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Abstract�In traditional statistics, we usually assume that we
know the exact probability distributions. In practice, we often
only know the probabilities with interval uncertainty.

The main emphasis on taking this uncertainty into account has
been on situations in which we know a cumulative distribution
function (cdf) with interval uncertainty. However, in some cases,
we know the probability density function (pdf) with interval
uncertainty. We show that in this situations, the exact range
of some statistical characteristics can be ef�ciently computed.
Surprisingly, for some other characteristics, similar statistical
problems which are ef�ciently solvable for interval-valued cdf
become computationally dif�cult (NP-hard) for interval-valued
pdf.

I. UNCERTAINTY IN PROBABILITY

In the traditional statistics, we usually assume that we know
the exact probability distributions.

In general, a probability distribution can be described by a
cumulative probability distribution (cdf) F (x) = Prob(t ≤ x).

A continuous probability distribution can also be described
by a probability density function (pdf) ρ(x). A discrete dis-
tribution can be similarly described by the probabilities p(x)
of individual values; however, there are distributions which
cannot be described in this way.

In practice, we usually know the probabilities only with
some uncertainty. It is therefore desirable to take this un-
certainty into account when we compute the values of the
statistical characteristics.

II. P-BOXES: THE MOST COMPUTATIONALLY DEVELOPED
APPROACH TO HANDLING UNCERTAINTY WITH WHICH

WE KNOW THE PROBABILITIES

Since the cdf corresponds to the most general case of
a probability distribution, most algorithmic efforts in taking
uncertainty into account have been directed towards the case
when our knowledge about the probability distribution is
represented by a cdf.

In the case of a cdf, uncertainty means that for every x,
instead of the exact value of F (x), we only know the interval
of possible values [F (x), F (x)].

Situation when we only know the cdf with interval uncer-
tainty [F (x), F (x)] is known as a p-box; see, e.g., [5]. For
p-boxes, there are ef�cient algorithms that compute statistical
characteristics such as ranges of moments, ranges of the cdf
for the sum x′ + x′′ of two independent random variables in
the situation when we know the p-boxes for x′ and x′′, etc.

In some cases, we have fuzzy uncertainty, i.e., for every x,
we have a fuzzy number corresponding to F (x).

III. FROM THE COMPUTATIONAL VIEWPOINT, IT IS
SUFFICIENT TO CONSIDER INTERVAL UNCERTAINTY

In the fuzzy case, to describe the corresponding uncertainty,
for each value F of the probability F (x), we describe the
degree µx(F ) to which this value is possible.

For each degree of certainty α, we can determine the set
of values of F (x) that are possible with at least this degree
of certainty � the α-cut Fα(x) def= {F |µx(F ) ≥ α} of the
original fuzzy set. In many practical cases, this α-cut is an
interval.

Vice versa, if we know α-cuts for every α, then, for each
value x and for each F , we can determine the degree of
possibility that F belongs to the original fuzzy set for F (x)
[4], [11]. A fuzzy set can be thus viewed as a nested family
of its α-cuts.

A fuzzy number can be de�ned as a fuzzy set for which all
α-cuts are intervals.

So, if instead of an interval F(x) of possible values of the
probability F (x), we have a fuzzy number µx(F ) of possible
values, then we can view this information as a family of nested
intervals Fα(x) (α-cuts of the given fuzzy sets).

Our objective is then to compute the fuzzy number cor-
responding to the desired statistical characteristic (moment,
pdf of the convolution, etc). In this case, for each level α,
the corresponding α-cut of the desired fuzzy number can be
computed based on the α-cuts Fα(x) of the corresponding
input fuzzy sets. The resulting nested intervals form the fuzzy
number for the desired statistical characteristic.

So, e.g., if we want to describe 10 different levels of uncer-
tainty, then we must solve 10 interval computation problems.



Thus, from the computational viewpoint, it is suf�cient to
produce an ef�cient algorithm for the interval case.

