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Abstract—Many neurological disorders result in disordered
motion. The effects of a disorder can be decrease by an appro-
priate rehabilitation. To make rehabilitation efficient, we need to
monitor the patient and check how well he or she improves. In
our previous papers, we proposed a fuzzy-based semi-heuristic
method of gauging how well a patient improved. Surprisingly,
this semi-heuristic method turned out to be more efficient that
we expected. In this paper, we provide a justification for this
efficiency.

I. INTRODUCTION

Medical problem. Neurological disorders – e.g., the effects
of a stroke – affect human locomotion (such as walking).
In most cases, the effect of a neurological disorder can be
mitigated by applying an appropriate rehabilitation. Resulting

computational task. For the rehabilitation to be effective, it
is necessary to be able:

• to correctly diagnose the problem,
• to assess its severity, and
• to monitor the effect of rehabilitation.
At present, this is mainly done subjectively, by experts who

observe the patient. This is OK for the diagnosis, but for
rehabilitation, a specialist can see a patient only so often, and
it is definitely desirable to have a constant monitoring of how
well rehabilitation works. For such a monitoring, we need to be
able to automatically gauge how well the patient progresses
– based on an automatic observation (measurement) of the
patient’s gait. Measuring the gait is indeed possible. For that,
we can attach different sensors to the patient, e.g.,

• inertial sensors that measure the absolute and relative
location of different parts of the body during the motion,
and

• electromyograph (EMG) sensors that measure the electric
muscle activity during the motion.

We can then record the results x(t) of each sensor during a
gait cycle. Based on these observed signals, and on the signals
corresponding to healthy patients, we need to:

• gauge how severe is the original gait disorder – by
observing the measured gait signals x(t), and

• gauge whether the current rehabilitation procedure is
helping – by comparing the measured gait signal x(t),
the original gait signal, and the gait signal corresponding
to healthy people.

First step: normalization. Motions differ by speed and by
intensity: e.g., the same person can walk slower or faster. To
reduce the effect of this difference on the observed signal x(t),
two normalizations are used.

First, to reduce the effect of different motion speed, we
normalize the observed signal by re-scaling time so that it
is now measured in terms of the gait cycle. In other words,
instead of the original dependence x(t), we consider the re-
scaled dependence x′(T ) = x(t0 + T · T0), where t0 is the
beginning of the gait cycle, T0 is the gain cycle, and the new
variable T describe the position of the sensor reading on the
gait cycle. For example:

• the value x′(0) describes the sensor’s reading at the
beginning of the gait cycle,

• the value x′(0, 5) describes the sensor’s reading in the
middle of the gait cycle,

• the value x′(0.25) describes the sensor’s reading at the
quarter of the gait cycle.

Next, we reduce the effect of different intensity. Let x be the
smallest possible value of the signal x′(T ) during the cycle,
and let x be the largest possible value during the cycle. This
means that the range of the signal x′(T ) is the interval [x, x].
Different intensities of the same motion correspond, in general,
to different ranges. Thus, to reduce the effect of difference
in intensities, we perform a linear re-scaling that reduce the
original range into a standard range [0, 1]. Such a scaling has

the form x → x− x

x− x
. After such a re-scaling, we get a new

signal

X(T ) =
x′(T )− x

x− x
.



Remaining problem. After re-scaling, all we have to do is
compare the (re-scaled) observed signal X(T ) with a similarly
re-scaled signal X0(T ) corresponding to the average of normal
behaviors.

When we observe gait of people with neurological disorders,
even we non-specialists can easily see that something is not
right with this gait. One would expect that the corresponding
signals X(T ) and X0(T ) are drastically different. However,
surprisingly, these signals are very close to each other; see,
e.g., [1], [5], [8]. This closeness make an automatic detection
of motion disorders a difficult task.

II. FUZZY APPROACH

Fuzzy approach. To formalize the way experts distinguish
between the normal and abnormal gaits, in our previous
papers, we proposed a semi-heuristic fuzzy-based method; see
[1], [5], [8] for details.

First step: dividing the cycle into parts. An expert describes
the gait by specifying how the motion looked like at different
parts of the gait cycle. Correspondingly, in our method, we
first divide the gait cycle into several equal parts.

For each part, we take all the measured values X(T )
obtained during this part, and form a triangular membership
function µ(x) that best describes these values.

How to describe the gait on each part of the gait cycle. A
triangular membership function is uniquely determined if we
describe the range [a, b] on which it is defined and the point
m at which is attains the value 1:

• for x from the lower endpoint a to the point m, this
function linearly increases from 0 to 1, and thus, has the
form

µa,b,m(x) =
x− a

m− a
;

• for x from the point m to the upper endpoint b, this
function linearly decreases from 1 to 0 and thus, has the
form

µa,b,m(x) =
b− x

b−m
.

