Design and evaluation of a high temperature/pressure supercritical carbon dioxide direct tubular receiver for concentrating solar power applications

Jesus Daniel Ortega, University of Texas at El Paso


This work focuses on the development of a solar power thermal receiver for a supercritical-carbon dioxide (sCO2), Brayton power-cycle to produce ~1 MWe. Closed-loop sCO2 Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. High temperatures (923–973 K) and pressures (20–25 MPa) are required in the solar receiver to achieve thermal efficiencies of ~50%, making concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. In this study, the CSP receiver is required to achieve an outlet temperature of 923 K at 25 MPa or 973 K at 20 MPa to meet the operating needs. To obtain compatible receiver tube material, an extensive material review was performed based the ASME Boiler and Pressure Vessel Code, ASME B31.1 and ASME B313.3 codes respectively. Subsequently, a thermal-structural model was developed using a commercial computational fluid (CFD) dynamics and structural mechanics software for designing and analyzing the tubular receiver that could provide the heat input for a ~2 MWth plant. These results were used to perform an analytical cumulative damage creep-fatigue analysis to estimate the work-life of the tubes. In sequence, an optical-thermal-fluid model was developed to evaluate the resulting thermal efficiency of the tubular receiver from the NSTTF heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. The K-&ohgr; SST turbulence model and P-1 radiation model used in Fluent were coupled with SolTrace to provide the heat flux distribution on the receiver surface. The creep-fatigue analysis displays the damage accumulated due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver thermal efficiency of ~85%. Future work includes the completion of a cyclic loading analysis to be performed using the Larson-Miller creep model in nCode Design Life to corroborate the structural integrity of the receiver over the desired lifetime of ~10,000 cycles.^

Subject Area

Engineering, Mechanical|Energy

Recommended Citation

Ortega, Jesus Daniel, "Design and evaluation of a high temperature/pressure supercritical carbon dioxide direct tubular receiver for concentrating solar power applications" (2014). ETD Collection for University of Texas, El Paso. AAI1583938.