IV. PRACTICAL SITUATION: BOUNDS ON PROBABILITIES

In many practical situations, e.g., in climate modeling, we
have bounds on the probability density or, in the discrete case,
bounds on the probabilities of individual values; see, e.g., [7],
[8]. How can we process this uncertainty?

V. IN PRINCIPLE, WE CAN USE P-BOXES

One possible approach to dealing with bounds [ρ(x), ρ(x)]
on the (unknown) probability density ρ(x) is to �nd corre-
sponding range of the cdf F (x), i.e., to �nd the (smallest
possible) p-box which contains all probability distributions
for which ρ(x) ∈ [ρ(x), ρ(x)]. Once we have this p-box, we
can use known methods to estimate the ranges of different
statistical characteristics.

VI. LIMITATIONS OF USING P-BOXES: GENERAL
DESCRIPTION

The problem with this approach is that the p-box estimates
are based on the assumption that all F (x) ∈ [F (x), F (x)] are
possible, while we are only interested in cumulative distribu-
tion functions F (x) for which ρ(x) = F ′(x) is bounded by
the given bounds [ρ(x), ρ(x)]. As a result, we often only get
an enclosure for the desired range, an enclosure which has
excess width.

VII. LIMITATIONS OF USING P-BOXES: EXAMPLE

Let us describe a simple example where the use of p-boxes
leads to excess width. Let us have a discrete random variable
x which can take 3 possible values 1, 2, and 3. We do not
know the exact probabilities p1, p2, and p3 of accessing these
values; instead, we only know the intervals of possible values
of these probabilities

p1 = p2 =
[
1
3
− β,

1
3

+ β

]

for some small positive value β ≤ 1
6

. For p3, we do not have
separate interval bounds, only bounds which can be inferred
from the bounds on p1 and p2 and the fact that p1+p2+p3 = 1.

In this simple example, we are interested in the probability
that x = 2. Of course, based on the known information, we
can easily �nd the interval of possible value of this probability:
it is

p2 =
[
1
3
− β,

1
3

+ β

]
.

Let us show that if we convert to p-boxes, we will instead get
an enclosure with excess width.

In this discrete situation, a cdf-style description means that
we need to describe two numbers:

F (1) = p1 = Prob(x ≤ 1)

and
F (2) = Prob(x ≤ 2) = p1 + p2.

These two values uniquely determine the resulting cdf:
• for x < 1, we have F (x) = 0;
• for 1 < x < 2, we have F (x) = F (1);
• for 2 < x < 3, we have F (x) = F (2);
• �nally, for x ≥ 3, we have F (x) = 1.

Based on the known intervals x1 and p2 of possible values
of p1 and p2, we conclude that the resulting bound on F (1)

is F(1) = p1 =
[
1
3
− β,

1
3

+ β

]
and that the resulting bound

on F (2) = p1 + p2 is

F(2) = p1 + p2 =
[
1
3
− β,

1
3

+ β

]
+

[
1
3
− β,

1
3

+ β

]
=

[
2
3
− 2β,

2
3

+ 2β

]

(see, e.g., [10]). Thus, the resulting p-box F(x) =
[F (x), F (x)] has the following form:
• for x < 1, we have F(x) = [0, 0];
• for 1 ≤ x < 2, we have

F(x) =
[
1
3
− β,

1
3

+ β

]
;

• for 2 ≤ x < 3, we have

F(x) =
[
2
3
− 2β,

2
3

+ 2β

]
;

• �nally, for x ≥ 3, we have F(x) = [1, 1].
Based on this p-box information, the probability that x = 2 can
be found as F (2)−F (2−0), where F (2−0) def= lim F (2−δ),
where δ > 0 and δ → 0. From the p-box information, we
conclude that F (2) can take any values from the interval[
2
3
− 2β,

2
3

+ 2β

]
and that F (2−0) can take any value from

the interval
[
1
3
− β,

1
3

+ β

]
. According to interval computa-

tions [10], [?], [?]:
• the largest possible value of the difference

F (2)− F (2− 0)

is when we subtract the smallest possible value of
F (2− 0) from the largest possible value of F (2), and

• the smallest possible value of the difference

F (2)− F (2− 0)

is when we subtract the largest possible value of F (2−0)
from the smallest possible value of F (2).