In designing these functions, we used an approach described
in [4], [6], [7]. In this approach, the goal is to satisfy two
objectives:

• on the one hand, we would like to select a fuzzy sets that
contains as many of the corresponding measured values
x1, . . . , xn as possible;

• on the other hand, we would like to select a fuzzy set
which is as specific as possible, i.e., for which the width
b − a of the range on which this triangular membership
function is defined should be as small as possible.

Each element xi belongs to the fuzzy set with a degree
µa,b,m(xi). If this fuzzy set was a crisp set, this degree would
be simply 0 or 1, and to find the total number of elements
belonging to this set, we could simply add up the degrees
corresponding to all elements – this would give us exactly the

number of elements. A similar approach is used to describe
the number of elements in a fuzzy set (see, e.g., [2], [3]):
we simply add up the membership values corresponding to

different elements, i.e., consider the sum
n∑

i=1

µa,b,m(xi).

To combine the two goals of maximizing this sum and
minimizing the width b− a, we maximize the ratio

n∑
i=1

µa,b,m(xi)

b− a
.

Once this maximization problem is solved, we thus get the
parameters a, b, and m that describe the signal on this part of
the gait cycle.

Comparing two motions. For each motion, and for each part
of the cycle, we have parameters describing this motion at
this part of the cycle. The parameters corresponding to all
parts form a tuple g = (g1, . . . , gN ) describing the person’s
gait.

Now, we need to compare:
• the tuple g = (g1, . . . , gN ) describing the observed gait

with
• the tuple n = (n1, . . . , nN ) describing the (average)

normal gait.
We want to know how similar are the corresponding tuples.
Since we are using a fuzzy-based approach, it is reasonable to
take into account that each value from each tuple is a number
from the interval [0, 1], so we can view each tuple as a fuzzy
set.

Thus, the problem of finding the similarity between tuples
is reduced to the problem of finding the similarity between
the corresponding fuzzy sets. How can we gauge the degree
of similarity between two fuzzy sets?

For crisp sets A and B, the degree of similarity can be

described as the ratio
|A ∩B|
|A ∪B|

, where |A| denote the number

of elements in a set A: this ratio is equal to 1 if and only if the
two sets coincide, and if we add an element to one of the sets
without adding it to another one, this degree decreases. It is
reasonable to use a similar formula to describe the similarity
of fuzzy sets.

For simplicity, we can use min to describe intersection and
max to describe union. Then:

• the degree to which the i-th element belongs to the
intersection is equal to min(gi, ni), and

• the degree to which the i-th element belongs to the union
is equal to max(gi, ni).

Thus:
• the number of elements in the intersection is equal to

N∑
i=1

min(gi, pi), while

• the number of elements in the union is equal to
N∑
i=1

min(gi, pi).

So, we arrive at the following formula for the desired degree
of similarity:



Resulting formula. The degree of similarity between the two
tuples is equal to the ratio

N∑
i=1

min(gi, pi)

N∑
i=1

min(gi, pi)

.

This formula is in good accordance with the expert
opinions. Our preliminary results (see, e.g., [1], [5], [8]) show
that this formula is in good accordance with the expert opinion
about the severity of the patients’s disorder.

Why is this semi-heuristic formula so good? Our objective
was to come up with a reasonable formula based on expert
opinions. We fuzzy expected that there would be a need to
further tune the formula – as it happens in fuzzy control;
see, e.g., [2], [3]. Surprisingly, this formula works well even
without tuning.

Why? In this paper, we attempts to explain why the above
formula turned out to be more empirically successful than we
expected.

III. TOWARDS AN EXPLANATION FOR THE ABOVE
SEMI-HEURISTIC FUZZY TECHNIQUE

Idea. To explain why the above semi-heuristic fuzzy technique
works well, we will do the following:

• first, we will come up with a simplified equivalent for-
mulation of this technique, and

• then, we will come up with an explanation which is based
on this simplified equivalent formulation.

