2-2012

Borderplex Panel Evidence on Restaurant Price and Exchange Rate Dynamics

Thomas M. Fullerton Jr.
University of Texas at El Paso, tomf@utep.edu

André Varella Mollick
University of Texas - Pan American, amollick@utpa.edu

Follow this and additional works at: https://digitalcommons.utep.edu/border_region
Part of the Regional Economics Commons
Comments:
Technical Report TX12-1
A revised version of this study is forthcoming in Applied Economics.

Recommended Citation
https://digitalcommons.utep.edu/border_region/12

This Article is brought to you for free and open access by the Department of Economics and Finance at DigitalCommons@UTEP. It has been accepted for inclusion in Border Region Modeling Project by an authorized administrator of DigitalCommons@UTEP. For more information, please contact lweber@utep.edu.
Borderplex Panel Evidence on Restaurant Price and Exchange Rate Dynamics
Borderplex Panel Evidence on Restaurant Price and Exchange Rate Dynamics

Technical Report TX12-1
UTEP Border Region Modeling Project
UTEP Border Region Econometric Modeling Project

Corporate and Institutional Sponsors:

Hunt Communities
El Paso Water Utilities
JPMorgan Chase Bank of El Paso
Texas Department of Transportation
Universidad Autónoma de Ciudad Juárez
UTEP College of Business Administration
UTEP Department of Economics & Finance
UACJ Instituto de Ciencias Sociales y Administración

Special thanks are given to the corporate and institutional sponsors of the UTEP Border Region Econometric Modeling Project. In particular, El Paso Electric Company, Hunt Communities, and The University of Texas at El Paso have invested substantial time, effort, and financial resources in making this research project possible.

Continued maintenance and expansion of the UTEP business modeling system requires ongoing financial support. For information on potential means for supporting this research effort, please contact Border Region Modeling Project - CBA 236, Department of Economics & Finance, 500 West University, El Paso, TX 79968-0543.
Borderplex Panel Evidence on Restaurant Price and Exchange Rate Dynamics*

Thomas M. Fullerton, Jr. and André Varella Mollick

Abstract
This paper examines prices for 32 identical menu items sold by restaurant franchises operating on both sides of the border between El Paso in the U.S. and Ciudad Juárez in Mexico from July 1997 to June 2008. The relationship between real exchange rate (RER) volatility and the degree of price convergence is examined within a panel data context. The city-pair and goods selected provide a unique experiment in which distance, tradability, and industry considerations are set aside and the extent of RER volatility is the only factor to influence price convergence. We find non-monotonic relationships between mean reversion and RER volatility: very fast adjustments for both low and high volatility panels of goods (between 1 and 2 months) and slower half-lives (between 3 and 4 months) at moderate levels of uncertainty. These figures are, however, substantially smaller than the 6 or 7 months reported in previous research for general U.S.-Mexico goods, suggesting the very strong price convergence observed along the U.S.-Mexican border.

Keywords

JEL Categories
F31, Foreign Exchange; M21, Business Economics.

Affiliations
Thomas M. Fullerton, Jr., JPMorgan Chase Professor, University of Texas at El Paso, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0543, USA. Email: tomf@utep.edu; Telephone: 1-915-747-7747; Facsimile: 1-915-747-6282.
André Varella Mollick, Professor, Department of Economics & Finance, University of Texas - Pan American, 1201 West University Drive, Edinburg, TX 78539-2999, USA. Email: amollick@utpa.edu; Telephone: 1-956-665-2494; Facsimile: 1-956-381-2867.

Acknowledgements
Financial support for this research was provided by Hunt Companies of El Paso, Hunt Communities, El Paso Water Utilities, Texas Department of Transportation, El Paso Electric Company, JPMorgan Chase Bank of El Paso, and a UTEP College of Business Administration Faculty Research Grant. Helpful comments were provided by an anonymous referee. Econometric research assistance was provided by Enedina Licerio, Teodulo Soto, and Tibebe Assefa.

* - A revised version of this study is forthcoming in Applied Economics.

Introduction
This study examines the small differences in the prices of identical goods (converted to the same currency) when locations are separated only by national boundaries such as those observed for major cities across the U.S.-Mexico border. Cross-border menu data for 32 food items over a monthly 11-year time span for established restaurant franchises located on both sides of the border between El Paso, Texas, and Ciudad Juárez, Mexico are analyzed. This geographical area has been looked at recently by Fullerton et al. (2009b) in an effort that builds upon evidence reported in earlier empirical studies (Fullerton and Coronado, 2001; Blanco-González and Fullerton, 2006). One common component in each of these previous studies is that the goods are analyzed individually within a time series context. We suggest that the deployment of panel data techniques may allow joint exploitation of the information content of all the goods as a means for increasing sample power. Panel estimators may also permit general conjectures to be made with respect to the various restaurant products included in the sample.

There are several factors that make the United States - Mexico border region an interesting location for investigating price differentials of identical goods. First, distance is not an issue because border cities are geographically adjacent to each other and dual currency payments occur on both sides of the international boundary (Fullerton et al., 2009b). Given that, the principal source of price divergence is likely to
come from currency fluctuations. Along those lines, Engel and Rogers (2001) document violations of the law of one price across cities in the United States and the role that distance plays. Second, substantial migration and economic growth occur along the border with Mexico. That raises the question of whether fast growing cities in one side of the border have measurable spillover effects on sister cities located on the opposite side (Hanson, 2001; Mollick et al., 2006; Fullerton et al., 2007). If so, closer integration resulting from employment and output flows across the border should help reduce the duration and magnitude of any deviations from parity resulting from spot exchange rate changes.

A third reason that the border provides an interesting setting for the analysis of price differentials is that the examination of exchange rate volatility in an environment in which distance is not a factor provides important methodological advantages. Neither tradability nor industry considerations are important issues in this case. The restaurant menu items are all similar in the degree of tradable versus non-tradable components (Kim, 2004; Crucini and Shintani, 2008). Also, the analysis is for a single sector and differs from the industry-based approach required by Yan et al. (2007). These factors combine to make the unique data sample of goods prices from the two cities particularly interesting because they are separated only by a national boundary. That may permit greater isolation of the exchange rate volatility forces on the degree of mean reversion to price convergence.

