Estimating Mean under Interval Uncertainty and Variance Constraint

Ali Jalal Kamali and Luc Longpré
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
ajalalkamali@miners.utep.edu
longpre@utep.edu

Misha Koshelev
Human Neuroimaging Lab
Division of Neuroscience
Baylor College of Medicine
1 Baylor Plaza
Houston, TX 77030, USA
misha680@gmail.com

Abstract

In many practical situations, we have a sample of objects of a given type. When we measure the values of a certain quantity for these objects, we get a sequence of value x_{1}, \ldots, x_{n}. When the sample is large enough, then the arithmetic mean E of the values x_{i} is a good approximation for the average value of this quantity for all the objects from this class.

The values x_{i} come from measurements, and measurement is never absolutely accurate. Often, the only information that we have about the measurement error is the upper bound Δ_{i} on this error. In this case, once we have the measurement result \widetilde{x}_{i}, the condition that $\left|\widetilde{x}_{i}-x_{i}\right| \leq \Delta_{i}$ implies that the actual (unknown) value x_{i} belongs to the interval $\left[\widetilde{x}_{i}-\Delta_{i}, \widetilde{x}_{i}+\Delta_{i}\right]$.

In addition, we often know the upper bound V_{0} on the variance V of the actual values - e.g., we know that the objects belong to the same species, and we know that within-species differences cannot be too high. In such cases, to estimate the average over the class, we need to find the range of possible value of the mean under the constraints that each x_{i} belongs to the given interval $\left[\underline{x}_{i}, \bar{x}_{i}\right]$ and that the variance $V\left(x_{1}, \ldots, x_{n}\right)$ is bounded by a given value V_{0}. In this paper, we provide efficient algorithms for computing this range.

I. Formulation of the Problem

A standard way to analyze a sample. In many practical situations, we have a sample of values x_{1}, \ldots, x_{n} corresponding to objects of a certain type.

For example, x_{i} may represent the height of the i-th person in a group, or his or her weight, or the toxicity of the i-th snake of a certain species

In this case, a standard way to describe the corresponding population is to estimate its mean

$$
\begin{equation*}
E=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i} \tag{1}
\end{equation*}
$$

and variance

$$
\begin{equation*}
V=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-E\right)^{2} \tag{2}
\end{equation*}
$$

Case of interval uncertainty. The above formulas assume that we know the exact values of the characteristics x_{1}, \ldots, x_{n}. In practice, these values usually come from measurements, and measurements are never absolutely exact (see, e.g., [7]):
the measurement results \widetilde{x}_{i} are, in general, different from the actual (unknown) values $x_{i}: \widetilde{x}_{i} \neq x_{i}$.

Traditionally, it is assumed that we know the probability distribution of the measurement errors $\Delta x_{i} \stackrel{\text { def }}{=} \widetilde{x}_{i}-x_{i}$. However, often, the only information we have is the upper bound Δ_{i} on the (absolute value of the) measurement error: $\left|\Delta x_{i}\right| \leq \Delta_{i}$.

In this case, based on the measurement result \widetilde{x}_{i}, the only information that we have about the actual (unknown) value x_{i} is that x_{i} belongs to the interval $\mathbf{x}_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]$, where $\underline{x}_{i}=$ $\widetilde{x}_{i}-\Delta_{i}$ and $\bar{x}_{i}=\widetilde{x}_{i}+\Delta_{i}$.

Need to estimate mean and variance under interval uncertainty. In general, different values x_{i} from the corresponding intervals \mathbf{x}_{i} lead to different values of the mean E and variance V. It is therefore desirable to describe the range of possible values of mean and variance when x_{i} belong to the corresponding intervals:

$$
\begin{gather*}
\mathbf{E}=[\underline{E}, \bar{E}] \stackrel{\text { def }}{=} \\
\left\{E\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in \mathbf{x}_{1}, \ldots, x_{n} \in \mathbf{x}_{n}\right\} ; \tag{3}\\
\mathbf{V}=[\underline{V}, \bar{V}] \stackrel{\text { def }}{=} \\
\left\{V\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in \mathbf{x}_{1}, \ldots, x_{n} \in \mathbf{x}_{n}\right\} . \tag{4}
\end{gather*}
$$

Comment. The problem of computing the corresponding ranges is a particular case of a general problem of computing the range

$$
\begin{equation*}
\mathbf{y}=[\underline{y}, \bar{y}] \stackrel{\text { def }}{=}\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in \mathbf{x}_{1}, \ldots, x_{n} \in \mathbf{x}_{n}\right\} \tag{5}
\end{equation*}
$$

of a given function $f\left(x_{1}, \ldots, x_{n}\right)$ when x_{i} are in known intervals. Computing such a range is called interval computations; see, e.g., [3], [5].