Thus, we conclude that the resulting interval of possible values
of Prob(x = 2) is
[
2
3
− 2β,

2
3

+ 2β

]
−

[
1
3
− β,

1
3

+ β

]
=

[
1
3
− 3β,

1
3

+ 3β

]
.

This interval has the width of 6β � three times wider than the
actual interval of possible values of p2.

This example shows that if we only use p-boxes, we can
get estimates with excess width.



VIII. HOW CAN WE COMPUTE EXACT RANGES:
FORMULATION OF THE PROBLEM

It is desirable to compute the exact ranges for such char-
acteristics as mean, central moments, convolution of several
distributions (corresponding to the distribution of the sum of
two independent variables), etc.

IX. COMPUTING MOMENTS: EFFICIENT ALGORITHMS

Formulation of the problem. In the discrete case, we know
the values x1 < x2 < . . . < xn, we know the bounds [p

i
, pi]

on the (unknown) actual probabilities pi, and we are given an
integer m > 0. Our objective is to �nd the range for

n∑
i=1

pi ·xm
i

under the constraints pi ∈ [p
i
, pi] and

n∑
i=1

pi = 1.

This problem is a particular case of a more general
problem for which ef�cient algorithms are known. To
compute these ranges, we can use the fact that a linear-time
algorithm (i.e., an algorithm with an O(n) running time) is
known for a more general problem. Namely, such an algorithm
is known for a general case of computing the range [a, a] of the
expected value a =

n∑
i=1

pi ·ai of a known variable (a1, . . . , an)

under the constraints pi ∈ [p
i
, pi] and

n∑
i=1

pi = 1 [2], [9]. The
case of moments correspond to ai = xm

i .
Computing the upper endpoint a: analysis. Let us �rst
consider the problem of computing the maximum a. One can
easily show that if for the maximizing vector (p1, . . . , pn), we
have two values pi > p

i
and pj < pj for which ai < aj , then,

by adding a small value ∆ to pj and subtracting this value
from pi, we can get a new vector p′i for which still

∑
p′i = 1

but the value of a =
n∑

i=1

pi ·a′i is larger. Thus, for ai < aj , we
cannot have pi > p

i
and pj < pj in the maximizing vector.

So, we conclude that we can only have one value k for which
pk ∈ (p

k
, pk).

• For all values ai for which ai < ak, we have pi = p
i
.

• For all values aj for which aj > ak, we have pj = pj .
So, if we sort the values ai in increasing order, then we con-
clude that for some k, the maximum is attained for the vector
(p

1
, . . . , p

k−1
, pi, pk+1, . . . , pn), where pk can be determined,

from the condition that
n∑

i=1

pi = 1, as

pk = 1− p
1
− . . .− p

k−1
− pk+1 − . . .− pn.

The condition that p
k
≤ pk ≤ pk leads to

k−1∑

i=1

p
i
+

n∑

j=k

pj ≤ 1 ≤
k∑

i=1

p
i
+

n∑

j=k+1

pj .

This condition uniquely determines the desired value k.
The above analysis leads to the following algorithm for

computing a.

Computing the upper endpoint a: �rst algorithm.
• First, we sort the values ai in increasing order; sorting

can be done in time O(n · log(n)); see, e.g., [3].
• Next, we compute the sums corresponding to k = 0; this

computation takes linear time.
• Then, for each k, we need to change two terms to

compute the new sums, so we need linear time for check
all possible values of k and �nd the right one.

• After this, we can compute the maximizing vector pi and
the resulting upper endpoint a =

n∑
i=1

pi ·ai in linear time.