The PPP hypothesis suggests that the nominal exchange rate (s) depends on relative price levels (p-p*). While a long-run relationship must exist between these series, several factors preclude the relationship from always holding exactly. They include price measurement errors, sample size constraints, systematic trends in traded and/or non-traded goods sectors, barriers to trade, and transaction costs (Taylor and Sarno, 1998; Taylor and Taylor, 2004). Structural change and non-linearity provide additional possibilities of why domestic and foreign prices may not converge to PPP-based rules (Lothian and Taylor, 2008; Sheng and Xu, 2011). Imbs et al. (2005) rely on the heterogeneity of goods to explain the particularly long deviations from PPP. The measure of persistence typically employed in these studies is the half-life, defined as the number of periods required for the deviation from PPP to be reduced by one half, all other things equal.

Rogoff (1996) argues that deviations from PPP can be attributed to transitory disturbances, such as financial and monetary shocks. These shocks put pressure on nominal exchange rates and may induce real exchange rate variability under nominal price stickiness. While PPP is compatible with pronounced short-term volatility in real exchange rates, it also implies that deviations should be transitory during periods when wages and prices are sticky. It is an open question of how short the time to converge is for goods transacted in border-city pairs. Blanco-González and Fullerton (2006), employing data for July 1997 to December 2002, report relatively quick adjustments for the relative prices for eight separate menu items (with half-lives of six goods varying between 0.7 months and 3.1 months, one with seven months, and one with 19 months). The larger and more extensive sample in Fullerton et al. (2009b) with 32 goods for July 1997 to June 2008 confirms these findings and reports small half-lives in general, with one good, only, requiring about 41 months for convergence.

The estimates in those studies suggest that deviation half-lives for goods traded in city pairs along the border between Mexico and the United States are substantially shorter than those for other currencies against the dollar. The “remarkable consensus” noted in Rogoff (1996) indicates that PPP half-life deviations generally last for between 3 and 5 years for long-run prices quoted for industrial economy currencies. In contrast, Cheung and Lai (2000) employ panels of developing country data that yield half-life estimates of less than three years. With notable oil price effects at play on the real exchange rate in Norway, Akram (2006) reports PPP convergence between 1970 and 2003 to be relatively rapid, with a deviation half-life from parity of approximately 1.5 years.

Neither economic theory nor prior empirical work provide a straightforward answer to the question of whether RER volatility will lead mean reversion to PPP levels to be faster or slower (Taylor and McMahon, 1988; Lothian and Taylor, 1997; Sarno and Taylor, 2002). The reason is that higher variance may have positive effects as in a mean-variance framework. Some panel based studies touch upon volatility and the degree of convergence to PPP levels. Imbs et al. (2003), for example, have shown for 13 industrial countries over 1975-1996 that half-lives vary positively with the degree of nominal exchange rate volatility. Volatility, by reflecting the extent of uncertainty, limits arbitrage opportunities and mean-reversion to PPP. The analysis estimates half-lives as influenced by distance, exchange rate volatility, the tradability of the goods, and the degree of competition. Distance to the U.S. and exchange rate volatility turn out to be important determinants of half-lives. Alba and Papell (2007) also document for a panel of 84 countries over
January 1976 to December 2002 that the evidence of PPP is stronger for countries characterized by moderate exchange rate volatility. Papell (2006) finds support for long-run PPP over the post-1973 floating exchange rate period, with the results influenced by international business cycles as well as structural change.

Chortareas and Kapetanios (2009) report panel results that indicate that half-lives are substantially shorter than those of the prevailing consensus. In addition to larger numbers of observations, Caporale and Cerrato (2006) list various advantages of a panel approach relative to time series data. The latter include a reduced likelihood of multicollinearity when explanatory variables vary in time and space. Panel data also tend to be more informative about long-run behavior than time series. Additionally, panel data sets may alleviate spurious regression problems. Wagner (2008) discusses potential advantages associated with panel approaches and reports empirical findings that run counter to the PPP hypothesis using monthly European currency data from 1980 through 2004.

Mollick (2009) provides evidence that stronger adjustment to PPP levels is observed in currency panels during economic crises. Crises, such as the currency crisis of mid-1997 in Asian countries, may induce countries to implement policy reforms, thus accelerating the adjustment between nominal exchange rates and prices. Using Mexican and U.S. price levels at various levels of aggregation over a 13-year period, Robertson et al. (2009) highlight the importance of testing PPP with the most disaggregated data possible, preferably at the individual goods level. Although tradable and non-tradable goods show little distinction in convergence rates, their estimated half-lives indicate rapid convergence especially during the December 1994 Mexican peso crisis.

Employing the sample of 32 identical goods sold on both sides of the U.S.-Mexican border, a two-step panel data method is implemented in this paper in order to gain statistical power. First, with the half-lives calculated individually for each good, an idea of which goods have faster or slower price convergence is obtained. Second, panels of goods in which price convergence is relatively fast and relatively slow are formed. Next, panels of goods in which there is more volatility or less volatility, defined as the ratio between each good’s standard deviation to the mean, are also formed.

This paper adopts a disaggregated goods approach to examine a city-pair sample for a set of goods that provides a unique experiment in which distance, tradability, and industry considerations are set aside and the extent of RER variability is the only factor to influence price convergence in the two markets. Nominal exchange rates and prices transacted in both currencies form the sample for 32 goods sold in restaurant franchises that straddle the international border between El Paso, Texas and Ciudad Juárez, Mexico. Monthly observations for these variables over the July 1997 to June 2008 period are utilized to explore the relationship between mean reversion and RER volatility and the degree of price convergence in a panel data context. Empirical results can be briefly summarized as follows. The relationship between mean reversion and RER volatility for these goods traded along the border is found to be non-monotonic: low deviations from the law of one price are found under both low and high volatility panels (between 1 and 2 months); and more pronounced deviations are observed at moderate levels of uncertainty (between 3 and 4 months).

Subsequent sections are as follows. Section 2 describes the empirical methodologies. Section 3 summarizes the data employed. Section 4 contains principal findings. Section 5 concludes the paper and discusses possible future extensions.

Analytical Framework and Methodology

While Hausmann et al. (2006) argue that real exchange rates of developing countries are approximately three times more volatile than the RER of industrial economies, less work is available on sample variability and convergence to the law of one price itself. If there is information available regarding RER volatility, will mean reversion be faster or slower? Economic theory does not provide a straightforward answer to this question because higher variance may have positive effects as in a mean-variance framework. In the present context, the question becomes whether high or low variance implies higher or lower speed of convergence to theoretical levels implied by arbitrage conditions in the goods market.