Case of fuzzy uncertainty. A similar problem occurs when, instead of measurement results \widetilde{x}_{i}, we have expert estimates of the corresponding values x_{i}. Expert estimates are often formulated in terms of words from natural language, like "somewhat", "close to 1.0 ", etc.

A natural way to describe these estimates is by using fuzzy values X_{i} (i.e., membership functions $\mu_{i}\left(x_{i}\right)$); see, e.g., [4], [6]. Instead of using membership functions, we can alternatively use α-cuts

$$
\begin{equation*}
X_{i}(\alpha) \stackrel{\text { def }}{=}\left\{x_{i}: \mu\left(x_{i}\right) \geq \alpha\right\} \tag{6}
\end{equation*}
$$

corresponding to different values α.
In this case, it is desirable to find the fuzzy numbers $\mu_{f}(y)$ corresponding to the mean $f=E\left(x_{1}, \ldots, x_{n}\right)$ and to the variance $f=V\left(x_{1}, \ldots, x_{n}\right)$.

A natural way is to use Zadeh's extension principle

$$
\begin{gather*}
\mu_{f}(y)= \\
\max \left\{\min \left(\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right): f\left(x_{1}, \ldots, x_{n}\right)=x\right\}, \tag{7}
\end{gather*}
$$

Processing fuzzy uncertainty can be reduced to processing interval uncertainty. It is known (see, e.g., [4], [6]) that for continuous functions $f\left(x_{1}, \ldots, x_{n}\right)$, Zadeh's extension principle is equivalent to requiring that for every α, the α-cut $Y(\alpha)$ for $y=f\left(x_{1}, \ldots, x_{n}\right)$ is equal to the range of values of $f\left(x_{1}, \ldots, x_{n}\right)$ when each x_{i} belongs to the corresponding α-cut $X_{i}(\alpha)$:

$$
\begin{gather*}
Y(\alpha)= \\
\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in X_{1}(\alpha), \ldots, x_{n} \in X_{n}(\alpha)\right\} . \tag{8}
\end{gather*}
$$

Thus, computing the corresponding fuzzy set is equivalent to solving several interval computation problems corresponding to different values α : e.g., to $\alpha=0.1,0.2, \ldots, 1.0$.

In view of this equivalence, in the following text, we will concentrate on the problem of computing mean and variance under interval uncertainty.

Computing the range of the mean. When we pick any of the variables x_{i} and increase it to some value $x_{i}^{\prime}>x_{i}$ (while leaving others intact, i.e., $x_{j}^{\prime}=x_{j}$ for all $j \neq i$), the value E would increase as well. Thus, the smallest value \underline{E} is attained when each of the variables x_{i} attains its smallest possible value $x_{i}=\underline{x}_{i}$, and its largest value \underline{E} is attained when each of the variables x_{i} attains its largest possible value $x_{i}=\bar{x}_{i}$:

$$
\begin{equation*}
\underline{E}=\frac{1}{n} \cdot \sum_{i=1}^{n} \underline{x}_{i} ; \quad \bar{E}=\frac{1}{n} \cdot \sum_{i=1}^{n} \bar{x}_{i} . \tag{9}
\end{equation*}
$$

Computing the range of the variance. The variance (2) is, in general, not monotonic; so, for the variance, the problem of computing the range $[\underline{V}, \bar{V}]$ under interval uncertainty is more complex.

Specifically, it turns out that while the lower endpoint \underline{V} can be computed in linear time [8], the problem of computing \bar{V} is, in general, NP-hard [1], [2].

Variance constraints. In the above expressions, we assume that there is no a priori information about the values of E and V.

In some cases, we have a priori constraints on the variance: $V \leq V_{0}$ for a given V_{0}. For example, we know that within a species, there can be no more than 0.1 variation of a certain characteristic.

Estimating mean under interval uncertainty and variance constraint: a problem. In the presence of variance constraints, the problem of finding possible values of the mean E takes the following form:

- given: n intervals $\mathbf{x}_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]$ and a number $V_{0} \geq 0$;
- compute: the range

$$
\begin{gather*}
{[\underline{E}, \bar{E}]=} \\
\left\{E\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbf{x}_{i} \& V\left(x_{1}, \ldots, x_{n}\right) \leq V_{0}\right\} . \tag{10}
\end{gather*}
$$

This is a problem that we will solve in this paper.
Case when this problem is (relatively) easy to solve. Let us first consider the case when V_{0} is larger than (or equal to) the largest possible value \bar{V} of the variance corresponding to the given sample.

In this case, the constraint $V \leq V_{0}$ is always satisfied. Thus, in this case, the desired range simply coincides with the range of all possible values of E, i.e., with the arithmetic average (9) of the corresponding intervals.

Another case when this problem is (relatively) easy to solve.

