Development and testing of an ignition physics test facility and an oxygen/methane swirl torch igniter

Jesus Roberto Flores, University of Texas at El Paso


There are many advantages to LOX/methane propulsion, such as in-situ resource utilization from Mars and the Moon, and simplicity of ground operations due to its non-toxic nature. There exists a lack of fundamental understanding of the ignition physics, and flame characteristics of these propellants when related to rocket propulsion, which has created undesirably long design cycles and flight hardware that is not optimized. Motivated by these issues, a study of the ignition physics of a shear coaxial injector is proposed, in which the flow field dynamics and ignition transients will be observed through a visually accessible combustion chamber. The main goal of this work is to study the effects of geometric differences of the injector, such as recess in the liquid oxygen post and thickness of the LOX post, on the jet breakup downstream of the injector, and the flame anchoring mechanism and location. A facility was developed to support this endeavor in a safe and efficient way, including a cryogenic delivery system, a Multipurpose Optically Accessible Combustor (MOAC) with torch igniter, and a bunker with a Data Acquisition and Remote Controls system (DARCS). A swirl coflow premixed torch igniter was designed, manufactured and developed with the intent of using it as the MOAC's main ignition source. It was designed to use oxygen and methane as the propellants in an incremental step towards the goal of a LOX/methane rocket engine. Extensive testing was done on the igniter in the development phase to prove that it will reliable ignite and sustain combustion under a variety of propellant inlet conditions of which include: warm gas, cold gas, and liquid cryogenic conditions. The testing phase also provided data for component reliability and proof of concept for the testing facilities designed, especially for the cryogenic delivery system, and methane condensing unit. Future injector testing parameters of the hardware produced is included along with recommendations to provide a knowledge base for the laboratory.^

Subject Area

Engineering, General|Engineering, Aerospace|Engineering, Mechanical

Recommended Citation

Flores, Jesus Roberto, "Development and testing of an ignition physics test facility and an oxygen/methane swirl torch igniter" (2013). ETD Collection for University of Texas, El Paso. AAI3589423.