One way to quantify this issue in the time series domain is to use the half-lives of real exchange rates. Empirical tests of long-run PPP are based on deviations from parity as:

\[q_n = \frac{s_n - p_n + p^*_n}{p^*_n} \]

where: \(s \) is the logarithm of the nominal exchange rate (domestic price of foreign currency), \(p \) is the logarithm of domestic prices, \(p^* \) is the logarithm of foreign prices, and \(i \) indexes the goods(Taylor, 1988; Lothian and Taylor,
deterministic components; \(q_{it} \) is the real exchange rate for

where the autoregressive parameter \(a_1 \) lies in the interval \([-1, 1]\). The half-life (HL) measures the time it takes for a deviation from PPP to dissipate by 50 percent and is calculated by \(HL = ABS \left[\ln \left(\frac{0.5}{a_1} \right) \right] \). Survey papers on long-horizon data, such as: Froot and Rogoff (1995) and Rogoff (1996), report a consensus HL of a shock to the real exchange rate as lasting between 3 and 5 years. This slow speed of reversion to PPP is difficult to reconcile with observed large short-run volatility of real exchange rates.

A problem with (3), however, is the presence of serial correlation. The AR (p) model may be used to remedy this, incorporating lagged first-differences to account for serial correlation. The AR (p) model, for \(t = 1, \ldots, T \), with a fixed effects term for goods, becomes:

\[
q_{it} = \alpha_0 + \alpha_1 q_{it-1} + \sum_{j=1}^{k} \beta_j \Delta q_{it-j} + \nu_{it} \quad (4),
\]

where: \(\alpha_0 \) captures a fixed effects term for goods, and the general-to-specific lag selection procedure suggested by Ng and Perron (1995) is used, with maximum lag set at \(k = 6 \) and 5 percent as the significance criterion for the last \(k \) term. For the HL calculation, the standard measure for AR (1) processes is \(HL = \ln \left(\frac{0.5}{\alpha_1} \right) \). Allowing, however, for the more flexible dynamics proposed by Rossi (2005) requires employment of a correction factor, \(b(1) = 1 - \sum_{j=1}^{k} \beta_j \), in the ADF-type regression above. The b (1) correction factor enters the calculation of the HL as: \(h^* = \max \{ \ln (0.5 b(1)) / \ln (\hat{\alpha}_1), 0 \} \), which differs from \(h = \max \{ \ln (0.5) / \ln (\hat{\alpha}_1), 0 \} \). The 95 percent confidence intervals for \(h^* \) (respectively, \(h^* \)) are calculated using a delta method approximation:

\[
h^* \pm 1.96\sigma_{h^*} \left\{ \ln (0.5) / \hat{\beta}_1 \right\} \left(\ln (\hat{\alpha}_1) \right)^{-1/2},
\]

where \(\sigma_{h^*} \) is the estimate of the standard deviation of \(\alpha_1 \). Since the HL cannot be negative, a lower bound of zero is imposed.

After classifying panels by volatility categories, panel data versions of (4) are estimated using the feasible generalized least squares (FGLS) fixed-effects model. Because the residuals are not cross-section heteroscedastic and contemporaneously correlated, a variance-covariance matrix with no-weights for robust computation of standard errors is employed. Heterogeneity is taken into account via a common effects correction of the panel estimates (Imbs et al., 2005). The latter is carried out by adding to (4) cross-sectional averages to control for common shocks in the errors across all goods included in the panel:

\[
q_{it} = \alpha_0 + \alpha_1 q_{it-1} + \sum_{j=1}^{k} \beta_j \Delta q_{it-j} + \sum_{h=0}^{\Delta} \phi_h \Delta q_{i-h} + \nu_{it} \quad (5),
\]

where \(q_{i-h} \) is the cross-sectional average of \(q_{it} \). The cross-sectional averages \(q^* \) control for common shocks in the errors. The common rationale for using the panel unit root tests is increased power through both time series and cross-sectional dimensions.
Data and Panels

Table 1 reports descriptive statistics for all 32 goods in the sample, described in detail in Fullerton et al. (2009b). The real exchange rate is defined as shown in (1) and the means, under this approach, can be very close to zero. Examples include the McDonald’s Quarter Pounder with Cheese at 0.011 and the McDonald’s Small Fries at 0.010. This is different from the approach used in other studies that rely on deviations from the law of one price, written as \(DLOP = 100(\frac{p^* - p}{p}) \). The latter approach captures the same information as the RER shown in (1). For the 32 good sample used here, the correlation coefficients between the RER of the series measured as in (1) and the DLOP utilized elsewhere (Asplund and Friberg, 2001; Fullerton et al., 2009a) are very close to one. The lowest correlation coefficients are 0.961 for MCD5 and fall between 0.971 and 0.973 for the goods CC3, CC4, and CC5.

The standard deviations (SD) of the RER defined using (1), however, can be fairly large. Given that, the SD/mean ratio is used to classify each good as high, medium, or low volatility. In the last column Table 1, the symbols H, L, M stands for High, Low, and Medium, respectively. High volatility is defined for ratios where \(|SD/\text{Mean}| \geq 1.5\); Medium volatility is defined for \(1 < |SD/\text{Mean}| < 1.5\); and Low volatility is for \(|SD/\text{Mean}| \leq 1\). This partition yields a fairly symmetric distribution of goods across the 3 classifications with 12 goods in the High volatility category; 12 in the Low volatility category; and 8 in the Medium volatility category.

Of course, those volatility classifications may be regarded as somewhat arbitrary. Accordingly, the sample was also partitioned using an alternative alignment of the \(|SD/\text{Mean}|\) ratio categories. The alternative panels were defined with the low RER volatility panel as \(|SD/\text{Mean}| \leq 0.5\) and the medium RER volatility panel as \(0.5 < |SD/\text{Mean}| < 1.5\). Under those classifications, the low volatility panel included 7 goods and the medium RER volatility panel included those 13 goods. Under this formation of panels, the results on the speed of convergence in the half-lives are qualitatively the same as those using the alignment discussed above. Some of those results are reported below and the full set of alternative panel results is available upon request from the authors.