 Another such case is when $V_{0}=0$.In this case, the constraint $V \leq V_{0}$ means that the variance V should be equal to 0 . In this case, all non-negative values $\left(x_{i}-E\right)^{2}$ should also be equal to $0-$ otherwise, the average V of these values $\left(x_{i}-E\right)^{2}$ would be positive. So, we have $x_{i}=E$ for all i and thus, all the actual (unknown) values should coincide: $x_{1}=\ldots=x_{n}$. In this case, we know that this common value x_{i} belongs to each of n intervals \mathbf{x}_{i}, so it belongs to their intersection.

$$
\begin{equation*}
\mathbf{x}_{1} \cap \ldots \cap \mathbf{x}_{n} \tag{11}
\end{equation*}
$$

A value E belongs to the interval $\left[\underline{x}_{i}, \bar{x}_{i}\right]$ if it is larger than or equal to its lower endpoint \underline{x}_{i} and smaller than or equal to its upper endpoint \bar{x}_{i}. Thus, for a value E to belong to all n intervals, it has to be larger than or equal to all n lower endpoints $\underline{x}_{1}, \ldots, \underline{x}_{n}$, and it has to be smaller than or equal to all n upper endpoints $\bar{x}_{1}, \ldots, \bar{x}_{n}$.

A number E is larger than or equal to n given numbers $\underline{x}_{1}, \ldots, \underline{x}_{n}$ if and only if it is larger than or equal to the largest of these n numbers, i.e., if $\max \left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right) \leq E$. Similarly, a number E is smaller than or equal to n given numbers $\underline{x}_{1}, \ldots, \underline{x}_{n}$ if and only if it is smaller than or equal to the smallest of these n numbers, i.e., if $E \leq \min \left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. So, the intersection consists of all the numbers which are located between these two bounds, i.e., the intersection coincides with the interval

$$
\begin{equation*}
[\underline{E}, \bar{E}]=\left[\max \left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right), \min \left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)\right] . \tag{12}
\end{equation*}
$$

General case. In the general case, when V_{0} is larger than 0 but smaller than the upper endpoint \bar{V}, we should get intervals intermediate between intersection and arithmetic average. In this paper, we show how to compute the corresponding interval for E.

II. Main Result

Algorithm. The following feasible algorithm solves the problem of computing the range $[\underline{E}, \bar{E}]$ of the range of the mean under interval uncertainty and variance constraint:

- First, we compute the values

$$
\begin{aligned}
& E^{-} \stackrel{\text { def }}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} \underline{x}_{i} \text { and } V^{-} \stackrel{\text { def }}{=} \frac{1}{n} \cdot \sum_{i=1}^{n}\left(\underline{x}_{i}-E^{-}\right)^{2} \\
& E^{+} \stackrel{\text { def }}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} \bar{x}_{i} \text { and } V^{+} \stackrel{\text { def }}{=} \frac{1}{n} \cdot \sum_{i=1}^{n}\left(\bar{x}_{i}-E^{+}\right)^{2}
\end{aligned}
$$

- If $V^{-} \leq V_{0}$, then we return $\underline{E}=E^{-}$.
- If $V^{+} \leq V_{0}$, then we return $\overline{\bar{E}}=E^{+}$.
- If at least one these inequalities does not hold, i.e., if $V_{0}<V^{-}$or $V_{0}<V^{+}$, then we sort the all $2 n$ endpoints \underline{x}_{i} and \bar{x}_{i} into a non-decreasing sequence

$$
z_{1} \leq z_{2} \leq \ldots \leq z_{2 n}
$$

and consider $2 n-1$ zones $\left[z_{k}, z_{k+1}\right]$.

- For each zone $\left[z_{k}, z_{k+1}\right]$, we take:
- for every i for which $\bar{x}_{i} \leq z_{k}$, we take $x_{i}=\bar{x}_{i}$;
- for every i for which $z_{k+1} \leq \underline{x}_{i}$, we take $x_{i}=\underline{x}_{i}$;
- for every other i, we take $x_{i}=\alpha$; let us denote the number of such i 's by n_{k}.
The value α is determined from the condition that for the selected vector x, we have $V(x)=V_{0}$, i.e., from solving the following quadratic equation:

$$
\begin{gather*}
\frac{1}{n} \cdot\left(\sum_{i: \bar{x}_{i} \leq z_{k}}\left(\bar{x}_{i}\right)^{2}+\sum_{i: z_{k+1} \leq \underline{x}_{i}} \underline{x}_{i}^{2}+n_{k} \cdot \alpha^{2}\right)- \\
\frac{1}{n^{2}} \cdot\left(\sum_{i: \bar{x}_{i} \leq z_{k}} \bar{x}_{i}+\sum_{i: z_{k+1} \leq \underline{x}_{i}} \underline{x}_{i}+n_{k} \cdot \alpha\right)^{2}=V_{0} . \tag{13}
\end{gather*}
$$

Then:

- if none of the two roots of the above quadratic equation belongs to the zone, this zone is dismissed;
- if one or more roots belong to the zone, then for each of these roots, based on this α, we compute the value

$$
\begin{equation*}
E_{k}(\alpha)=\frac{1}{n} \cdot\left(\sum_{i: \overline{x_{i}} \leq z_{k}} \bar{x}_{i}+\sum_{i: z_{k+1} \leq \underline{x}_{i}} \underline{x}_{i}+n_{k} \cdot \alpha\right) \tag{14}
\end{equation*}
$$

- After that:

- if $V_{0}<V^{-}$, we return the smallest of the values $E_{k}(\alpha)$ as $\underline{E}: \underline{E}=\min k, \alpha E_{k}(\alpha) ;$
- if $V_{0}<V^{+}$, we return the largest of the values $E_{k}(\alpha)$ as $\bar{E}: \underline{E}=\max k, \alpha E_{k}(\alpha)$.

Comment. The correctness of this algorithm is proven in the special Proof section.
Computation time of this algorithm. Sorting $2 n$ numbers requires time $O(n \cdot \log (n))$.

Once the values are sorted, we can then go zone-by-zone, and perform the corresponding computations. A straightforward implementation of the above algorithm would require time $O\left(n^{2}\right)$: for each of $2 n$ zones, we need linear time to compute several sums of n numbers.

However, in reality, only the sum for the first zone requires linear time. Once we have the sums for each zone, computing the sum for the next zone requires changing a few terms values x_{j} which changed status. Each value x_{j} changes once, so overall, to compute all these sums, we still need linear time.

Thus, after sorting, the algorithm requires only linear computations time $O(n)$. So, if the endpoints are already given to us as sorted, we only take linear time.

If we still need to sort, then we need time

$$
O(n \cdot \log (n))+O(n)=O(n \cdot \log (n))
$$

Toy example. Let us illustrate the above example of a simple example in which we have two intervals $\mathbf{x}_{1}=[-1,0]$ and $\mathbf{x}_{2}=[0,1]$, and the bound V_{0} is equal to 0.16 .

In this case, according to the above algorithm, we compute the values

$$
\begin{gathered}
E^{-}=\frac{1}{2} \cdot(-1+0)=-0.5 \\
V^{-}=\frac{1}{2} \cdot\left(((-1)-(-0.5))^{2}+(0-(-0.5))^{2}\right)=0.25 \\
E^{+}=\frac{1}{2} \cdot(0+1)=0.5 \\
V^{+}=\frac{1}{2} \cdot\left((0-0.5)^{2}+(1-0.5)^{2}\right)=0.25
\end{gathered}
$$

Here, $V_{0}<V^{-}$and $V_{0}<V^{+}$, so for computing both bounds \underline{E} and \bar{E}, we need to consider different zones.

By sorting the 4 endpoints $-1,0,0$, and 1 , we get $z_{1}=$ $-1 \leq z_{2}=0 \leq z_{3}=0 \leq z_{4}=1$. Thus, here, we have 3 zones $\left[z_{1}, z_{2}\right]=[-1,0],\left[z_{2}, z_{3}\right]=[0,0]$, and $\left[z_{3}, z_{4}\right]=[0,1]$.

1) For the first zone $\left[z_{1}, z_{2}\right]=[-1,0]$, according to the above algorithm, we select $x_{2}=0$ and $x_{1}=\alpha$. To determine the value α, we form the quadratic equation (13):

$$
\frac{1}{2} \cdot\left(0^{2}+\alpha^{2}\right)-\frac{1}{4} \cdot(0+\alpha)^{2}=V_{0}=0.16
$$

This equation is equivalent to

$$
\frac{1}{2} \cdot \alpha^{2}-\frac{1}{4} \cdot \alpha^{2}=\frac{1}{4} \cdot \alpha^{2}=0.16
$$

hence $\alpha^{2}=0.64$ and $\alpha= \pm 0.8$. Of the two roots $\alpha=-0.8$ and $\alpha=0.8$, only the first root belongs to the zone $[-1,0]$. For this root, we compute the value (14):

$$
E_{1}=\frac{1}{2} \cdot(0+\alpha)=\frac{1}{2} \cdot(0+(-0.8))=-0.4
$$

2) For the second zone $\left[z_{2}, z_{3}\right]=[0,0]$, according to the above algorithm, we select $x_{1}=x_{2}=0$. In this case, there is no need to compute α, so we directly compute

$$
E_{2}=\frac{1}{2} \cdot(0+0)=0
$$

3) For the third zone $\left[z_{3}, z_{4}\right]=[0,1]$, according to the above algorithm, we select $x_{1}=0$ and $x_{2}=\alpha$. To determine the value α, we form the quadratic equation (13):

$$
\frac{1}{2} \cdot\left(0^{2}+\alpha^{2}\right)-\frac{1}{4} \cdot(0+\alpha)^{2}=V_{0}=0.16
$$