We need to divide the gait cycle into a large number of
parts. In the above technique, we describe the signal on each
part of the gait cycle by three numbers – the parameters of the
corresponding membership function. When the part is large,
three numbers are, in general, not sufficient to describe the
signal x(t) on this part, since we have many different types
of behavior. However, when the part is small, we can expand
the dependence x(t) into Taylor series relative to the center t̃
of this part:

x(t) = x
(
t̃
)
+

dx

dt
·∆t+

1

2
· d

2x

dt2
·∆t2 + . . . ,

where ∆t
def
= t − t̃, and keep only a few first terms in this

expansion.
When the part is narrow, then the difference ∆t is small,

and we can ignore quadratic terms; in this case, the original
signal is approximated by a linear function, and we only need
two parameters to describe a general linear function of one
variable. When the part becomes even smaller, i.e., when the
difference ∆t becomes even smaller, we can ignore linear
terms as well, and assume that the signal x(t) is constant
throughout this part. To describe a constant, it is sufficient to
have a single parameter.

In general, the narrower the part, the more accurate the 3-
parameter description of the signal on this part. Thus, since

we are interested in an adequate description of the signal, we
will assume that the gait cycle is divided into a large number
of parts.

Resulting description of the tuples. On each part, the
corresponding values xi are close to each other – and to the
value x(ti) of the signal in the midpoint of this part. So, the
parameters a, m, and b are also close to this midpoint value
x(ti). Hence, the tuple describing the signal is approximately
equal to the tuple consisting of the values x(t1), x(t2), . . . ,
x(tn), each of which is repeated three times.

Similarly, the tuple corresponding to the gaits of the healthy
persons consists of the values x0(t1), x0(t2), . . . , x0(tn), each
of which is repeated three times.

Towards the equivalent description of the degree of simi-
larity. Since the elements of the first tuple are approximately
equal to x(ti) (with each element repeated three times) and
the elements of the second tuple are approximately equal
to x0(ti) (with each element also repeated three times), the
corresponding degree of similarity is approximately equal to
the ratio

s =

3 ·
n∑

i=1

min(x(ti), x0(ti))

3 ·
n∑

i=1

max(x(ti), x0(ti))
.

Dividing both numerator and denominator by 3, we conclude
that

s =

n∑
i=1

min(x(ti), x0(ti))

n∑
i=1

max(x(ti), x0(ti))
.

Now, we can use the above-mentioned fact that the actual
signal x(t) is close to the normal gain signal x0(ti). This
closeness means that the difference ∆x(ti)

def
= x(ti)−x0(ti) is

small, and so, we can safely ignore terms which are quadratic
(or higher order) in terms of these differences ∆x(ti).

Substituting the expression x(ti) = x0(ti)+∆x(ti) into the
above formula for the similarity degree s, we conclude that

s =

n∑
i=1

min(x0(ti) + ∆x(ti), x0(ti))

n∑
i=1

max(x0(ti) + ∆x(ti), x0(ti))
.

In this expression, both minimum and maximum are easy to
compute. For minimum, we get:

• min(x0(ti) + ∆x(ti), x0(ti)) = x0(ti) if ∆x(ti) ≥ 0,
and

• min(x0(ti) + ∆x(ti), x0(ti)) = x0(ti) + ∆x(ti) if
∆x(ti) < 0.

Similarly, for maximum:

• max(x0(ti) + ∆x(ti), x0(ti)) = x0(ti) + ∆x(ti) if
∆x(ti) ≥ 0, and

• min(x0(ti) + ∆x(ti), x0(ti)) = x0(ti) if ∆x(ti) < 0.



Substituting these expressions into the above formula for s,
we conclude that

s =

n∑
i=1

x0(ti) +
∑

i:∆x(ti)<0

∆x(ti)

n∑
i=1

x0(ti) +
∑

i:∆x(ti)≥0

∆x(ti)
.

This expression can be simplified if we introduce the notation

s0
def
=

n∑
i=1

x0(ti), then we get

s =

s0 +
∑

i:∆x(ti)<0

∆x(ti)

s0 +
∑

i:∆x(ti)≥0

∆x(ti)
.

Dividing both the numerator and the denominator by s0, we
conclude that

s =

1 +
∑

i:∆x(ti)<0

∆x(ti)

s0

1 +
∑

i:∆x(ti)≥0

∆x(ti)

s0

.

Since |∆x(ti)| ≪ x(ti), we have
n∑

i=1

|∆x(ti)| ≪
n∑

i=1

x0(ti) = s0,

so ∣∣∣∣∣∣
∑

i:∆x(ti)<0

∆x(ti)

s0

∣∣∣∣∣∣ ≪ 1 and

∣∣∣∣∣∣
∑

i:∆x(ti)≥0

∆x(ti)

s0

∣∣∣∣∣∣ ≪ 1.

In general, when |a| ≪ 1 and |b| ≪ 1, we have

1 + a

1 + b
≈ (1 + a) · (1− b+ . . .) = 1 + a− b+ . . .