Results

Individual Estimates of HLs

Prior to panel estimation, unit root tests are conducted on all of the real exchange rates for each good. These results are available upon request. As in prior studies, autoregressive models provide the alternative hypothesis for the unit root test procedure (Froot and Rogoff, 1995). In order to verify the appropriate number of additional regressors to include such that the final estimation is devoid of serial correlation problems as in Murray and Papell (2002), extensive lag searches are conducted with a maximum of 6 lags of differenced terms.

When the deterministic trend is included as in equation (2), the half life decreases for 24 of the menu items, increases for 6 goods, and remains the same for 2 goods. In some cases, the reduction is substantial. Examples include reductions from about 16 months to slightly over 4 months for Wendy’s Combo #2, and from approximately 9 months to about 2.5 months for Wendy’s Spicy Chicken sandwich. Overall, the implied half-lives are short, with no more than 5 months when the time trend is included and 16 months or less without the time trend. In the last column of Table 1 we report “Yes” or “No” for the statistical significance of the trend in individual regressions. The sum of “Yes” counts for significant time trend coefficients in individual AR (p)-type RER regressions in (4) yields 15 out of a total of 32 goods. This suggests that in half of the goods some sort of differential productivity growth between tradables and non-tradables seems to exist (Obstfeld, 1993).

Panel Half-Lives

Panel unit root tests are also performed over the whole set of menu items in Table 2. In all cases, standard panel unit root tests for real exchange rates - such as the LLC test for a common AR structure and the IPS test for different AR coefficients - reject the unit root in levels. In a panel data context, all of the RERs are stationary, which makes them suitable for empirical representation by stationary AR processes.

Specification tests were conducted to decide between fixed effects or random effects. The null that the random effects model was true was rejected in all cases and for all subsamples. We will report both models for comparison purposes but will
be discussing in more detail the estimates of FE under robust standard errors. Table 3 contains the half-life estimates for the largest pool of 32 goods. Four sets of estimates are provided. Fixed effects and random effects model outcomes are shown in columns (1) and (2), while robust fixed effects and random effects models appear in columns (3) and (4) when robust standard errors are allowed for in the variance-covariance matrix. The inclusion of time trends was also employed in some specifications. Finally, also reported are estimates of equation (5) proposed by Imbs et al. (2005) in which cross-sectional averages control for common shocks in the errors.

Based on the FE model with robust standard errors in column (3), the estimated α_1 in Table 3 varies from 0.767 (without the trend) to 0.764 (with the trend), implying mean reversion of about 2.6 months in both cases. The introduction of panel averages reduces the corresponding half-lives from 2.15 to 2.1 months (with trend). Implying very rapid adjustment to equilibrium, the results in Table 3 can be taken as benchmarks upon which to compare subsequent panels. Yet a couple of conclusions emerge: i) because of the very large number of panel observations (over 4,000), the time trend coefficient does not have much impact on the half-life; and ii) the cross-sectional averages reduce more significantly the estimates of the half-life.

We next examine the link between (sample) RER volatility and speed of mean reversion or convergence to law of one price. In order to check whether volatility plays a role in the process of convergence to PPP levels, additional panels are assembled to allow comparing high volatility goods to low volatility goods. In Table 4, for highly volatile q series (those in which the ratio of the standard deviation with respect to the mean is greater than or equal to 1.5), the robust estimators imply half-lives of 2.19 or 2.12 months and 1.90 or 1.29 when allowing for cross-sectional averages. Compared to the benchmark results in Table 3 of a half-life of about 2 months, the sub-sample of high volatility goods in the upper panel of Table 5 implies lower estimates of half-lives. This suggests that a lower half-life (faster convergence) is associated with more sample RER volatility.

In the lower part of Table 4 for low volatility q series (those in which the standard deviation ratio with respect to the mean is less than 1), the robust estimators imply half-lives of 2.21 or 2.06 in the upper part of the table, and only 1.61 or 1.59 months in the lower part of the table after allowing for cross-sectional averages. As before, this suggests that less volatility also implies a quicker half-life compared to the full sample of all 32 goods. Lower deviations from the real exchange rate mean are thus also associated with a rapid pace of price convergence (i.e., HL of 2 months or even lower).

In Table 5, for goods with medium volatility (those in which the standard deviation ratio with respect to the mean lies between 0.5 and 1), the robust estimators imply half-lives of 3.95 or 3.93 months in the upper part of the table. In the lower half of Table 5, the robust estimators imply half-lives of 3.31 or 3.13 months after allowing for cross-sectional averages. Contrary to the panels with high and low volatility menu items, higher half-lives of greater than 3 months are observed in all specifications for goods with moderate RER volatility. This suggests that moderate levels of uncertainty are associated with lower degrees of mean reversion and longer half-lives. In other words, the relationship between mean reversion and exchange rate volatility for franchise restaurant goods sold along the U.S.-Mexico border is non-monotonic: lower duration when deviations from the law of one price occur under low- and high-levels of uncertainty and lengthier deviations observed for moderate levels of uncertainty.

Changing the definition of volatility used for panel construction yields highly similar results (not reported here). For low volatility q series (alternatively defined as those in which $|SD/\text{mean}| \leq 0.5$), the robust estimators imply half-lives of 2.15 or 1.27 months, and very low 1.03 or 0.89 month half-lives when allowing for cross-sectional averages. As before, this suggests that less volatility implies more quickly dissipating deviations from RER equilibria. For goods with medium volatility (those for which $0.5 \leq |SD/\text{mean}| \leq 1.5$), the robust estimators imply half-lives of 3.02 or 2.31 months, and 2.60 or 2.14 months after allowing for cross-sectional averages. This confirms the previous findings for the panels above where moderate levels of uncertainty are associated with lower degree of mean reversion (longer half-lives).

Conclusion

Recent research in Berger et al. (2009) investigates potential determinants of volatility in foreign exchange markets using information flows associated with trading activities. While very high frequency data are not equally available for goods and services markets, it is interesting to explore whether sample volatility implies faster or slower tendency to convergence to the law of one price. Robertson et al. (2009) document, for example, rapid price convergence for U.S.-Mexico goods during the Mexican peso crisis.
This paper builds on this idea and investigates whether volatility can help explain the persistence of deviations from long-run PPP equilibrium in border-city pairs. In the geographic context of this research, and within the particular sample of this study, neither distance, nor industry (pricing) considerations, nor tradability play roles in the process. Instead, homogeneous goods are compared and the only varying factors are the respective sets of prices in the two markets and nominal exchange rates.