This equation is equivalent to

$$
\frac{1}{2} \cdot \alpha^{2}-\frac{1}{4} \cdot \alpha^{2}=\frac{1}{4} \cdot \alpha^{2}=0.16
$$

hence $\alpha^{2}=0.64$ and $\alpha= \pm 0.8$. Of the two roots $\alpha=-0.8$ and $\alpha=0.8$, only the second root belongs to the zone $[0,1]$. For this root, we compute the value (14):

$$
E_{3}=\frac{1}{2} \cdot(0+\alpha)=\frac{1}{2} \cdot(0+0.8)=0.4
$$

Here, we have a value E_{k} for all three zones, so we return

$$
\begin{aligned}
& \underline{E}=\min \left(E_{1}, E_{2}, E_{3}\right)=-0.4 \\
& \bar{E}=\max \left(E_{1}, E_{2}, E_{3}\right)=0.4
\end{aligned}
$$

III. Proof of the Algorithm's Correctness

1°. Let us first show that it is sufficient to prove correctness for the case of the upper endpoint \bar{E}.

Indeed, one can easily see that if we replace the original values x_{i} with the new values $x_{i}^{\prime}=-x_{i}$, then the means changes sign $E^{\prime}=-E$ while the variance remains the same $V^{\prime}=V$.

When each x_{i} is known with interval uncertainty $x_{i} \in \mathbf{x}_{i}=$ $\left[\underline{x}_{i}, \bar{x}_{i}\right]$, the corresponding interval for $x_{i}^{\prime}=-x_{i}$ is equal to $\mathbf{x}_{i}^{\prime}=\left[-\bar{x}_{i},-\underline{x}_{i}\right]$. The resulting interval $\mathbf{E}^{\prime}=\left[\underline{E}^{\prime}, \bar{E}^{\prime}\right]$ for E^{\prime} is similarly equal to $[-\bar{E},-\underline{E}]$, so $\bar{E}^{\prime}=-\underline{E}$ and thus, $\underline{E}=-\bar{E}^{\prime}$.

Thus, if we know how to compute the upper endpoint \bar{E} for an arbitrary set of intervals $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, we can compute \underline{E} or a given set of intervals $\mathbf{x}_{1}=\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, \mathbf{x}_{n}=\left[\underline{x}_{n}, \bar{x}_{n}\right]$ as follows:

- we compute n auxiliary intervals $\mathbf{x}_{i}^{\prime}=\left[-\bar{x}_{i},-\underline{x}_{i}\right], i=$ $1, \ldots, n$;
- we use the known algorithm to find the upper endpoint \bar{E}^{\prime} for the range of the mean when $x_{i}^{\prime} \in \mathbf{x}_{i}^{\prime}$ and $V\left(x^{\prime}\right) \leq V_{0}$;
- we take $\underline{E}=-\bar{E}^{\prime}$.
2°. Let us prove that the largest possible values \bar{E} is attained for some values $x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right]$ for which $V(x) \leq V_{0}$.

Indeed, the variance function $V\left(x_{1}, \ldots, x_{n}\right)$ is continuous; thus, the set of all the values $x=\left(x_{1}, \ldots, x_{n}\right)$ for which $V\left(x_{1}, \ldots, x_{n}\right) \leq V_{0}$ is closed.

The box $\mathbf{x}_{1} \times \ldots \times \mathbf{x}_{n}$ is closed and bounded and thus, compact. The set S of all the values $x \in \mathbf{x}_{1} \times \ldots \times \mathbf{x}_{n}$ for which $V(x) \leq V_{0}$ is a closed subset of a compact set and therefore, compact itself. A continuous function attains its maximum on a compact set at some point. In particular, this means that the function $E(x)$ attains its maximum \bar{E} at some point x, i.e., that there exist values $x=\left(x_{1}, \ldots, x_{n}\right)$ for which $E\left(x_{1}, \ldots, x_{n}\right)=\bar{E}$.

In the following text, we will consider these optimizing values.
3°. Let us prove that for the optimizing vector x, for all i for which we have $x_{i}<E$, we have $x_{i}=\bar{x}_{i}$.

Indeed, since $V=M-E^{2}$, where $M \stackrel{\text { def }}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}$, we conclude that

$$
\frac{\partial V}{\partial x_{i}}=\frac{\partial M}{\partial x_{i}}-\frac{\partial E^{2}}{\partial x_{i}}=\frac{\partial M}{\partial x_{i}}-2 \cdot E \cdot \frac{\partial E}{\partial x_{i}}
$$

Here, $\frac{\partial E}{\partial x_{i}}=\frac{1}{n}, \frac{\partial M}{\partial x_{i}}=\frac{2 x_{i}}{n}$, and therefore,

$$
\begin{equation*}
\frac{\partial V}{\partial x_{i}}=\frac{2 \cdot\left(x_{i}-E\right)}{n} \tag{15}
\end{equation*}
$$

