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Abstract. It is well known that many computational problems are, in
general, not algorithmically solvable: e.g., it is not possible to algorith-
mically decide whether two computable real numbers are equal, and it
is not possible to compute the roots of a computable function. We pro-
pose to constraint such operations to certain “sets of typical elements”
or “sets of random elements”.

In our previous papers, we proposed (and analyzed) physics-motivated
definitions for these notions. In short, a set T is a set of typical elements if
for every definable sequences of sets An with An ⊇ An+1 and

∩
n

An = ∅,

there exists an N for which AN ∩T = ∅; the definition of a set of random
elements with respect to a probability measure P is similar, with the
condition

∩
n

An = ∅ replaced by a more general condition lim
n

P (An) = 0.

In this paper, we show that if we restrict computations to such typical
or random elements, then problems which are non-computable in the
general case – like comparing real numbers or finding the roots of a
computable function – become computable.
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Physically meaningful computations with real numbers: a brief reminder. In prac-
tice, many quantities such as weight, speed, etc., are characterized by real num-
bers. To get information about the corresponding value x, we perform measure-
ments. Measurements are never absolute accurate. As a result of each measure-
ment, we get a measurement result x̃; for each measurement, we usually also
know the upper bound ∆ on the (absolute value of) the measurement error

∆x
def
= x̃− x: |x− x̃| ≤ ∆.

To fully characterize a value x, we must measure it with a higher and higher
accuracy. As a result, when we perform measurements with accuracy 2−n with
n = 0, 1, . . ., we get a sequence of rational numbers rn for which |x− rn| ≤ 2−n.



From the algorithmic viewpoint, we can view this sequence as an oracle that,
given an integer n, returns a rational number rn. Such sequences represent real
numbers in computable analysis; see, e.g., [9, 10].

First negative result. In computable analysis, several negative results are known.
For example, it is known that no algorithm is possible that, given two numbers
x and y, would check whether these numbers are equal or not.

Computable functions and relative negative results. Similarly, we can define a
function f(x) from real numbers to real numbers as a mapping that, given an
integer n, a rational number xm and its accuracy m, produces either a message
that this information is insufficient, or a rational number yn which is 2−n-close to
all the values f(x) for d(x, xm) ≤ 2−m – and for which, for every x and for each
desired accuracy n, there is an m for which a rational number yn is produced.
We can also define a computable function f(x1, . . . , xk) of several real variables
(and, even more generally, a function on a computable compact).

Several negative results are known about computable functions as well. For
example,

– while there is an algorithm that, given a function f(x) on a computable
compact set K (e.g., on a box [x1, x1]× . . .× [xk, xk] in k-dimensional space),
produces the values max{f(x) : x ∈ K},

– no algorithm is possible that would always return a point x at which this
maximum is attained (and similarly, with minimum).

From the physicists’ viewpoint, these negative results seem rather theoretical.
From the purely mathematical viewpoint, if two quantities coincide up to 13
digits, they may still turn to be different: for example, they may be 1 and 1 +
10−100.

However, in the physics practice, if two quantities coincide up to a very high
accuracy, it is a good indication that they are actually equal. This is how physical
theories are confirmed: if an experimentally observed value of a quantity turned
out to be very close to the value predicted based on a theory, this means that
this theory is (triumphantly) true. This is, for example, how General Relativity
has been confirmed.

This is how discoveries are often made: for example, when it turned out the
speed of the waves described by Maxwell equations of electrodynamics is very
close to the observed speed of light c, this led physicists to realize that light is
formed of electromagnetic waves.

How physicists argue. A typical physicist argument is that while numbers like
1+10−100 (or c · (1+10−100)) are, in principle, possible, they are abnormal (not
typical).

When a physicist argues that second order terms like a ·∆x2 of the Taylor
expansion can be ignored in some approximate computations because ∆x is
small, the argument is that



– while abnormally high values of a (e.g., a = 1040) are mathematically possi-
ble,

– typical (= not abnormal) values appearing in physical equations are usually
of reasonable size.