Nominal exchange rates and prices in both currencies of 32 identical goods transacted in restaurants along the U.S.-Mexico border in the city-pair of El Paso and Ciudad Juárez are examined over the July 1997 to June 2008 period. We find non-monotonic relationships: Deviations from the law of one price of small duration are found under both low and high volatility panels (between 1 and 2 months). Longer lasting deviations are observed at moderate levels of uncertainty (between 3 and 4 months). These figures are all, however, substantially smaller than the 6 or 7 months reported by Robertson et al. (2009) for general U.S.-Mexico goods, which suggest very strong price convergence along the U.S.-Mexican border.

References

Table 1. Real Exchange Rate (RER) descriptive statistics.

<table>
<thead>
<tr>
<th>Items</th>
<th>Mean</th>
<th>Stand. Dev. (SD)</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>SD / Mean</th>
<th>RER Volatility</th>
<th>Sig. time trend coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burger King Whopper</td>
<td>-0.089</td>
<td>0.147</td>
<td>-0.881</td>
<td>5.338</td>
<td>-1.652</td>
<td>H</td>
<td>No</td>
</tr>
<tr>
<td>Burger King Whopper Value Meal</td>
<td>-0.110</td>
<td>0.090</td>
<td>0.097</td>
<td>2.145</td>
<td>-0.824</td>
<td>L</td>
<td>Yes</td>
</tr>
<tr>
<td>Burger King Double Whopper</td>
<td>0.103</td>
<td>0.098</td>
<td>0.772</td>
<td>3.393</td>
<td>0.959</td>
<td>L</td>
<td>Yes</td>
</tr>
<tr>
<td>Burger King Large Fries</td>
<td>0.117</td>
<td>0.154</td>
<td>0.275</td>
<td>3.269</td>
<td>1.310</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>Church’s Chicken 2 Pc. Dark Combo</td>
<td>0.086</td>
<td>0.257</td>
<td>0.039</td>
<td>2.453</td>
<td>2.998</td>
<td>H</td>
<td>No</td>
</tr>
<tr>
<td>Church’s Chicken 3 Pc. Mixed Combo</td>
<td>0.180</td>
<td>0.163</td>
<td>-0.394</td>
<td>3.283</td>
<td>0.904</td>
<td>L</td>
<td>Yes</td>
</tr>
<tr>
<td>Church’s Chicken 1 Dozen Biscuits</td>
<td>-0.330</td>
<td>0.309</td>
<td>2.139</td>
<td>8.165</td>
<td>-0.936</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Church’s Chicken Large Cole Slaw</td>
<td>0.292</td>
<td>0.309</td>
<td>0.002</td>
<td>3.262</td>
<td>1.057</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>Church’s Chicken Lg. Mash Potatoes</td>
<td>0.280</td>
<td>0.315</td>
<td>0.117</td>
<td>3.029</td>
<td>1.127</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>KFC Large Cole Slaw</td>
<td>0.385</td>
<td>0.137</td>
<td>-0.260</td>
<td>5.227</td>
<td>0.356</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>KFC Large Mashed Potato</td>
<td>0.388</td>
<td>0.139</td>
<td>-0.279</td>
<td>5.082</td>
<td>0.357</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>McDonald’s Big Mac Sandwich</td>
<td>-0.057</td>
<td>0.199</td>
<td>-1.860</td>
<td>7.930</td>
<td>-3.481</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>McDonald’s Qtr. Pounder w/Cheese</td>
<td>0.011</td>
<td>0.165</td>
<td>0.713</td>
<td>13.86</td>
<td>15.510</td>
<td>M</td>
<td>No</td>
</tr>
<tr>
<td>McDonald’s Large Fries</td>
<td>0.026</td>
<td>0.154</td>
<td>0.822</td>
<td>3.509</td>
<td>5.803</td>
<td>H</td>
<td>No</td>
</tr>
<tr>
<td>McDonald’s Small Fries</td>
<td>0.010</td>
<td>0.177</td>
<td>-0.140</td>
<td>3.332</td>
<td>18.119</td>
<td>H</td>
<td>No</td>
</tr>
<tr>
<td>McDonald’s Cheeseburger</td>
<td>-0.058</td>
<td>0.213</td>
<td>1.729</td>
<td>9.987</td>
<td>-3.651</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Peter Piper Pizza XL Werx Pizza</td>
<td>0.467</td>
<td>0.129</td>
<td>0.648</td>
<td>3.043</td>
<td>1.318</td>
<td>M</td>
<td>No</td>
</tr>
<tr>
<td>Peter Piper Pizza Large 1- item Pizza</td>
<td>0.424</td>
<td>0.103</td>
<td>0.864</td>
<td>3.532</td>
<td>-2.263</td>
<td>H</td>
<td>No</td>
</tr>
<tr>
<td>Peter Piper Pizza XL 1-topping Pizza</td>
<td>0.461</td>
<td>0.129</td>
<td>0.299</td>
<td>3.478</td>
<td>-7.762</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Pizza Hut Pizza Supreme Medium</td>
<td>0.414</td>
<td>0.100</td>
<td>0.429</td>
<td>3.508</td>
<td>0.275</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Pizza Hut Pizza Supreme Large</td>
<td>0.360</td>
<td>0.159</td>
<td>0.066</td>
<td>2.706</td>
<td>0.244</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Pizza Hut Meat Lover’s Medium</td>
<td>0.283</td>
<td>0.164</td>
<td>0.261</td>
<td>2.639</td>
<td>0.280</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Pizza Hut Meat Lover’s Large</td>
<td>0.056</td>
<td>0.074</td>
<td>-0.565</td>
<td>3.722</td>
<td>0.242</td>
<td>L</td>
<td>Yes</td>
</tr>
<tr>
<td>Pizza Hut Extra Topping for Medium</td>
<td>-0.041</td>
<td>0.094</td>
<td>-0.271</td>
<td>2.797</td>
<td>0.443</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Pizza Hut Extra Topping for Large</td>
<td>-0.011</td>
<td>0.087</td>
<td>-0.964</td>
<td>5.242</td>
<td>0.581</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Taco Tote Charbroiled Potato</td>
<td>0.131</td>
<td>0.192</td>
<td>0.228</td>
<td>3.886</td>
<td>1.461</td>
<td>M</td>
<td>No</td>
</tr>
<tr>
<td>Taco Tote Frijoles Charros</td>
<td>0.141</td>
<td>0.172</td>
<td>0.310</td>
<td>4.354</td>
<td>1.214</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>Wendy’s Baked Potato</td>
<td>-0.098</td>
<td>0.132</td>
<td>-1.074</td>
<td>5.181</td>
<td>-1.347</td>
<td>M</td>
<td>No</td>
</tr>
<tr>
<td>Wendy’s Spicy Chicken Sandwich</td>
<td>0.071</td>
<td>0.170</td>
<td>0.823</td>
<td>3.174</td>
<td>2.390</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Wendy’s Chicken Salad</td>
<td>0.091</td>
<td>0.146</td>
<td>0.875</td>
<td>2.907</td>
<td>1.594</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Wendy’s Combo #2</td>
<td>0.044</td>
<td>0.117</td>
<td>0.039</td>
<td>2.667</td>
<td>2.673</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Wendy’s Big Bacon Classic Sandwich</td>
<td>0.080</td>
<td>0.120</td>
<td>-0.093</td>
<td>5.842</td>
<td>1.494</td>
<td>M</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
H, L, and M stand for High, Low, and Medium, respectively.
RER Volatility is classified according to the SD/Mean ratio in absolute value (|SD/Mean|).
High volatility is |SD/Mean| ≥ 1.5;
Medium volatility is 1 < |SD/Mean| < 1.5;
Low volatility is |SD/Mean| ≤ 1.
As reported in the last column, the total number of “Yes” counts for significant time trend coefficients in individual RER AR(p) regressions is 15 out of 32 total goods.
<table>
<thead>
<tr>
<th>Levin-Lin-Chu Test</th>
<th>T stat</th>
<th>N</th>
<th>T</th>
<th>S_N</th>
<th>μ_m</th>
<th>σ_m</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Trend</td>
<td>-17.5</td>
<td>32</td>
<td>4178</td>
<td>1.02</td>
<td>-0.52</td>
<td>0.769</td>
<td>-9.20</td>
</tr>
<tr>
<td>Trend</td>
<td>-22.1</td>
<td>32</td>
<td>4178</td>
<td>1.02</td>
<td>-0.56</td>
<td>0.677</td>
<td>-12.8</td>
</tr>
<tr>
<td>Im, Pesaran and Shin test</td>
<td>T-barNT</td>
<td>Z</td>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Trend</td>
<td>-3.567</td>
<td>-13.401</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trend</td>
<td>-4.189</td>
<td>-14.704</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated half-lives</td>
<td>Levin, Lin & Chu</td>
<td>Im, Pesaran, and Shin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-\rho</td>
<td>Half life</td>
<td>1-\rho</td>
<td>Half life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Trend</td>
<td>-0.152</td>
<td>4.2</td>
<td>-0.314</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trend</td>
<td>-0.229</td>
<td>2.7</td>
<td>-0.236</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
In both tests, the unit root forms the null hypothesis.
Table 3. Estimated half-lives: real exchange rates – all 32 goods.