If we change only one value x_{i}, by replacing it with $x_{i}+\Delta x_{i}$, with a small Δx_{i}, the value of V changes by

$$
\begin{equation*}
\Delta V=\frac{\partial V}{\partial x_{i}} \cdot \Delta x_{i}+o\left(\Delta x_{i}\right)=\frac{2}{n} \cdot\left(x_{i}-E\right) \cdot \Delta x_{i}+o\left(\Delta x_{i}\right) \tag{16}
\end{equation*}
$$

When $x_{i}<E$, i.e., when $x_{i}-E<0$, then for small $\Delta x_{i}>0$, we have a negative ΔV, i.e., the variance decreases, while the mean E increases by $\frac{1}{n} \cdot \Delta x_{i}>0$. Thus, if we had $x_{i}<E$ and $x_{i} \neq \bar{x}_{i}$ for some i, then we could, by slightly increasing x_{i}, further increase E while decreasing V (and thus, keeping the constraint $V \leq V_{0}$). So, in this case, the vector x cannot be the one that maximizes E under the constraint $V \leq V_{0}$.

This conclusion proves that for the optimizing vector, when $x_{i}<E$, we have $x_{i}=\bar{x}_{i}$.
4°. Let us assume that an optimizing vector has a component x_{i} which is strictly inside the corresponding interval $\left[\underline{x}_{i}, \bar{x}_{i}\right]$, i.e., for which $\underline{x}_{i}<x_{i}<\bar{x}_{i}$. Due to Part 3 of this proof, we cannot have $x_{i}<E$, so we must have $x_{i} \geq E$. Let us prove that in this case,

- for every j for which $E \leq x_{j}<x_{i}$, we have $x_{j}=\bar{x}_{j}$, and
- for every k for which $x_{k}>x_{i}$, we have $x_{k}=\underline{x}_{k}$.
4.1 ${ }^{\circ}$. Let us first prove that if $x_{i} \in\left(\underline{x}_{i}, \bar{x}_{i}\right)$, and $E \leq x_{j}<x_{i}$, then $x_{j}=\bar{x}_{j}$.

We will prove this by contradiction. Indeed, let us assume that we have $E \leq x_{j}<x_{i}$ and $x_{j}<\bar{x}_{j}$. In this case, we can, in principle, slightly increase x_{j}, to $x_{j}+\Delta x_{j}$ and slightly decrease x_{i}, to $x_{i}-\Delta x_{i}$, and still stay within the corresponding intervals \mathbf{x}_{i} and \mathbf{x}_{j}. We select Δx_{j} and Δx_{i} in such a way that the resulting change ΔV in the variance V is non-negative. Here,

$$
\begin{equation*}
\Delta V=\frac{\partial V}{\partial x_{j}} \cdot \Delta x_{j}-\frac{\partial V}{\partial x_{i}} \cdot \Delta x_{i}+o\left(\Delta x_{i}\right)+o\left(\Delta x_{j}\right) \tag{17}
\end{equation*}
$$

Substituting the formula (15) for the derivative $\frac{\partial V}{\partial x_{j}}$ into this formula, we conclude that

$$
\begin{gather*}
\Delta V=\frac{2}{n} \cdot\left(\left(x_{j}-E\right) \Delta x_{j}-\left(x_{i}-E\right) \cdot \Delta x_{i}\right)+ \\
o\left(\Delta x_{i}\right)+o\left(\Delta x_{j}\right) \tag{18}
\end{gather*}
$$

Thus, for every Δx_{j}, to get $\Delta V=0$, we select

$$
\begin{equation*}
\Delta x_{i}=\frac{x_{j}-E}{x_{i}-E} \cdot \Delta x_{j}+o\left(\Delta x_{j}\right) \tag{19}
\end{equation*}
$$

For this selection, the variance does not change, but the mean E is changed by

$$
\begin{gather*}
\Delta E=\frac{1}{n} \cdot\left(\Delta x_{j}-\Delta x_{i}\right)=\left(1-\frac{x_{j}-E}{x_{i}-E}\right) \cdot \Delta x_{j}+o\left(\Delta x_{j}\right)= \\
\frac{x_{i}-x_{j}}{x_{i}-E} \cdot \Delta x_{j}+o\left(\Delta x_{j}\right) \tag{20}
\end{gather*}
$$

