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ABSTRACT 

   

The most obvious structural feature of planetary bodies is their roundness. This arises 

because of the dominate roles of the two effects of gravity and case of the deformation of 

matter, whether gas, liquid or solid. This project is about proving and solving out the time 

scale( )τ  of flow restoring the body to spherical shape when we consider a slightly 

deformed self-gravitating sphere and also checking for spherical of different planetary 

objects. 
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CHAPTER ONE 

 

1.  Proving the Time Scale Equation 

 

The theory of the gravitational oscillation of a mass of liquid about the spherical form is 

due to Kelvin. If we take the origin at the centre and denoting the radius vector at any 

point of the surface by a+ζ i.e. where a is the radius in the undisturbed state. 

 

We assume          ( )in LLL∑
∞

=
1

ςζ       

 

Where ζn  is a surface-harmonic of integral order n. 

 

The ideal fluid continuity equation is 02 =∇ φ  i.e. 
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the velocity leads to the Laplace equation in the velocity potential 

 

                                       0. 2 =∇=∇∇ φφ  
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The potential for all possible irrotational motions of an incompressible fluid must satisfy 

the Laplace equation, most ideal fluid motions are irrotational, since rotation must 

commonly arises through the action of viscosity (friction). 
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therefore the equation of continuity is satisfied by 
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where ns is a surface-harmonic and kinematical conditions, 
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Therefore to be satisfied when r = a gives 
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The gravitational potential at the free surface is 
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 Where γ  is the gravitational 

constant. 

 

Putting g = aπγ
3

4
,   nar ςΣ+=  

Resolving the gravitational potential 
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substituting from (ii) and (v) in the pressure equation 
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since P must be constant over the surface 
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Eliminating nS  between (vii) and (viii) we have  
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therefore this shows that ( )εσς +∝ tnn cos ,where we have  
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( ) ( )x
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for the same density of liquid αg a and the frequency is therefore independent of the 

dimensions of the globe. 

If n = 1, i.e. 0=σ since in a small deformation expressed by a surface-harmonic of the 

first order the surface remains spherical and the period is therefore infinitely long. 

In case of a highly viscous globe returning asymptotically to the spherical form under the 

influence of gravitation, the velocity potential is in the form 
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i.e. ns is a the surface harmonic. 

Therefore the kinetic energy included within a sphere of radius r, we have the expression 

in the form 
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since we are dealing with the spherical form under the influence of gravitation the total 

kinetic energy 
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and potential energy is 
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           Total Energy = T + V 
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again, the dissipation in a sphere of radius r, calculated on the assumption that the motion 

is irrotational under the gravitational influence, 
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putting r = a, we have for the total dissipation 

 

                 ( )( ) ( ) ( )xvitAsnF n LLL∫∫ +∂++= εσϖµρ 2222 cos..1122  

 

therefore, if the effects of inertia being disregarded and also if the effect of viscosity be 

represented by a gradual variation of the coefficient A,we have 



 6 

                                ( ) ( )xviiFVT
t

LLL2=+
∂
∂

 

 

The mean value of which, per unit time is 
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from equation ( )xviii ,we can shew    τα
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A
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where n is the order of deformation, ν is the kinematic viscosity is the acceleration due to 

gravity 

From the time scale or time interval, checking for different values of n, where n is the 

order of the deformation (of surface wavelength
n

aπ2
)  
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We can check different values of n and plot the time scale τ  against the order of 

deformation and vice versa. 
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We can calculate the time scale τ ,for different values of (a) using the different values of 

(n).For a typical material of density 3000 3/ mkg  

and kinematic viscosity sm /10 217=ν  and for values of  a = 1,100,,200,300,400,500 and 

1000km. 

Kinematic viscosity is defined as the dynamic viscosity divided by density, 

                                  sm /10 217==
ρ
ην   

And the acceleration due to gravity  2/8.9 smg =  
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CASE 1. 

For  2217 /8.9,/10,1 smgsmkma === ν  
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Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 2. 

For  2217 /8.9,/10,10 smgsmkma === ν  
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Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 3. 

For  2217 /8.9,/10,100 smgsmkma === ν  
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Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 4. 

For  2217 /8.9,/10,200 smgsmkma === ν  

 
 

Order of 
Deformation(n) Time Scale   









ga

ντ  
 
Time Scale ( )yearsτ  

                     0 
                      0 









ga

ν
 

 
0 years  

                     1 
                      9 









ga

ν
 

 
years4105.1 ×  

                     2 
                    9.5 









ga

ν
 

 
years41054.1 ×  

                     3 
                     11 









ga

ν
 

 
years4108.1 ×  

                     4 
                12.75 









ga

ν
 

 
years4101.2 ×  

                     5 
                  14.6 









ga

ν
 

 
years4104.2 ×  

                     6 
                  16.5 









ga

ν
 

 
years4107.2 ×  

                     7 
                18.43 









ga

ν
 

 
years4100.3 ×  

                     8 
              20.375 









ga

ν
 

 
years4103.3 ×  

                     9 
                22.33 









ga

ν
 

 
years4106.3 ×  

                    10 
                  24.3 









ga

ν
 

 
years4109.3 ×  

 
 
 
 
 
 



 17 

Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 5. 

