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Abstract—Cars are equipped with shock absorbers, which are
designed to smooth out the shocks on the road. In practice, there
is a need to test them. To test the shock absorbers, we need
to estimate the values of the shock absorber’s parameters A
and k. If we did not have any measurement errors, then two
measurements would be sufficient to determine the parameters.
However, in reality, there are measurement errors. Usually, in
engineering practice, it is assumed that the errors are normally
distributed with 0 mean, so we can use least squares method to
test it. In practice, we often only know the upper bound on the
measurement errors, so we have interval uncertainty. In principle,
the problem of determining the parameters of the shock observer
under interval uncertainty can be solved by reducing it to several
linear programming problems. However, linear programming
problems take a reasonably long time O(n3.5). A natural way to
speed up computations is to parallelize the algorithm. However,
its known that linear programming is provably the most difficult
problem to parallelize. So instead, we propose a new algorithm
for finding ranges for A and k, an algorithm which is not only
faster but also easy-to-parallelize.

I. FORMULATION OF THE PROBLEM

Practical problem: testing shock absorbers. Shock ab-
sorbers make the car ride smoother. This not only makes the
car ride mode comfortable for passengers, it also decreases
the wear and tear on the cargo and the car itself.

Because shock absorbers are important, it is necessary to
test them – so that we will be able to predict the shock
absorber’s reaction to different road conditions.

Shock absorbers: mathematical description. Shock ab-
sorbers try to smooth the vertical motions x(t) of the car.
In general, the motion of the shock absorber can be described
by Newton’s law

m · d
2x

dt2
= f(t) + F

(
x,

dx

dt

)
,

where m is the mass,
d2x

dt2
is the acceleration, f(t) is an

external vertical force, and F is the additional force created
within the shock absorber.

For example, if we simply add a spring, then we get a
force that follows Hooke’s law F = −b · x: the force is
proportional to the (vertical) displacement. If we add viscosity,
then we have an additional force which is proportional to

vertical velocity: F = −a · dx
dt

.

In general, the dependence of the force F on the vertical
displacement and vertical velocity can be non-linear. However,
in practice, both the vertical displacement and the vertical
velocity are relatively small – i.e., small in comparison with
the horizontal displacement and velocity. Therefore, we can

expand the dependence F

(
x,

dx

dt

)
in Taylor series in x

and
dx

dt
and keep only linear terms in this expansion – thus

ignoring quadratic and higher order terms. As a result, we get

F

(
x,

dx

dt

)
= F0 − b · x− a · dx

dt

for some coefficients F0, a, and b.
On the ideally smooth road, when there is no vertical

displacement (i.e., x = 0), no vertical motion
dx

dt
= 0, and no

external vertical force, the shock absorbers should not change
anything, i.e., we should have F = 0. Substituting x = 0 and
dx

dt
= 0 into the above general expression for the force, we

conclude that F0 = 0 and thus, that

F

(
x,

dx

dt

)
= −b · x− a · dx

dt
.

Substituting this formula for F into the general Newton’s law
expression, and moving linear terms to the left-hand side, we
conclude that

m · d
2x

dt2
+ a · dx

dt
+ b · x = f(t).

Thus, to describe the reaction of the shock absorbers on
arbitrary road conditions – i.e., on arbitrary force function f(t)
– it is sufficient to find the corresponding parameters m, a,
and b.

How to predict the reaction of the shock absorber on the
given force f(t). In the case of discrete time, when we only
consider moments t1 < t2 < . . . < tn, a general force function
f(t) can be describe by its values f(t1), . . . , f(tn) at these
moments of time. A general force function can therefore be
represented as the sum of n different force functions, each of
which acts only at the corresponding moment of time:

f(t) =
n∑

i=1

f(ti) · δ(t− ti),



where δ(s) = 0 for s ̸= 0 and δ(0) = 1. Since the equations
relating x(t) and f(t) are linear, the effect of the force f(t) is
equal to the sum of the effects of different force components,
and the effect of each force component is proportional to f(ti).
Let R(t) denote the reaction of the shock absorber on the unit
force applied at moment 0. Then,

• the reaction to a unit force applied at moment ti is

R(t− ti),

• the reaction to a force f(ti) applied at moment ti is

R(t− ti) · f(ti),

and
• the overall reaction is equal to the sum

n∑
i=1

R(t− ti) · f(ti).

In the continuous case, instead of the sum, we get an integral

x(t) =

∫
R(t− s) · f(s) ds.

So, to predict the reaction of the shock absorber on an arbitrary
force f(t), it is sufficient to find the reaction function R(t).