Since $x_{j}<x_{i}$, for small Δx_{j}, we have $\Delta E>0$. Thus, we can further increase the mean without violating the constraint $V \leq V_{0}$. This contradicts to our assumption that x is the optimizing vector. Thus, when $E<x_{j}<x_{i}$, we cannot have $x_{j}<\bar{x}_{j}$ - so we must have $x_{j}=\bar{x}_{j}$.
4.2°. Let us first prove that if $x_{i} \in\left(\underline{x}_{i}, \bar{x}_{i}\right), E \leq x_{i}$, and $x_{k}>x_{i}$, then $x_{k}=\underline{x}_{k}$.
Similarly, let us assume that we have $x_{k}>x_{i}$ and $x_{k}>\underline{x}_{k}$. In this case, we can, in principle, slightly increase x_{i}, to $x_{i}+\Delta x_{i}$ and slightly decrease x_{k}, to $x_{k}-\Delta x_{k}$, and still stay within the corresponding intervals \mathbf{x}_{i} and \mathbf{x}_{k}. We select Δx_{i} and Δx_{k} in such a way that the resulting change ΔV in the variance V is non-negative. Here,

$$
\begin{gather*}
\Delta V=\frac{\partial V}{\partial x_{i}} \cdot \Delta x_{i}-\frac{\partial V}{\partial x_{k}} \cdot \Delta x_{k}+o\left(\Delta x_{i}\right)+o\left(\Delta x_{k}\right)= \\
\frac{2}{n} \cdot\left(\left(x_{i}-E\right) \Delta x_{i}-\left(x_{k}-E\right) \cdot \Delta x_{k}\right)+o\left(\Delta x_{i}\right)+o\left(\Delta x_{k}\right) \tag{21}
\end{gather*}
$$

Thus, for every Δx_{i}, to get $\Delta V=0$, we select

$$
\begin{equation*}
\Delta x_{k}=\frac{x_{i}-E}{x_{k}-E} \cdot \Delta x_{i}+o\left(\Delta x_{i}\right) \tag{22}
\end{equation*}
$$

For this selection, the variance does not change, but the mean E is changed by
$\Delta E=\frac{1}{n} \cdot\left(\Delta x_{i}-\Delta x_{k}\right)=\left(1-\frac{x_{i}-E}{x_{k}-E}\right) \cdot \Delta x_{i}+o\left(\Delta x_{i}\right)=$

$$
\begin{equation*}
\frac{x_{k}-x_{i}}{x_{k}-E} \cdot \Delta x_{i}+o\left(\Delta x_{i}\right) \tag{23}
\end{equation*}
$$

Since $x_{k}>x_{i}$, for small Δx_{i}, we have $\Delta E>0$. Thus, we can further increase the mean without violating the constraint $V \leq$ V_{0}. This contradicts to our assumption that x is the optimizing vector. Thus, when $x_{i}<x_{k}$, we cannot have $x_{k}>\underline{x}_{k}$ - so we must have $x_{k}=\underline{x}_{j}$.
5°. Let us now consider the case when for all the components $x_{i} \geq E$ of the optimizing vector x, we have either $x_{i}=\underline{x}_{i}$ or $x_{i}=\bar{x}_{i}$. Let us show that in this case, all the values x_{i} for which $x_{i}=\bar{x}_{i}$ are smaller than or equal to all the values x_{j} for which $x_{j}=\underline{x}_{j}$.
We will prove this statement by contradiction. Let us assume that there exists i and j for which $E \leq x_{j}<x_{i}, x_{j}=\underline{x}_{j}$ and $x_{i}=\bar{x}_{i}$. In this case, we can slightly increase the value x_{j}, to $x_{j}+\Delta x_{j}$, and slightly decrease the value x_{i}, to $x_{i}-\Delta x_{i}$, and still stay within the corresponding intervals. Similarly to Part 4 of this proof, for every $\Delta x_{j}>0$, to get $\Delta V=0$, we must select

$$
\begin{equation*}
\Delta x_{i}=\frac{x_{j}-E}{x_{i}-E} \cdot \Delta x_{j}+o\left(\Delta x_{j}\right) \tag{24}
\end{equation*}
$$

For this selection, the variance does not change, but the mean E is changed by

$$
\begin{gather*}
\Delta E=\frac{1}{n} \cdot\left(\Delta x_{j}-\Delta x_{i}\right)=\left(1-\frac{x_{j}-E}{x_{i}-E}\right) \cdot \Delta x_{j}+o\left(\Delta x_{j}\right)= \\
\frac{x_{i}-x_{j}}{x_{i}-E} \cdot \Delta x_{j}+o\left(\Delta x_{j}\right) \tag{25}
\end{gather*}
$$

Since $x_{j}<x_{i}$, for small Δx_{j}, we have $\Delta E>0$. Thus, we can further increase the mean without violating the constraint $V \leq V_{0}$. This contradicts to our assumption that x is the optimizing vector. So, when $E \leq x_{j}<x_{i}$, we cannot have $x_{j}=\underline{x}_{j}$ and $x_{i}=\bar{x}_{i}$.

This contradiction proves that all the values x_{i} for which $x_{i}=\bar{x}_{i}$ are indeed smaller than or equal to all the values x_{j} for which $x_{j}=\underline{x}_{j}$.
6°. Due to Parts 3, 4, and 5 of this proof, there exists a threshold value α such that

- for all j for which $x_{j}<\alpha$, we have $x_{j}=\bar{x}_{j}$, and
- for all k for which $x_{k}>\alpha$, we have $x_{k}=\underline{x}_{k}$.