\[q_{it} = \alpha + \beta q_{it-1} + \varepsilon \]
\[q_{it} = \alpha + \beta q_{it-1} + \gamma \text{trend} + \varepsilon \]
\[q_{it} = \alpha + \beta q_{it-1} + \tau \text{avg}(q_t) + \varepsilon \]
\[q_{it} = \alpha + \beta q_{it-1} + \tau \text{avg}(q_t) + \gamma \text{trend} + \varepsilon \]

<table>
<thead>
<tr>
<th></th>
<th>FE</th>
<th>RE</th>
<th>FE (Robust)</th>
<th>RE (Robust)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>.686***</td>
<td>.740***</td>
<td>.767***</td>
<td>.899***</td>
</tr>
<tr>
<td>(\text{s.e})</td>
<td>(.011)</td>
<td>(.010)</td>
<td>(.032)</td>
<td>(.010)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.84</td>
<td>2.30</td>
<td>2.62</td>
<td>6.50</td>
</tr>
<tr>
<td>With trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>.764***</td>
<td>.898***</td>
<td>.764***</td>
<td>.898***</td>
</tr>
<tr>
<td>(\text{s.e})</td>
<td>(.010)</td>
<td>(.007)</td>
<td>(.033)</td>
<td>(.010)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>2.57</td>
<td>6.44</td>
<td>2.57</td>
<td>6.44</td>
</tr>
<tr>
<td>No trend and panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>.657***</td>
<td>.715***</td>
<td>.724***</td>
<td>.888***</td>
</tr>
<tr>
<td>(\text{s.e})</td>
<td>(.011)</td>
<td>(.010)</td>
<td>(.036)</td>
<td>(.011)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.65</td>
<td>2.07</td>
<td>2.15</td>
<td>5.89</td>
</tr>
<tr>
<td>With trend and panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>.724***</td>
<td>.889***</td>
<td>.724***</td>
<td>.889***</td>
</tr>
<tr>
<td>(\text{s.e})</td>
<td>(.010)</td>
<td>(.007)</td>
<td>(.036)</td>
<td>(.011)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>2.1</td>
<td>5.9</td>
<td>2.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Notes:
FE and RE used regressions with AR(1) disturbances.
FE(vce) and RE(vce) used GLS regression models.
Estimations with two lags were also implemented, but for three or more lags convergence was not achieved.
\(\text{avg}(q_t)\) is RER panel average as explained in equation (5) in the text.
Table 4. Estimated half-lives: real exchange rates – subsamples of high and low q volatility.

