Quantum dot formation by molecular beam epitaxy of Ge on Si(100)

Sergio Arturo Chaparro, University of Texas at El Paso

Abstract

A new technique for producing electron systems with quantum confinement in three dimensions, quantum dots, has been studied. These quantum dots are coherent islands spontaneously formed at the early stages of Ge/Si(100) epitaxy due to the misfit of the system. Our goal is to gain understanding and control of the growth process so uniform quantum dot ensembles can be created for possible use in optoelectronic devices. A UHV Molecular Beam Epitaxy (MBE) growth system was built and calibrated to grow our samples. The samples were prepared by depositing Ge onto a Si(100) surface cleaned by flash desorption of the native oxides. Varying the growth rates from 0.6 ML/min to 4.0 ML/min, the substrate temperature from 450°C to 600°C, and the coverage from 3.5 ML to 14 ML produces different sample morphologies. After growth, the samples were analyzed both in situ and ex situ. The in situ analysis consisted of Auger electron spectroscopy for elemental analysis and reflection high energy electron diffraction, for surface structure analysis. The ex situ analysis included atomic force microscopy (AFM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM). Many digital images were obtained from the microscope analysis. A novel, computer based, analysis was developed to extract the islands parameters from the microscope images. This data, which includes island area and average height for each island on every image, was used for a statistical analysis. Also from the data, island size distributions (histograms of island size) were generated. These measurements confirm that islands form after growth of a 3 ML wetting layer and that islands evolve as they grow. As more Ge is deposited these islands grow and as they grow they evolve from huts, square based pyramids, to domes, truncated pyramids, to dislocated domes. Our results show that the substrate temperature, deposition rate, and amount of deposited material are factors that affect the growth evolution. Higher growth temperature affects the size at which islands evolve from one type of island to another, also introduces new strain release mechanisms such as alloying and trench formation that compete with dislocation formation. Finally a detailed morphological characterization of the observed islands was done. ^

Subject Area

Engineering, Materials Science

Recommended Citation

Chaparro, Sergio Arturo, "Quantum dot formation by molecular beam epitaxy of Ge on Si(100)" (1999). ETD Collection for University of Texas, El Paso. AAI9937180.
http://digitalcommons.utep.edu/dissertations/AAI9937180

Share

COinS