In general, this algorithm requires O(n · log(n)) + O(n) =
O(n · log(n)) time.
Comment. If the values ai are already sorted, then we only
need linear time to compute a. It turns out that we can have a
linear-time algorithm in the general case, when the values ai

are not pre-sorted.
Computing the upper endpoint a: linear-time algorithm.
This algorithm is based on the known fact that we can compute
the median of a set of n elements in linear time (see, e.g., [3]).

The algorithm is iterative. At each iteration of this algorithm
we have three sets:
• the set I− of all the indices i from 1 to n for which we

already know that for the maximizing vector p, we have
pi = p

i
;

• the set I+ of all the indices j for which we already know
that for the maximizing vector p, we have pj = pj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for
which we are still undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each
iteration we also update the values of two auxiliary quantities
E− def=

∑
i∈I−

p
i

and E+ def=
∑

j∈I+
pj . In principle, we could

compute these values by computing these sums. However, to
speed up computations on each iteration, we update these two
auxiliary values in a way that is faster than re-computing the
corresponding two sums. Initially, since I− = I+ = ∅, we
take E− = E+ = 0.

At each iteration we do the following:
• �rst, we compute the median m of the set I (median in

terms of sorting by ai);
• then, by analyzing the elements of the undecided set I

one by one, we divide them into two subsets P− = {i :
ai ≤ am} and P+ = {j : aj > am};

• we compute e− = E−+
∑

i∈P−
p

i
and e+ = E++

∑
j∈P+

pj ;

• If e− + e+ > 1, then we replace I− with I− ∪ P−, E−

with e−, and I with P+.
• If e−+e++2∆m < 1, then we replace I+ with I+∪P+,

E+ with e+, and I with P−.
• Finally, if e− + e+ ≤ 1 ≤ e− + e+ + 2∆m, then we

replace I− with I− ∪ (P−−{m}), I+ with I+ ∪P+, I
with {m}, E− with e− − p

m
, and E+ with e+.

At each iteration the set of undecided indices is divided in
half. Iterations continue until we have only one undecided



index I = {k}. After this we return, as a, the value of the
linear combination

n∑
i=1

pi ·ai for the vector p for which pi = p
i

for i ∈ I−, xj = pj for j ∈ I+, and pk = 1 − e− − e+ for
the remaining value k.

Proof that the second algorithm for computing a requires
linear time. At each iteration, computing median requires
linear time, and all other operations with I require time t
linear in the number of elements |I| of I: t ≤ C · |I| for some
C. We start with the set I of size n. On the next iteration,
we have a set of size n/2, then n/4, etc. Thus, the overall
computation time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n,
i.e. linear in n.

How to compute a. It is known that the smallest possible
value a of the linear form

n∑
i=1

pi ·ai under given constraints is

equal to −b, where b is the largest possible value of the form
n∑

i=1

pi · bi, with bi = −ai. Thus, by using the above algorithm,
we can compute the lower endpoint as well.

X. COMPUTING CONVOLUTION: A PRACTICALLY
IMPORTANT PROBLEM

If we know the distributions ρ′(x) and ρ′′(x) of two
independent random variables x′ and x′′, then the probability
density function ρ(x) for their sum x = x′ + x′′ is described
by the convolution ρ(x) =

∫
ρ′(z) · ρ′′(x− z) dz.

XI. THERE EXIST EFFICIENT ALGORITHMS FOR
COMPUTING CONVOLUTION OF P-BOXES

Researchers have analyzed the problem of computing the
convolution in situations when instead of knowing the exact
cumulative distribution functions F ′(x) and F ′′(x), we only
know p-boxes [F ′(x), F

′
(x)] and [F ′′(x), F

′′
(x)].