<table>
<thead>
<tr>
<th>high q volatility (SD/Mean≥ 1.5) 12 goods</th>
<th>FE</th>
<th>RE</th>
<th>FE (Robust)</th>
<th>RE (Robust)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No trend</td>
<td>.584*** (.021)</td>
<td>.603*** (.020)</td>
<td>.729*** (.065)</td>
<td>.757*** (.037)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.29</td>
<td>1.37</td>
<td>2.19</td>
<td>2.49</td>
</tr>
<tr>
<td>With trend</td>
<td>.721*** (.018)</td>
<td>.751*** (.017)</td>
<td>.721*** (.062)</td>
<td>.751*** (.039)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>2.12</td>
<td>2.42</td>
<td>2.12</td>
<td>2.42</td>
</tr>
<tr>
<td>No trend and panel average</td>
<td>.560*** (.021)</td>
<td>.579*** (.020)</td>
<td>.695*** (.059)</td>
<td>.728*** (.039)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.20</td>
<td>1.27</td>
<td>1.90</td>
<td>2.19</td>
</tr>
<tr>
<td>With trend and panel average</td>
<td>.694*** (.018)</td>
<td>.728*** (.017)</td>
<td>.694*** (.059)</td>
<td>.728*** (.040)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.90</td>
<td>2.19</td>
<td>1.29</td>
<td>2.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>low q volatility (SD/Mean≤ 1) 12 goods</th>
<th>FE</th>
<th>RE</th>
<th>FE (Robust)</th>
<th>RE (Robust)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No trend</td>
<td>.700*** (.018)</td>
<td>.806*** (.015)</td>
<td>.731*** (.023)</td>
<td>.923*** (.013)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.95</td>
<td>3.21</td>
<td>2.21</td>
<td>8.68</td>
</tr>
<tr>
<td>With trend</td>
<td>.714*** (.018)</td>
<td>.922*** (.010)</td>
<td>.714*** (.022)</td>
<td>.922*** (.013)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>2.06</td>
<td>8.55</td>
<td>2.06</td>
<td>8.56</td>
</tr>
<tr>
<td>No trend and panel average</td>
<td>.621*** (.019)</td>
<td>.758*** (.016)</td>
<td>.651*** (.032)</td>
<td>.916*** (.013)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.45</td>
<td>2.51</td>
<td>1.61</td>
<td>7.86</td>
</tr>
<tr>
<td>With trend and panel average</td>
<td>.647*** (.019)</td>
<td>.916*** (.010)</td>
<td>.648*** (.033)</td>
<td>.916*** (.013)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>1.59</td>
<td>7.87</td>
<td>1.59</td>
<td>7.87</td>
</tr>
</tbody>
</table>

Notes: FE and RE used regressions with AR (1) disturbances. FE(vce) and RE(vce) used GLS regression models. Estimations with two lags were also implemented, but for three or more lags convergence was not achieved. \(\text{avg}(q_i) \) is RER panel average as explained in equation (5) in the text.
Table 5. Estimated half-lives: real exchange rate (q) – subsample medium q volatility (0.5 < SD/Mean < 1) 8 goods.

<table>
<thead>
<tr>
<th></th>
<th>FE</th>
<th>RE</th>
<th>FE (Robust)</th>
<th>RE (Robust)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>.786***</td>
<td>.799***</td>
<td>.839***</td>
<td>.885***</td>
</tr>
<tr>
<td>(s.e)</td>
<td>(.019)</td>
<td>(.019)</td>
<td>(.035)</td>
<td>(.020)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>2.88</td>
<td>3.09</td>
<td>3.95</td>
<td>5.67</td>
</tr>
<tr>
<td>With trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>.838***</td>
<td>.884***</td>
<td>.838***</td>
<td>.884***</td>
</tr>
<tr>
<td>(s.e)</td>
<td>(.017)</td>
<td>(.015)</td>
<td>(.032)</td>
<td>(.020)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>3.93</td>
<td>5.65</td>
<td>3.93</td>
<td>5.65</td>
</tr>
<tr>
<td>No trend and panel average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>.764***</td>
<td>.774***</td>
<td>.811***</td>
<td>.868***</td>
</tr>
<tr>
<td>(s.e)</td>
<td>(.019)</td>
<td>(.019)</td>
<td>(.048)</td>
<td>(.021)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>2.58</td>
<td>2.71</td>
<td>3.31</td>
<td>4.90</td>
</tr>
<tr>
<td>With trend and panel average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>.802***</td>
<td>.863***</td>
<td>.802***</td>
<td>.863***</td>
</tr>
<tr>
<td>(s.e)</td>
<td>(.018)</td>
<td>(.015)</td>
<td>(.039)</td>
<td>(.021)</td>
</tr>
<tr>
<td>Implied half-life</td>
<td>3.13</td>
<td>4.70</td>
<td>3.13</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Notes:
FE and RE used regressions with AR(1) disturbances.
FE(vce) and RE(vce) used GLS regression models.
Estimations with two lags were also implemented, but for three or more lags convergence was not achieved.
avg(qt) is RER panel average as explained in equation (5) in the text.
The University of Texas at El Paso

Announces

Borderplex Economic Outlook: 2010-2012

UTEP is pleased to announce the 2008 edition of its primary source of border business information. Topics covered include demography, employment, personal income, retail sales, residential real estate, transportation, international commerce, and municipal water consumption. Forecasts are generated utilizing the 225-equation UTEP Border Region Econometric Model developed under the auspices of a corporate research gift from El Paso Electric Company.

The authors of this publication are UTEP JP Morgan Chase Bank Professor Tom Fullerton and UTEP Associate Economist Teodulo Soto. Dr. Fullerton holds degrees from UTEP, Iowa State University, Wharton School of Finance at the University of Pennsylvania, and University of Florida. Prior experience includes positions as Economist in the Executive Office of the Governor of Idaho, International Economist in the Latin America Service of Wharton Econometrics, and Senior Economist at the Bureau of Economic and Business Research at the University of Florida. Teodulo Soto holds a B.B.A. in Economics from UTEP and has published research on cross-border regional growth patterns.

The border business outlook for 2010 through 2012 can be purchased for $10 per copy. Please indicate to what address the report(s) should be mailed (also include telephone, fax, and email address):

Send checks made out to University of Texas at El Paso for $10 to:

Border Region Modeling Project - CBA 236
UTEP Department of Economics & Finance
500 West University Avenue
El Paso, TX 79968-0543

Request information from 915-747-7775 or amolina@utep.edu if payment in pesos is preferred.
The University of Texas at El Paso

Announces

Borderplex Long-Term Economic Trends to 2029

UTEP is pleased to announce the publication of the 2010 edition of its primary source of long-term border business outlook information. Topics covered include detailed economic projections for El Paso, Las Cruces, Ciudad Juárez, and Chihuahua City. Forecasts are generated utilizing the 225-equation UTEP Border Region Econometric Model developed under the auspices of a 12-year corporate research support program from El Paso Electric Company.