Indeed, in the case described in Part 4, as such α, we can take the value x_{i} that is strictly inside the corresponding interval \mathbf{x}_{i}. In the case described in Part 5, since all the upper endpoints from the optimizing vector are smaller than or equal to all the lower endpoints, we can take any value α between the largest of the optimal values \bar{x}_{j} and smallest of the optimal values \underline{x}_{j}.
7°. Let us show that because of the property proven in Part 6, once we know to which zone α belongs, we can uniquely determine all the components x_{j} of the corresponding vector x - a candidate for the optimal vector.
7.1°. Indeed, if $\bar{x}_{j}<\alpha$, then, since we have $x_{j}<\bar{x}_{j}$, we get $x_{j}<\alpha$. Thus, due to Part 6, we have $x_{j}=\bar{x}_{j}$.
7.2°. If $\alpha<\underline{x}_{j}$, then, since we have $\underline{x}_{j}<x_{j}$, we get $\alpha<x_{j}$. Thus, due to Part 6, we have $x_{j}=\underline{x}_{j}$.
7.3°. Let us now consider the remaining case when neither of the above two conditions is satisfied and thus, we have $\underline{x}_{j} \leq \alpha \leq \bar{x}_{j}$.

In this case, we cannot have $x_{j}<\alpha$, because then, due to Part 6 , we would have $x_{j}=\bar{x}_{j}$ and thus, $\bar{x}_{j}<\alpha$, which contradicts to the inequality $\alpha \leq \bar{x}_{j}$.

Similarly, we cannot have $\alpha<x_{j}$, because then, due to Part 6, we would have $x_{j}=\underline{x}_{j}$ and thus, $\alpha<\underline{x}_{j}$, which contradicts to the inequality $\underline{x}_{j} \leq \alpha$.

Thus, the only possible value here is $x_{j}=\alpha$.
7.3°. Overall, we conclude that for each α, we get exactly the arrangement formulated in our algorithm.
8°. Let us prove that when $V_{0}<V^{+}$, then the maximum is attained when $V=V_{0}$.
Let us prove this by contradiction. Let us assume that $V_{0}<$ V^{+}and that the maximum of E is attained for some vector $x=\left(x_{1}, \ldots, x_{n}\right)$, with $x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right]$, for which $V(x)<V_{0}$.

Since $V<V_{0}<V^{+}$, we have $V(x)<V^{+}=$ $V\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. Thus, $x=\left(x_{1}, \ldots, x_{n}\right) \neq \bar{x} \stackrel{\text { def }}{=}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ - otherwise, we would get $V(x)=V(\bar{x})=V^{+}$. So, there exists an index i for which $x_{i} \neq \bar{x}_{i}$. Since $x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right]$, this means that $x_{i}<\bar{x}_{i}$. Thus, we can increase x_{i} by a small positive value $\varepsilon>0$, to a new value $x_{i}^{\prime}=x_{i}+\varepsilon>x_{i}$, and still remain inside the interval $\left[\underline{x}_{i}, \bar{x}_{i}\right]$.

The function $V\left(x_{1}, \ldots, x_{n}\right)$ describing covariance continually depends on x_{i}. Since $V(x)<V_{0}$, for sufficiently small ε, we will have $V\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)<V_{0}$. Thus, the new vector still satisfies the constraint - but for this new vector, the mean is larger (by $\varepsilon / n>0$) than for the original vector x.

This contradicts to our assumption that the mean $E(x)$ of the vector x is the largest possible under the given constraint $V \leq V_{0}$.

The above contradiction shows that when $V_{0}<V^{+}$, then for the optimizing vector x, we have $V(x)=V_{0}$. This fact enables us to determine $\alpha-$ as do in the algorithm - by solving the equation $V(x(\alpha))=V_{0}$, where $x(\alpha)$ is a vector corresponding to the given α.

Correctness is proven.

REFERENCES

[1] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, "Computing Variance for Interval Data is NP-Hard", ACM SIGACT News, 2002, Vol. 33, No. 2, pp. 108-118.
[2] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, "Exact Bounds on Finite Populations of Interval Data", Reliable Computing, 2005, Vol. 11, No. 3, pp. 207-233.
[3] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001.
[4] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Upper Saddle River, New Jersey: Prentice Hall, 1995.
[5] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM Press, Philadelphia, Pennsylviania, 2009.
[6] H. T. Nguyen and E. A. Walker, First Course on Fuzzy Logic, CRC Press, Boca Raton, Florida, 2006.
[7] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice, Springer Verlag, New York, 2005.
[8] G. Xiang, M. Ceberio, and V. Kreinovich, "Computing Population Variance and Entropy under Interval Uncertainty: Linear-Time Algorithms", Reliable Computing, 2007, Vol. 13, No. 6, pp. 467-488.