In these situations, we can ef�ciently compute a p-box for
x = x′ + x′′; see, e.g., [5]. This possibility comes from the
fact that for every x, the value F (x) corresponding to the
convolution is a (non-strictly) increasing function of the values
F ′(x′) and F ′′(x′′). Thus:
• to compute the lower endpoint F (x) for the resulting cdf

F (x), it is suf�cient to compute the convolution of the
distributions corresponding to F ′(x) and F ′′(x);

• similarly, to compute the upper endpoint F (x) for the
resulting cdf F (x), it is suf�cient to compute the con-
volution of the distributions corresponding to F

′
(x)

and F
′′
(x).

XII. CONVOLUTION OF INTERVAL-VALUED
PROBABILITIES: GENERAL CASE

In line with our previous discussions, let us now consider
the situation in which, instead of the p-boxes (i.e., bounds on
the cumulative distribution functions), we know the interval
bounds [ρ′(x), ρ′(x)] and [ρ′′(x), ρ′′(x)] of the corresponding
probability distribution functions.

In this case, for every x, we would like to compute the exact
range [ρ(x), ρ(x)] of the convolution

ρ(x) =
∫

ρ′(z) · ρ′′(x− z) dz

when ρ′(x) ∈ [ρ′(x), ρ′(x)] and ρ′′(x) ∈ [ρ′′(x), ρ′′(x)].
Let us prove that this problem is computationally dif�cult

even in the discrete case, when each of the two variables x′

and x′′ can only takes �nitely many values.

XIII. CONVOLUTION OF INTERVAL-VALUED
PROBABILITIES: DISCRETE CASE

Let us assume that we have two independent discrete
random variables x′ and x′′.
• For the variable x′, we know its possible values

x′1, . . . , x
′
n′ and the bounds

[
p′

i
, p′i

]
on the corresponding

(unknown) probabilities p′i.
• Similarly, for the variable x′′, we know its possible values

x′′1 , . . . , x′′n′′ and the bounds
[
p′′

j
, p′′j

]
on the correspond-

ing (unknown) probabilities p′′j .
For the sum x = x′ + x′′, we have possible values xij =
x′i + x′′j .

The question is to �nd the ranges p
ij

and pij of possible
values of the corresponding probabilities

pij =
∑

i′,j′:x′
i′+x′′

j′=x′
i
+x′′

j

p′i′ · p′′j′ ,

where the values p′i and p′′i satisfy the conditions

p′i ∈
[
p′

i
, p′i

]
, p′′i ∈

[
p′′

i
, p′′i

]
,

n′∑

i=1

p′i = 1,

n′′∑

i=1

p′′i = 1.

XIV. NEW RESULT: FOR INTERVAL-VALUED
PROBABILITIES, COMPUTING CONVOLUTION IS NP-HARD

In this paper, we prove, that, in contrast to the case of p-
boxes, computing the (endpoints of) the exact range

[
p

ij
, pij

]

of the convolution probabilities pij is computationally dif�cult
(namely, NP-hard).

To be more precise, we prove two results:
• that the problem of computing the upper endpoint pij of

the convolution if NP-hard, and
• that the problem of computing the lower endpoint p

ij
is

also NP-hard.

Comment. Our proof is somewhat similar to the proof of NP-
hardness from [1].



XV. PROOF OF NP-HARDNESS

1◦. Our proof is based on reducing, to this problem, a known
NP-hard subset problem, where we are given n positive
integers s1, . . . , sn, and we must �nd the values εi ∈ {−1, 1}
for which

n∑
i=1

εi · si = 0.
For precise de�nitions of NP-hardness, see, e.g., [6].

2◦. To each instance s1, . . . , sn of the subset problem, we as-
sign the following two interval-valued probability distributions
x′ and x′′.

2.1◦. The variable x′ can only take n′ = n values x′1 = 1, . . . ,
x′i = i, . . . , x′n = n. For each i from 1 to n, the corresponding
probability p′i can take any value from the interval

[
p′

i
, p′i

]
=

[
1
n
− β · si,

1
n

+ β · si

]
.