The function R(t) describes the reaction of the shock
absorber to the impulse force that acts for a short period of
time: we apply a force and measure the reaction.

From the above differential equation, we can conclude that
the reaction function has the form

R(t) = A · exp(−k · t) · cos(ω · t+ φ)

for some amplitude A, frequency ω, phase φ, and the damping
factor k.

When we apply an impulse force, the displacement is
proportional to R(t). Thus, we arrive at the following idea.

How to determine the reaction of the shock absorber. We
apply an instantaneous unit force, and measure the resulting
displacements x(ti) at different moments of time

t1 < t2 < . . . < tn.

In the ideal case, when the measurements are absolutely
accurate, the measured values are equal to

xi = A · exp(−k · ti) · cos(ω · ti + φ).

So, the question is: how to find the values A, k, ω, and φ
from these measurement results.

Need to take uncertainty into account. In practice, mea-
surements are never 100% accurate. As a result, the measured
values xi are only approximately equal to the actual displace-
ments x(ti). Thus, instead of the exact equality, we only have
an approximate equality

xi ≈ A · exp(−k · ti) · cos(ω · ti + φ).

Frequency is usually easiest to determine. There are many
techniques for determining frequency ω – and the corre-
sponding phase φ. It is also relatively easy to find maxima
and minima within each cycle, i.e., the moments ti when
cos(ω · ti + φ) ≈ 1. For these moments of time, we have

xi ≈ ±A · exp(−k · ti),

hence
|xi| ≈ A · exp(−k · ti).

Thus, the main remaining problem is to estimate the values A
and k based on the corresponding values xi.

Case of interval uncertainty. Often, the only information
that we know about the measurement error xi − x(ti) is the
upper bound ∆i on this error; see, e.g., [5]. Please note that
the measurement accuracy may be different at different parts
of the scale, so the values ∆i may be different for different
measurements i.

In this case, after the measurement, the only information
that we have about the actual (unknown) value x(ti) is that
this value belongs to the interval [xi, xi], where we denoted
xi

def
= xi − ∆i and xi

def
= xi + ∆i. As a result, the only

information that we have about the actual value of the quantity
|x(ti)| = A · exp(−k · ti) is that this value belongs to the
interval [Xi, Xi], where we denoted Xi

def
= max(0, |xi|−∆i)

and Xi
def
= |xi|+∆i.

Please note that we cut off the range at 0 from below, since
the absolutely value is always non-negative.

In general, different values A and k are consistent with
these inequalities. Our objective is to find the range of possible
values of A and k. Thus, we arrive at the following problem.

Formulation of the problem. We given the values xi and ∆i.
Based on these values, we compute Xi = max(0, |xi| −∆i)
and Xi = |xi|+∆i.

Our objective is to find the smallest A and the largest A
values of A and the smallest k and the largest k values of k ≥
0 among all the values of A and k that satisfy the constraints

Xi ≤ A · exp(−k · ti) ≤ Xi

for all n measurements i = 1, . . . , n.

Case of fuzzy uncertainty. In some cases, in addition to
the guaranteed upper bounds ∆i on the measurement error
xi − x(ti), we also have smaller bounds about which we are
not 100% certain. In other words, for different degrees of
uncertainty α from the interval (0, 1), we have a bound ∆i(α)
– and thus, an interval [xi −∆i(α), xi +∆i(α)] that contain
x(ti) with a given degree of uncertainty. These intervals form
a fuzzy set containing all this knowledge; see, e.g., [3], [4].

Case of fuzzy uncertainty can be reduced to interval
uncertainty. For fuzzy uncertainty, instead of single bounds
A, A, k, and k corresponding to absolute certainty, we also
want to find similar bounds corresponding to different levels α.



Thus, to solve the problem corresponding to fuzzy uncer-
tainty, we need to solve several interval problems – corre-
sponding to different values α. So, the case of fuzzy un-
certainty can be reduced to the case of interval uncertainty.
Because of this reduction, in the following text, we will
concentrate on the case of interval uncertainty.

Simplification of the problem. The main difficulty with the
above formulation of the interval-related problem is that the
constraints non-linearly depend on the unknown k. To simplify
the problem, we can use the fact that logarithm is a strictly
increasing function and thus, an inequality p ≤ q is equivalent
to ln(p) ≤ ln(q). By talking logarithms of all the sides of the
above constraints, we thus get the following equivalent form
of the above constraint:

y
i
≤ z − k · ti ≤ zi,

where we denoted y
i

def
= ln(Xi), yi

def
= ln(Xi), and z

def
=

ln(A).
Here, z = ln(A) hence A = exp(z). Since exp(z) is

an increasing function, the value A attains its maximum or
minimum whenever z attains its maximum or minimum. So,
once we have computed the bounds z and z for z, we can find
the bounds for A as A = exp(z) and A = exp(z). Thus, to
solve our problem, it is sufficient to find the bounds of k and
z under the above constraints.