The authors of this publication are UTEP JPMorgan Chase Professor Tom Fullerton and UTEP Associate Economist Angel Molina. Dr. Fullerton holds degrees from UTEP, Iowa State University, Wharton School of Finance at the University of Pennsylvania, and University of Florida. Prior experience includes positions as Economist in the Executive Office of the Governor of Idaho, International Economist in the Latin America Service of Wharton Econometrics, and Senior Economist at the Bureau of Economic and Business Research at the University of Florida. Angel Molina holds an M.S. Economics degree from UTEP and has conducted econometric research on international bridge traffic, peso exchange rate fluctuations, and cross-border economic growth patterns.

The long-term border business outlook through 2029 can be purchased for $10 per copy. Each subscription entitles your organization to one free admission to the future UTEP Border Economic Forums. Please indicate to what address the report(s) should be mailed (also include telephone, fax, and email address):

Send checks made out to University of Texas at El Paso for $10 to:

Border Region Modeling Project - CBA 236
UTEP Department of Economics & Finance
500 West University Avenue
El Paso, TX 79968-0543

Request information at 915-747-7775 or tsoto2@miners.utep.edu if payment in pesos is preferred.
The UTEP Border Region Modeling Project & UACJ Press

Announce the Availability of

Basic Border Econometrics

The University of Texas at El Paso Border Region Modeling Project is pleased to announce Basic Border Econometrics, a publication from Universidad Autónoma de Ciudad Juárez. Editors of this new collection are Martha Patricia Barraza de Anda of the Department of Economics at Universidad Autónoma de Ciudad Juárez and Tom Fullerton of the Department of Economics & Finance at the University of Texas at El Paso.

Professor Barraza is an award winning economist who has taught at several universities in Mexico and has published in academic research journals in Mexico, Europe, and the United States. Dr. Barraza currently serves as Research Provost at UACJ. Professor Fullerton has authored econometric studies published in academic research journals of North America, Europe, South America, Asia, Africa, and Australia. Dr. Fullerton has delivered economics lectures in Canada, Colombia, Ecuador, Finland, Germany, Japan, Korea, Mexico, the United Kingdom, the United States, and Venezuela.

Border economics is a field in which many contradictory claims are often voiced, but careful empirical documentation is rarely attempted. Basic Border Econometrics is a unique collection of ten separate studies that empirically assess carefully assembled data and econometric evidence for a variety of different topics. Among the latter are peso fluctuations and cross-border retail impacts, border crime and boundary enforcement, educational attainment and border income performance, pre- and post-NAFTA retail patterns, self-employed Mexican-American earnings, maquiladora employment patterns, merchandise trade flows, and Texas border business cycles.

Contributors to the book include economic researchers from the University of Texas at El Paso, New Mexico State University, University of Texas Pan American, Texas A&M International University, El Colegio de la Frontera Norte, and the Federal Reserve Bank of Dallas. Their research interests cover a wide range of fields and provide multi-faceted angles from which to examine border economic trends and issues.

A limited number of Basic Border Econometrics can be purchased for $10 per copy. Please contact Professor Servando Pineda of Universidad Autónoma de Ciudad Juárez at spineda@uacj.mx to order copies of the book. Additional information for placing orders is also available from Professor Martha Patricia Barraza de Anda at mbarraza@uacj.mx.
Texas Western Press
Announces the Availability of

Inflationary Studies for Latin America

Texas Western Press of the University of Texas at El Paso is pleased to announce Inflationary Studies for Latin America, a joint publication with Universidad Autónoma de Ciudad Juárez. Editors of this new collection are Cuautémoc Calderón Villarreal of the Department of Economics at Universidad Autónoma de Ciudad Juárez and Tom Fullerton of the Department of Economics and Finance at the University of Texas at El Paso. The forward to this book is by Abel Beltrán del Río, President and Founder of CIEMEX-WEFA.

Professor Calderón is an award winning economist who has taught and published in Mexico, France, and the United States. Dr. Calderón spent a year as a Fulbright Scholar at the University of Texas at El Paso. Professor Fullerton has published research articles in North America, Europe, Africa, South America, and Asia. The author of several econometric forecasts regarding impacts of the Brady Initiative for Debt Relief in Latin America, Dr. Fullerton has delivered economics lectures in Canada, Colombia, Ecuador, Finland, Germany, Japan, Korea, Mexico, the United States, and Venezuela.

Inflationary Studies for Latin America can be purchased for $12.50 per copy. Please indicate to what address the book(s) should be mailed (please include telephone, fax, and email address):

__
__
__
__
__

Send checks made out to Texas Western Press for $12.50 to:

Bobbi Gonzales, Associate Director
Texas Western Press
Hertzog Building
500 West University Avenue
El Paso, TX 79968-0633

Request information from tomf@utep.edu if payment in pesos is preferred.
The University of Texas at El Paso Border Business Forecast Series:

SR00-1: Borderplex Economic Outlook: 2000-2002
SR01-1: Borderplex Long-Term Economic Trends to 2020
SR01-2: Borderplex Economic Outlook: 2001-2003
SR02-1: Borderplex Long-Term Economic Trends to 2021
SR02-2: Borderplex Economic Outlook: 2002-2004
SR03-1: Borderplex Long-Term Economic Trends to 2022
SR03-2: Borderplex Economic Outlook: 2003-2005
SR04-1: Borderplex Long-Term Economic Trends to 2023
SR05-1: Borderplex Long-Term Economic Trends to 2024
SR06-1: Borderplex Long-Term Economic Trends to 2025
SR06-2: Borderplex Economic Outlook: 2006-2008
SR07-1: Borderplex Long-Term Economic Trends to 2026
SR08-1: Borderplex Long-Term Economic Trends to 2027
SR08-2: Borderplex Economic Outlook: 2008-2010
SR09-1: Borderplex Long-Term Economic Trends to 2028
SR09-2: Borderplex Economic Outlook: 2009-2011
SR10-1: Borderplex Long-Term Economic Trends to 2029
SR10-2: Borderplex Economic Outlook: 2010-2012
SR11-1: Borderplex Economic Outlook: 2011-2013

Technical Report TX12-1 is a publication of the Border Region Modeling Project and the Department of Economics & Finance at the University of Texas at El Paso. For additional Border Region information, please visit the www.academics.utep.edu/border section of the UTEP web site.