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Abstract

In statistical analysis of measurement results, it is often beneficial to

compute the range V of the population variance V =
1

n
·

n∑
i=1

(xi − E)2

(where E =
1

n

n∑
i=1

xi) when we only know the intervals

[x̃i −∆i, x̃i + ∆i]

of possible values of the xi. In general, this problem is NP-hard; a
polynomial-time algorithm is known for the case when the measurements

are sufficiently accurate, i.e., when |x̃i − x̃j | ≥ ∆i

n
+

∆j

n
for all i 6= j. In

this paper, we show that we can efficiently compute V under a weaker

(and more general) condition |x̃i − x̃j | ≥ |∆i −∆j |
n

.

Formulation of the problem. Once we have n measurement results
x1, . . . , xn, the traditional statistical analysis starts with computing the stan-

dard statistics such as population mean E =
1
n
·

n∑

i=1

xi and population variance

V = M − E2, where M
def=

1
n
·

n∑

i=1

x2
i ; see, e.g., [7].

In many real-life situations, due to measurement uncertainty, instead of the
actual values xi of the measured quantity, we only have intervals xi = [xi, xi] of
possible values of xi [5, 7]. Usually, the interval xi has the form [x̃i−∆i, x̃i+∆i],
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where x̃i is the measurement result, and ∆i is the known upper bound on the
absolute value of the measurement error ∆xi

def= x̃i − xi.
Different values xi ∈ xi lead, in general, to different values of E and V . It is

therefore desirable to compute the ranges E = [E, E] and V = [V , V ] of possible
values of E and V when xi ∈ xi.

Since the population mean E is a monotonic function of its n variables

x1, . . . , xn, its range can be easily computed as E =

[
1
n
·

n∑

i=1

xi,
1
n
·

n∑

i=1

xi

]
. For

the variance V , there exist polynomial-time algorithms for computing the lower
bound V , but computing the exact upper bound V is, in general, an NP-hard
problem; see, e.g., [2, 3].

There exist polynomial-time algorithms for computing V in many practically
reasonable situations; see, e.g., [2, 3, 4, 6, 8]. One such known case is when
measurements are sufficiently accurate, e.g., when the “narrowed intervals”

[
x̃i − ∆i

n
, x̃i +

∆i

n

]
(1)

do not intersect. In other words, we know how to efficiently compute V when
for every i 6= j, we have

|x̃i − x̃j | ≥ ∆i

n
+

∆j

n
. (2)

The known algorithm requires O(n · log(n)) computational steps.
In this paper, we propose a new algorithm that computes V in O(n · log(n))

time under the weaker (hence more general) condition

|x̃i − x̃j | ≥ |∆i −∆j |
n

. (3)

This condition is indeed much weaker: e.g., for the case when all measure-
ments are equally accurate, i.e., ∆i = ∆ for all i, the previously known condition
(2) is only valid for ∆ ≤ (n/2) ·min

i 6=j
|x̃i − x̃j |, while the new condition (3) holds

for every ∆. Thus, we can have larger measurement uncertainty ∆ than before
and still be able to compute the exact bound V in polynomial time.

Algorithm. Let us first describe the algorithm itself; in the next section, we
provide the justification for this algorithm.

• First, we sort of the values x̃i into an increasing sequence. Without losing
generality, we can assume that x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value V (k) = M (k)−E(k) of
the population variance V for the vector x(k) = (x1, . . . , xk, xk+1, . . . , xn).

• Finally, we compute V as the largest of n + 1 values V (0), . . . , V (n).
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To compute the values V (k), first, we explicitly compute M (0), E(0), and V (0) =
M (0) − (E(0))2. Once we know the values M (k) and E(k), we can compute

M (k+1) = M (k)+
1
n
·(xk+1)

2− 1
n
·(xk+1)2 and E(k+1) = E(k)+

1
n
·xk+1−

1
n
·xk+1.

Number of computation steps. Sorting requires O(n · log(n)) steps; see,
e.g., [1]. Computing the initial values M (0), E(0), and V (0) requires linear time
O(n). For each k from 0 to n−1, we need a constant number of steps to compute
the next values M (k+1), E(k+1), and V (k+1). Finally, finding the largest of n+1
values V (k) also requires O(n) steps. Thus, overall, we need

O(n · log(n)) + O(n) + O(n) + O(n) = O(n · log(n))

steps.
It is worth mentioning that if the measurement results x̃i are already sorted,

then we only need linear time to compute V .

