Publication Date



Technical Report: UTEP-CS-15-32


In many practical situations, we make predictions based on the measured and/or estimated values of different physical quantities. The accuracy of these predictions depends on the accuracy of the corresponding measurements and expert estimates. Often, for each quantity, there are several different sources of inaccuracy. Usually, to estimate the prediction accuracy, we first combine, for each input, inaccuracies from different sources into a single expression, and then use these expressions to estimate the prediction accuracy. In this paper, we show that it is often more computationally efficient to process different types of uncertainty separately, i.e., to estimate inaccuracies in the prediction result caused by different types of uncertainty, and only then combine these inaccuracies into a single estimate.