New formulation of the problem. We given the values xi

and ∆i. Based on these values, we compute

Xi = max(0, |xi| −∆i),

Xi = |xi|+∆i, yi = ln(Xi), and yi = ln(Xi).
Our objective is to find the smallest z and the largest z

values of z and the smallest k and the largest k values of k ≥ 0
among all the values of z and k that satisfy the constraints

y
i
≤ z − k · ti ≤ zi

for all n measurements i = 1, . . . , n.
Then, we compute A = exp(z) and A = exp(z).

How this problem is solved now. In order to find z, we
must find the smallest possible value of z under the above
constraints. Both the objective function (in this case, z) and
the constraints are linear in terms of the unknowns z and k.
Such problems – of optimizing a linear function under linear
constraints – are linear programming problems; see, e.g., [2].

Similarly, the problem of finding the largest possible value
z and the problems of finding the smallest and the largest
possible values of k are examples of linear programming
problems.

There exist efficient algorithms for solving linear program-
ming problems; see, e.g., [2] and references therein. By
applying these algorithms to our problem, we can thus find the
desired bounds for the shock absorber problem. This approach
– and similar approaches – are described, e.g., in [1].

Limitations of the existing approach. In general, known
algorithms for soling linear programming problem take time

that grows with the problem size as O(n3.5). While this
dependence is polynomial, it still grows very fast for large
n. It is therefore desirable to find faster algorithms.

In general, one way to speed up computations is to paral-
lelize them, i.e., to divide the computations between several
computers working in parallel. Alas, linear programming is
known to be the provably hardest problem to parallelize (to
be precise, P-hard); see, e.g., Section 7.2 of [6] and references
therein. Thus, a new algorithm is needed.

What we do in this paper. In this paper, we propose a new
faster and easy-to-parallelize algorithm for solving the above
problem.

II. ANALYSIS OF THE PROBLEM

Finding bounds for k. In the above inequality, if we add k ·ti
to all three sides, we conclude that

y
i
+ k · ti ≤ z ≤ yi + k · ti.

The value k is possible if there exists a value z that satisfies
all these inequalities. In other words, the value k is possible
if there exists a value z which is

• larger than or equal to all the lower bounds y
i
+k · ti and

• smaller than or equal to all the upper bounds yi + k · ti.
Such a value exists if and only if the largest of the lower
bounds is smaller than or equal to the smallest of the upper
bounds:

max
i

(y
i
+ k · ti) ≤ min

i
(yi + k · ti).

In this case, every lower bound is smaller than or equal to
every upper bound. Vice versa, if every lower bound is smaller
than every upper bound, then the largest of the lower bounds
is smaller than or equal to the smallest of the upper bounds.

Thus, the value k is possible if and only if the following
inequality holds for every i and j:

y
i
+ k · ti ≤ yj + k · tj .

For i = j, this is always true, since we have y
i
≤ yi. Thus, it

is sufficient to consider only pairs for which i ̸= j.
By moving all the terms proportional to k to the left-hand

sides and all the others to the right-hand side, we get the
equivalent inequality

k · (ti − tj) ≤ yj − y
i
.

When i > j, we have ti > tj , so ti − tj > 0, and we can
divide both side by this positive value, resulting in

k ≤
yj − y

i

ti − tj
.

When i < j, then ti − tj < 0, so division by ti − tj changes
the sign of the inequality:

k ≥
yj − y

i

ti − tj
,

or, equivalently,

k ≥
y
i
− yj

tj − ti
.



Therefore, the value k is possible if and only if it is

• smaller than or equal to all the upper bounds
y
i
− yj

tj − ti
and

• larger than or equal to all the lower bounds
yj − y

i

ti − tj
.

This is equivalent to k being larger than or equal to the largest
of the lower bounds and smaller than or equal to the smallest
of the lower bounds:

max
i>j

y
i
− yj

tj − ti
≤ k ≤ min

i<j

yj − y
i

ti − tj
.

Thus, we have the desired expression for the lower and the
upper endpoints for k:

k = max

(
0,max

i>j

y
i
− yj

tj − ti

)
; k = min

i<j

yj − y
i

ti − tj
.

Please note that since k ≥ 0, we cut off the lower bound at 0.

Finding bounds for z. Similarly, the value z is possible if
and only if there exists k for which

y
i
+ k · ti ≤ z; z ≤ yi + k · ti.