For  2217 /8.9,/10,300 smgsmkma === ν  
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Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 6. 

For  2217 /8.9,/10,400 smgsmkma === ν  
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 Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 7. 

For  2217 /8.9,/10,500 smgsmkma === ν  
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Graph showing the plot of Time Scale against the Order of Deformation  
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CASE 8. 

For  2217 /8.9,/10,1000 smgsmkma === ν  
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Graph showing the plot of Time Scale against the Order of Deformation  
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1.1 Checking for Spherical of different planets 

 

We know clearly that objects of radius of order km210  or less will not necessarily be at 

all spherical 

 

SUN 

       

Period: 0.00days    Rotation: 30days 

Distance: 1.015au    Diameter: 1392000km 

km
kmdiameter

TheRadius 686000
2

1392000

2
===  

 

MERCURY 

        

Period: 87.97days    Rotation: 58.65days 

Distance: 0.642au    Diameter: 4878km 

km
kmdiameter

TheRadius 2439
2

4878

2
===  

 

VENUS 

       

Period: 224.70days    Rotation: 243.01days 

Distance: 1.252au    Diameter: 12104km 
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km
kmdiameter

TheRadius 6052
2

12104

2
===  

 

MARS 

       

Period: 1.88yrs    Rotation: 24.62hrs 

Distance: 2.095au    Diameter: 6787km 

km
kmdiameter

TheRadius 5.3393
2

6787

2
===  

 

JUPITER 

      

Period: 11.86YRS    Rotation: 9.84hrs 

Distance: 4.68au    Diameter: 142980km 

km
kmdiameter

TheRadius 71490
2

142980

2
===  

 

SATURN 

      

Period: 29.46yrs    Rotation: 10.66hrs 

Distance: 9.55au    Diameter: 120540km 

km
kmdiameter

TheRadius 60270
2

120540

2
===  
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URANUS 

       

Period: 84.01yrs    Rotation: 17.23hrs 

Distance: 18.829au    Diameter: 51200km 

km
kmdiameter

TheRadius 25600
2

51200

2
===  

 

NEPTUNE 

       

Period: 164.79yrs    Rotation: 16.10hrs 

Distance: 29.321au    Diameter: 49530km 

km
kmdiameter

TheRadius 24765
2

49530

2
===  

 

PLUTO 

       

Period: 247.69yrs    Rotation: 153.28hrs 

Distance: 28.932au    Diameter: 2300km 

km
kmdiameter

TheRadius 1150
2

2300

2
===  
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1.2 Calculating different time scale τ  for the planetary objects, 

                              

 

                                 
( )

gan

n ντ 112 2 ++=  

When the kinematic viscosity is sm /10 220 , n = 2 and radius (r) = a 

 

PLANETS     n  ( )kmr  ( )sm /2ν  ( )2/ smg    ( )yearsτ  

SUN    2 686000    2010  9.8 3105.4 ×  

MERCURY    2  2439    2010   9.8 6103.1 ×  

VENUS    2 6052    2010  9.8 5101.5 ×  

MARS    2 3393.5    2010  9.8 6101.9 ×  

JUPITER    2  71490    2010  9.8 4103.4 ×  

SATURN    2 60270    2010  9.8  4101.5 ×  

URANUS    2  25600    2010  9.8 5102.1 ×  

NEPTUNE    2  24765    2010  9.8  5102.1 ×  

PLUTO    2 1150    2010  9.8 6107.2 ×  
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CHAPTER TWO 

 

2.  CONCLUSION 

The effects of gravity are completely dominant for bodies of radii larger than a few 

hundred kilometers, which even if they were severely damaged would return closely to 

spherical form in times of the order  years63 1010 − ;nevertheless,bumps and pits of 

heights typically of order 10km can be a permanent features. 
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2.1  NOTATIONS 

 

LLLLLC Wave (or phase) velocity 

LLLLLD Diameter 

LLLLLF Force 

LLLLLM Mass 

( ) LLLLLqQ Discharge 

( ) LLLLLrR Radius, also the universal gas constant 

LLLLLZYX ,, Volume of body force (gravity) along OX, OY, OZ, respectively. 

LLLLLd Depth (wave theory) 

LLLLLg Gravity acceleration 

LLLLLn Element 

LLLLLTt, Time 

LLLLLwvu ,, Components of the velocity vector along the three coordinate axes OX, 

OY and OZ respectively. 

LLLLLzyx ,, Coordinates of a point along OX, OY and OZ respectively 

LLLLLµ Coefficient of viscosity also scale, vertical 

LLLLLν Kinematic coefficient of viscosity 

LLLLLρ Density 

LLLLLσ  Normal stress 

LLLLLτ Time scale also time interval or shearing stress 

LLLLLφ Potential function 

               φgradv −=  

                








∂
∂

∂
∂=

∂
∂−=

zy
v

x
u

φφφ
,,  

LLLLL
*∂

∂A
Partial derivative (with respect to *) 

LLLLLnς Surface-harmonic of integral order n 
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LLLLLns Surface harmonic 

LLLLLΩ Gravitational-potential 

LLLLLγ Gravitational constant 

LLLLLP Pressure 

LLLLLT Kinetic energy 

LLLLLV Potential energy 

LLLLLF Total dissipation 
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