How to formalize the physicist’s intuition of typical (not abnormal). A formal-
ization of this intuition was proposed and analyzed in [1–7]. Its main idea is as
follows. To some physicist, all the values of a coefficient a above 10 are abnormal.
To another one, who is more cautious, all the values above 10 000 are abnor-
mal. Yet another physicist may have another threshold above which everything
is abnormal. However, for every physicist, there is a value n such that all value
above n are abnormal.

This argument can be generalized as a following property of the set T of all
typical elements. Suppose that we have a monotonically decreasing sequence of
sets A1 ⊇ A2 ⊇ . . . for which

∩
n
An = ∅ (in the above example, An is the set of

all numbers ≥ n). Then, there exists an integer N for which T ∩AN = ∅.
We thus say that T is a set of typical elements if for every definable decreasing

sequence {An} for which
∩
n
An = ∅, there exists an N for which T ∩AN = ∅.

Comment. Of course, to make this definition precise, we must restrict definability
to a subset of properties, so that the resulting notion of definability will be defined
in ZFC itself (or in whatever language we use); for details, see, e.g., [3].

Relation to randomness. The above notion of typicality is related to the ran-
domness. Indeed, a usual definition of a random sequence (see, e.g., [8]) is based
on the idea that a sequence is random if it satisfies all the probability laws –
like the law of large numbers, the central limit theorem, etc. A probability law
is then described as a definable property that is satisfied with probability 1, i.e.,
as a complement to a definable set S of probability measure 0 (P (S) = 0). Thus,
we can say that a sequence is random if it does not belong to any definable set
of measure 0. (If we use different languages to formalize the notion “definable”,
we get different versions of Kolmogorov-Martin-Löf randomness.)

Informally, this definition means that (definable) events with probability 0
cannot happen. In practice, physicists also assume that events with a very small
probability cannot happen. It is not possible to formalize this idea by simply
setting a threshold p0 > 0 below which events are not possible – since then, for
N for which 2−N < p0, no sequence of N heads or tails would be possible at
all. However, we know that for each monotonic sequence of properties An with
lim p(An) = 0 (e.g., An = “we can get first n heads”), there exists an N above
which a truly random sequence cannot belong to AN . In [1–7], we thus propose to
describe a set R as a set of random elements if it satisfies the following property:
for every definable decreasing sequence {An} for which limP (An) = 0, there
exists an N for which R ∩AN = ∅.

It turns out that properties of T and R are related:

– every set of random elements is also a set of typical elements, and



– for every set of typical elements T , the difference T −RK , where RK is the
set of the elements random in the usual Komogorov-Martin-Löf sense, is a
set of random elements [2].

Physically interesting consequences of these definitions. These definitions have
useful consequences [1–7].

For example, when the universal set X is a metric space, both sets T and
R are pre-compact – with the consequence that all inverse problems become
well-defined: for any 1-1 continuous function f : X → X, the restriction of the
inverse function to T is also continuous. This means that, in contrast to ill-defined
problem, if we perform measurements accurately enough, we can reconstruct the
state of the system with any desired accuracy.

Another example is a justification of physical induction: crudely speaking,
there exists an N such that if for a typical sequence, a property is satisfied in
the first N experiments, then it is satisfied always.

New results: when we restrict ourselves to typical elements, algorithms become
possible. In this paper, we analyze the computability consequences of the above
definitions. Specifically, we show that most negative results of computability
analysis disappear if we restrict ourselves to typical elements.

For example, for every set of typical pairs of real numbers T ⊆ IR2, there
exists an algorithm, that, given real numbers (x, y) ∈ T , decides whether x = y
or not. To prove it, consider a decreasing sequence of definable sets

An = {(x, y) : 0 < d(x, y) < 2−n}.

By definition of T , there exists an N such that AN ∩T = ∅. Thus, if we compute
d(x, y) with accuracy 2−(N+1) and get a value < 2−N , this means that x = y –
otherwise x ̸= y.

Similar (but somewhat more complex) arguments lead to

– an algorithm that, given a typical function f(x) on a computable compact
K, computes a value x at which f(x) attains its maximum,

– an algorithm that, given a typical function f(x) on a computable compact
K that attains a 0 value somewhere on K, computes a value x at which
f(x) = 0,

– etc.
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