Thus,

s ≈ 1 +
∑

i:∆x(ti)<0

∆x(ti)

s0
−

∑
i:∆x(ti)≥0

∆x0(ti)

s0
,

i.e.,

s = 1 +
1

s0
·

 ∑
i:∆x(ti)<0

∆x(ti)−
∑

i:∆x(ti)≥0

∆x(ti)

 .

One can easily check that these two sums can be equivalently
described as a single one:

Resulting equivalent reformulation of the degree of simi-
larity.

s ≈ 1− 1

s0
·

n∑
i=1

|∆x(ti)|.

Thus, we arrive at the following conclusion: the degree of
dissimilarity (i.e., the severity of the disorder) is proportional
to the sum

S
def
=

n∑
i=1

|∆x(ti)|.

Comment. From the mathematical viewpoint, once we multiply
this sum by the difference ∆t = ti+1 − ti, we get an integral

sum
n∑

i=1

|∆x0(ti)| ·∆t for the interval
∫
|∆x(t)| dt. Since we

have divided the gait cycle into a large number of parts, the
above integral sum is practically indistinguishable from the
interval and thus, the original sum S is approximately equal

to
1

∆t
·
∫

|∆x(t)| dt.
The value ∆t does not depend on the patient, so we

can conclude that the dissimilarity (i.e., the severity of the
disorder) is proportional to the integral

I
def
=

∫
|∆x(t)| dt.

Final step: explanation of the reformulated formula. Let us
explain why the integral S is a good measure of the disorder’s
severity.

In general, the difference ∆x(t) between the actual and the
ideal gaits affects many different types of behavior. For some
behaviors, this effect may be minimal, but for others, the effect
is drastic. It is therefore reasonable to gauge the severity of a
disorder by the worst-case effect of this difference.

For each objective, the effectiveness of how well this
activity can be performed with the given gait is a functional
depending on the function x(t). We describe the gait by the
values x(t1), . . . , x(tn), so we can say that the effectiveness
E is a function of all these values:

E = F (x(t1), . . . , x(tn)).

For the patient, as we have mentioned, we have

x(ti) = x0(ti) + ∆x(ti),

where the differences ∆x(ti) are small – so that terms
quadratic in terms of these differences can be safely ignored.
We can therefore substitute the expression x(ti) = x0(ti) +
∆x(ti) into the above formula for efficiency and get

E = F (x0(t1) + ∆x(t1), . . . , x0(ti) + ∆x(tn)).

Expanding the dependence F in Taylor series and ignoring
quadratic and higher order terms in this expansion, we con-
clude that

E = F (x0(t1), . . . , x0(tn)) +
n∑

i=1

ci ·∆x(ti),

where ci is the corresponding partial derivative ci
def
=

∂F

∂x(ti)
.

Thus, the loss of efficiency ∆E = E0−E in comparison with
the efficiency E0 = F (x0(t1), . . . , x0(tn)) corresponding to
the normal gait is equal to

∆E = −
n∑

i=1

ci ·∆x(ti).



The severity of a disorder is determined by the worst-case
loss, i.e., by the largest possible value of this sum over all
corresponding functions F . There should be a limit Mi on the
(absolute value of) each derivative ci – otherwise, this largest
possible value will be infinite. It makes sense to assume that
the limit Mi is the same for all the moments of time ti. Indeed,
the motion process is periodic, selecting the starting point of
the cycle is reasonably arbitrary, and the upper bound should
not depend on the (reasonably) arbitrary choice of the starting
point. Thus, we arrive at the following problem:

• We know the values ∆x(ti).
• We know the upper bound M on the absolute values of

the coefficients ci.
• We want to find the largest possible value of the sum

−
n∑

i=1

ci ·∆x(ti)

over all possible values ci for which |ci| ≤ M .
The sum attains the maximum when each term −ci ·∆x(ti)
is the largest possible.

When ∆x(ti) > 0, this term decreases with ci and thus, its
largest possible value is attained when ci attains its smallest
possible value ci = −M . For this value ci, this term takes the
value M ·∆x(ti).

When ∆x(ti) ≤ 0, this term increases with ci and thus,
its largest possible value is attained when ci attains its largest
possible value ci = M . For this value ci, this term takes the
value −M ·∆x(ti).

Both cases can be described by a single expression M ·
|∆x(ti)|. Thus, the largest value of the above sum is equal to

n∑
i=1

M · |∆x(ti)| = M ·
n∑

i=1

|∆x(ti)|.

So, the worst-case effect of a gait disorder is indeed propor-

tional to the sum
n∑

i=1

|∆x(ti)| – which is equivalent to the

above semi-heuristic fuzzy technique.
So, the above fuzzy technique has been justified.
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