Calibration of concrete pavement performance models

Alejandra Gallegos, University of Texas at El Paso


Pavement performance models exist in various forms to cater to the pavement management agencies' needs and resources. Well-calibrated models are needed to accurately predict future pavement conditions, and to forecast and prioritize confidently the future rehabilitation and maintenance expenditures. Statistical tools are commonly used to develop the performance models. These statistical models may be impractical or misleading if not constrained with experts' opinions. This paper presents a hybrid technique where statistical tools and expert knowledge are combined for the calibration of pavement performance models. This technique was validated using historical pavement condition data for continuously-reinforced-concrete pavements (CRCP) from the Texas Department of Transportation's Pavement Management Information System (TxDOT-PMIS). The recalibrated CRCP performance models obtained with the hybrid technique represent an improvement when compared to the current models since they merge expert opinion and statistical analysis which allow to better reflect field observations regarding distress initiation, distress evolution rate, and maximum allowable amount of distress growth. Furthermore, this paper also discusses the application of this technique for the calibration of the Highway Development and Management Model (HDM-4) and Mechanistic-Empirical Pavement Design (MEPD) performance models.^

Subject Area

Engineering, Civil

Recommended Citation

Gallegos, Alejandra, "Calibration of concrete pavement performance models" (2012). ETD Collection for University of Texas, El Paso. AAI1516705.