By moving y
i

to the right-hand side of the first inequality and
yi to the right-hand side of the second inequality, we get an
equivalent inequality

z − yi ≤ k · ti ≤ z − y
i
.

Dividing all three sides of this inequality by a positive number
ti > 0 (we can always assume that we start counting time with
0), we conclude that

z − yi
ti

≤ k ≤
z − y

i

ti
.

Similarly to the above case, such a value k exists if and only
if all the lower bounds are smaller than or equal to all the
upper bounds:

z − yi
ti

≤
z − y

j

tj
.

Similarly to the previous case, it is sufficient to consider only
pairs i ̸= j. In this case, by moving all the terms proportional
to z to one side and all the other terms to the other side, we
get an equivalent inequality

z ·
(
1

ti
− 1

tj

)
≤ yi

ti
−

y
j

tj
.

When i < j, we have ti < tj , hence
1

ti
>

1

tj
, so

1

ti
− 1

tj
> 0,

and we can divide both sides of the inequality by this differ-
ence without changing the sign of the inequality. As a result,
we get the inequality

z ≤

yi
ti

−
y
j

tj
1

ti
− 1

tj

=
yi · tj − y

j
· ti

tj − ti
.

When i > j, then
1

ti
− 1

tj
< 0, and thus, when we divide

both sides of the inequality by this number, the sign of the
inequality changes. So, we get

z ≥
yi · tj − y

j
· ti

tj − ti
=

y
j
· ti − yi · tj
ti − tj

.

Therefore, the value z is possible if and only if it is smaller
than or equal to all the upper bounds and larger than or equal
to all the lower bounds This is equivalent to z being larger
than or equal to the largest of the lower bounds and smaller
than or equal to the smallest of the lower bounds:

max
i>j

y
j
· ti − yi · tj
ti − tj

≤ z ≤ min
i<j

yi · tj − y
j
· ti

tj − ti
.

Thus, we have the desired expression for the lower and the
upper endpoints for z:

z = max
i>j

y
j
· ti − yi · tj
ti − tj

; z = min
i<j

yi · tj − y
j
· ti

tj − ti
.

III. RESULTING ALGORITHM AND ITS ANALYSIS

Resulting algorithm. Once we computed the values Xi =
max(0, |xi| − ∆i), Xi = |xi| + ∆i, yi = ln(Xi), and yi =

ln(Xi), we can compute

k = max

(
0,max

i>j

y
i
− yj

tj − ti

)
; k = min

i<j

yj − y
i

ti − tj
;

z = max
i>j

y
j
· ti − yi · tj
ti − tj

; z = min
i<j

yi · tj − y
j
· ti

tj − ti
;

then we compute A = exp(z) and A = exp(z).

Computation time of the new algorithm. To compute each of
the four bounds, we find n2 ratios corresponding to n ·n = n2

possible pairs of indices i and j. Then, we take n2 steps to find
the smallest and the largest of these ratios. Thus, computations
take time O(n2).

For large n, this is much smaller than the time O(n3.5) that
is used by the linear programming algorithm.

Possibility of parallelization. If we have an unlimited number
of processors, then we can use n2 processors to compute all
the ratios in parallel – i.e., in time of one computational step.

In general, if we have N numbers r1, . . . , rN , we need
log2(N) time to find the largest and the smallest of these
values; see, e.g., [2], [6]. Indeed:

• On the first step, the 1st processor computes the maxi-
mum r′1 = max(r1, r2), the second processor computes
the maximum r′2 = max(r3, r4), then we have r′3 =
max(r5, r6), r′4 = max(r7, r8), etc.

• At the second step, the 1st computer computes the
maximum

r′′1 max(r′1, r
′
2) = max(r1, r2, r3, r4),

while the second computes the maximum

r′′2 = max(r′3, r
′
4) = max(r5, r6, r7, r8),



etc.
• At the third step, the first computer computes the value

max(r′′1 , r
′′
2 ) = max(r1, r2, . . . , r8).

• . . .
• Similarly, at a step s, the first computer computes the

maximum
max(r1, r2, . . . , r2s).

• . . .

When 2s = N , i.e., when s = log2(N), then we compute the
desired maximum, so this computation indeed takes log2(N)
steps.

In our case, we have N ≤ n2 numbers, so computing the
maximum takes

log2(N) ≤ log2(n
2) = 2 · log2(n) = O(log2(n))

steps. Thus, the new algorithm is indeed highly parallelizable.

To be more precise, it belongs to the class NC of all the
problem that can be solved in polylog time (i.e., in time
bounded by a polynomial of log2(n)) on a polynomial number
of processors.
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