2.2◦. Similarly, the variable x′′ can only take n′′ = n values
x′′1 = −1, . . . , x′′i = −i, . . . , x′′n = −n. For each i from 1 to
n, the corresponding probability p′′i can take any value from
the interval

[
p′′

i
, p′′i

]
=

[
1
n
− β · si,

1
n

+ β · si

]
.

3◦. The value β should be selected in such a way as to
guarantee that the resulting probabilities are always non-
negative, i.e., that 1

n
−β · si ≥ 0 for all i. This requirement is

equivalent to β · si ≤ 1
n

, i.e., to β ≤ 1
n · si

. This must hold
for all i, so we must make sure that β does not exceed the
smallest of these values � i.e., the value corresponding to the
largest si. Thus, we can take

β =
1

n ·max
i

si
.

4.1◦. In this case, for every i, the (unknown) actual probability
p′i can be described as

p′i =
1
n

+ β ·∆′
i,

where ∆′
i

def= p′i −
1
n

can take any value from the interval
[−si, si].

4.2◦. Similarly, for every i, the (unknown) actual probability
p′′i can be described as

p′′i =
1
n

+ β ·∆′′
i ,

where ∆′′
i

def= p′′i −
1
n

can take any value from the interval
[−si, si].

5.1◦. In terms of the auxiliary variables ∆′
i, the requirement

that
n∑

i=1

p′i = 1 means that

n∑

i=1

(
1
n

+ β ·∆′
i

)
= 1,

i.e., that 1 +
n∑

i=1

∆′
i = 1 and

n∑
i=1

∆′
i = 0.

5.1◦. Similarly, the requirement that
n∑

i=1

p′′i = 1 means that

n∑

i=1

(
1
n

+ β ·∆′′
i

)
= 1,

i.e., that 1 +
n∑

i=1

∆′′
i = 1 and

n∑
i=1

∆′′
i = 0.

6◦. Let us now �nd the range of possible values for the
probability that the sum x = x′ + x′′ is equal to 0.

The value 0 can be obtained if x′ = i and x′′ = −i for the
same value i. Thus, the desired probability is equal to

p11 =
n∑

i=1

p′i · p′′i .

Substituting the expressions p′i =
1
n

+ β · ∆′
i and p′′i =

1
n

+ β ·∆′′
i into this formula, we get

p11 =
n∑

i=1

(
1
n

+ β ·∆′
i

)
·
(

1
n

+ β ·∆′′
i

)
.

Here, (
1
n

+ β ·∆′
i

)
·
(

1
n

+ β ·∆′′
i

)
=

(
1
n

)2

+
1
n
· β ·∆′

i +
1
n
· β ·∆′′

i + β2 ·∆′
i ·∆′′

i .

Therefore, we conclude that

p11 =
n∑

i=1

(
1
n

)2

+
n∑

i=1

1
n
· β ·∆′

i +
n∑

i=1

1
n
· β ·∆′′

i +

n∑

i=1

β2 ·∆′
i ·∆′′

i .

By moving constant factors outside the sum, we get:

p11 =
(

1
n

)2

·
n∑

i=1

1 +
1
n
· β ·

n∑

i=1

∆′
i +

1
n
· β ·

n∑

i=1

∆′′
i +

β2 ·
n∑

i=1

∆′
i ·∆′′

i .



The �rst sum is equal to
(

1
n2

)
· n =

1
n

. The second and the

third sums are equal to 0 since
n∑

i=1

∆′
i = 0 and

n∑
i=1

∆′′
i = 0.

Thus, we conclude that

p11 =
1
n

+ β2 ·
n∑

i=1

∆′
i ·∆′′

i .

7◦. Let us prove that the number 1
n

+β2 ·
n∑

i=1

s2
i is a possible

value of p11 if and only if the original instance of a subset
problem has a solution.

This will prove that the problem of computing the upper
endpoint p11 of the range of p11 is NP-hard.

