is equal to

ℓ =
2δ

|x′(t0)|
. (2)
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Resulting explanation. We have decided to only consider the values x(t0)
for which this time interval ℓ is large. According to the formula (2), this means
that we should only consider the values x(t0) at the moments t0 at which the
derivative x′(t0) is close to 0 – i.e., only the values in the vicinity of points
where the derivative is equal to 0. These points are exactly local minima and
local maxima – as well as possible non-minimum and non-maximum stationary
points.

Thus, we indeed have an explanation of why the peak-and-trough strategy
is successful.

3 Additional Theoretical Confirmation of Our
Justification

Another situation where extreme points frequently occur.
B. S. Tsirelson noticed [11] that in many cases, when we reconstruct the
signal from the noisy data, and we assume that the resulting signal belongs
to a certain class, the reconstructed signal is often an extreme point from this
class. For example:

• when we assume that the reconstructed signal is monotonic, the recon-
structed function is often (piece-wise) constant;

• if we additional assume that the signal is smooth (one time differentiable,
from the class C1), the result is usually one time differentiable but rarely
twice differentiable, etc.

This situation has an explanation. To explain this phenomenon, Tsirelson
provided the following geometric explanation to this fact: namely, when we
reconstruct a signal from a mixture of a signal and a Gaussian noise, then the
maximum likelihood estimation (a traditional statistical technique; see, e.g., [9])
means that we look for a signal that belongs to the priori class, and that is the
closest (in the L2-metric) to the observed “signal+noise”.

In particular, if the signal is determined by finitely many (say, d) parameters,
we must look for a signal s⃗ = (s1, . . . , sd) from the a priori set A ⊆ Rd that is
the closest (in the usual Euclidean sense) to the observed values

o⃗ = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.
Since the noise is Gaussian, we can usually apply the Central Limit Theorem

[9] and conclude that the average value of (ni)
2 is close to σ2, where σ is the

standard deviation of the noise. In other words, we can conclude that

(n1)
2 + . . .+ (nd)

2 ≈ d · σ2.
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In geometric terms, this means that the distance√√√√ d∑
i=1

(oi − si)2 =

√√√√ d∑
i=1

n2
i

between s⃗ and o⃗ is ≈ σ ·
√
d. Let us denote this distance σ ·

√
d by ε.

Let us first, for simplicity, consider the case when d = 2, and when A is a
convex polygon. Then, we can divide all points p from the exterior of A that
are ε-close to A into several zones depending on what part of A is the closest
to p:

• one of the sides, or

• one of the edges.

Geometrically, the set of all points for which the closest point a ∈ A belongs
to the side e is bounded by the straight lines orthogonal (perpendicular) to e.
The total length of this set is therefore equal to the length of this particular
side; hence, the total length of all the points that are the closest to all the sides
is equal to the perimeter of the polygon. This total length thus does not depend
on ε at all.

On the other hand, the set of all the points at the distance ε from A grows
with the increase in ε; its length grows approximately as the length of a circle,
i.e., as const·ε.

When ε increases, the (constant) perimeter is a vanishing part of the total
length. Hence, for large ε:

• the fraction of the points that are the closest to one of the sides tends to
0, while

• the fraction of the points p for which the closest is one of the edges tends
to 1.

Similar arguments can be repeated for any dimension. For the same noise
level σ, when d increases, the distance ε = σ ·

√
d also increases, and therefore,

for large d, for “almost all” observed points o⃗, the reconstructed signal is one of
the extreme points of the a priori set A.

A similar explanation can be applied to our case as well. In our case, as
we showed in the previous section, extreme values are also much more frequently
observed than others. Thus, our argument can be viewed as a particular case
of the general geometric explanation proposed by Tsirelson.
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