7.1◦. Indeed, if the original instance has a solution ε for which
n∑

i=1

εi · si = 0, then we can take ∆′
i = ∆′′

i = εi · si and get

p11 =
1
n

+ β2 ·
n∑

i=1

s2
i .

7.2◦. Vice versa, let us assume that the number 1
n

+β2 ·
n∑

i=1

s2
i

is a possible value of p11. Let us prove that in this case, the
original instance of the subset problem has a solution.

Indeed, since |∆′
i| ≤ si and |∆′′

i | ≤ si, we always have
|∆′

i ·∆′′
i | ≤ s2

i and hence ∆′
i ·∆′′

i ≤ s2
i .

So, the only possibility to have

p11 =
1
n

+ β2 ·
n∑

i=1

∆′
i ·∆′′

i =
1
n

+ β2 ·
n∑

i=1

s2
i

is to have ∆′
i ·∆′′

i = s2
i for all i � otherwise, we would have

p11 =
1
n

+ β2 ·
n∑

i=1

∆′
i ·∆′′

i <
1
n

+ β2 ·
n∑

i=1

s2
i .

If |∆′
i| < si or |∆′′

i | < si, then we have |∆′
i ·∆′′

i | < s2
i and

hence ∆′
i ·∆′′

i < s2
i . So, the only way to have ∆′

i ·∆′′
i = s2

i

is to have |∆′
i| = si and |∆′′

i | = si. So, we have ∆′
i = ±si,

i.e., ∆′
i = εi · si for some value εi ∈ {−1, 1}.

The fact that
n∑

i=1

∆′
i = 0 implies that

n∑
i=1

εi · si = 0. So, the
values εi form a solution to the original instance of the subset
problem.

7.3◦. The reduction is proven, and so the problem of com-
puting the upper endpoint pij of the convolution is indeed
NP-hard in case of interval uncertainty.

8◦. Let us prove that the number 1
n
−β2 ·

n∑

i=1

s2
i is a possible

value of p11 if and only if the original instance of a subset
problem has a solution.

This will prove that the problem of computing the lower
endpoint p

11
of the range of p11 is also NP-hard.

8.1◦. Indeed, if the original instance has a solution ε for which
n∑

i=1

εi · si = 0,

then we can take ∆′
i = εi · si and ∆′′

i = −εi · si, and get

p11 =
1
n
− β2 ·

n∑

i=1

s2
i .

8.2◦. Vice versa, let us assume that the number 1
n
−β2 ·

n∑

i=1

s2
i

is a possible value of p11. Let us prove that in this case, the
original instance of the subset problem has a solution.

Indeed, since |∆′
i| ≤ si and |∆′′

i | ≤ si, we always have
|∆′

i ·∆′′
i | ≤ s2

i and hence ∆′
i ·∆′′

i ≥ −s2
i .

So, the only possibility to have

p11 =
1
n

+ β2 ·
n∑

i=1

∆′
i ·∆′′

i =
1
n
− β2 ·

n∑

i=1

s2
i

is to have ∆′
i ·∆′′

i = −s2
i for all i � otherwise, we would have

p11 =
1
n

+ β2 ·
n∑

i=1

∆′
i ·∆′′

i >
1
n

+ β2 ·
n∑

i=1

s2
i .

If |∆′
i| < si or |∆′′

i | < si, then we have |∆′
i ·∆′′

i | < s2
i and

hence ∆′
i ·∆′′

i > −s2
i . So, the only way to have ∆′

i ·∆′′
i = −s2

i

is to have |∆′
i| = si and |∆′′

i | = si. So, we have ∆′
i = ±si,

i.e., ∆′
i = εi · si for some value εi ∈ {−1, 1}.

The fact that
n∑

i=1

∆′
i = 0 implies that

n∑
i=1

εi · si = 0. So, the
values εi form a solution to the original instance of the subset
problem.
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