Justification of the algorithm. With respect to each variable xi, the popu-
lation variance is a quadratic function which is non-negative for all xi. It is well
known that a maximum of such a function on each interval [xi, xi] is attained at
one of the endpoints of this interval. Thus, the maximum V of the population
variance is attained at a vector x = (x1, . . . , xn) in which each value xi is equal
either to xi or to xi.

We will first justify our algorithm for the case when |x̃i − x̃j | >
|∆i −∆j |

n
for all i 6= j.

To justify our algorithm, we need to prove that this maximum is attained
at one of the vectors x(k) in which all the lower bounds xi precede all the upper
bounds xi. We will prove this by reduction to a contradiction. Indeed, let us
assume that the maximum is attained at a vector x in which one of the lower
bounds follows one of the upper bounds. In each such vector, let i be the largest
upper bound index preceded by the lower bound; then, in the optimal vector x,
we have xi = xi and xi+1 = xi+1.

Since the maximum is attained for xi = xi, replacing it with xi = xi− 2 ·∆i

will either decrease the value of the variance or keep it unchanged. Let us
describe how variance changes under this replacement. In the sum for M , we
replace (xi)2 with

(xi)
2 = (xi − 2 ·∆i)2 = (xi)2 − 4 ·∆i · xi + 4 ·∆2

i .

Thus, the value M changes into M + ∆Mi, where

∆Mi = − 4
n
·∆i · xi +

4
n
·∆2

i .
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The population mean E changes into E + ∆Ei, where ∆Ei = −2 ·∆i

n
. Thus,

the value E2 changes into (E + ∆Ei)2 = E2 + ∆(E2)i, where

∆(E2)i = 2 · E ·∆Ei + ∆E2
i = − 4

n
· E ·∆i +

4
n2
·∆2

i .

So, the variance V changes into V + ∆Vi, where

∆Vi = ∆Mi −∆(E2)i = − 4
n
·∆i · xi +

4
n
·∆2

i +
4
n
· E ·∆i − 4

n2
·∆2

i =

4
n
·∆i ·

(
−xi + ∆i + E − ∆i

n

)
.

By definition, xi = x̃i + ∆i, hence −xi + ∆i = −x̃i. Thus, we conclude that

∆Vi =
4
n
·∆i ·

(
−x̃i + E − ∆i

n

)
.

Since V attains maximum at x, we have ∆Vi ≤ 0, hence

E ≤ x̃i +
∆i

n
. (4)

Similarly, since the maximum is attained for xi+1 = xi, replacing it with
xi+1 = xi+1 + 2 ·∆i+1 will either decrease the value of the variance or keep it
unchanged. Let us describe how variance changes under this replacement. In
the sum for M , we replace (xi+1)

2 with

(xi+1)2 = (xi+1 + 2 ·∆i+1)2 = (xi+1)
2 + 4 ·∆i+1 · xi+1 + 4 ·∆2

i+1.

Thus, the value M changes into M + ∆Mi+1, where

∆Mi+1 =
4
n
·∆i+1 · xi+1 +

4
n
·∆2

i+1.

The population mean E changes into E + ∆Ei+1, where ∆Ei+1 =
2 ·∆i+1

n
.

Thus, the value E2 changes into (E + ∆Ei+1)2 = E2 + ∆(E2)i+1, where

∆(E2)i+1 = 2 · E ·∆Ei+1 + ∆E2
i+1 =

4
n
· E ·∆i+1 +

4
n2
·∆2

i+1.

So, the variance V changes into V + ∆Vi+1, where

∆Vi+1 = ∆Mi+1 −∆(E2)i+1 =

4
n
·∆i+1 · xi+1 +

4
n
·∆2

i+1 −
4
n
· E ·∆i+1 − 4

n2
·∆2

i+1 =

4



4
n
·∆i+1 ·

(
xi+1 + ∆i+1 − E − ∆i+1

n

)
.

By definition, xi+1 = x̃i+1−∆i+1, hence xi+1+∆i+1 = x̃i+1. Thus, we conclude
that

∆Vi+1 =
4
n
·∆i+1 ·

(
x̃i+1 − E − ∆i+1

n

)
.

Since V attains maximum at x, we have ∆Vi+1 ≤ 0, hence

E ≥ x̃i+1 − ∆i+1

n
. (5)

We can also change both xi and xi+1 at the same time. In this case, the
change ∆M in M is simply the sum of the changes coming from xi and xi+1:
∆M = ∆Mi + ∆Mi+1, and the change ∆E in E is also the sum of the corre-
sponding changes: ∆E = ∆Ei + ∆Ei+1. So, for

∆V = ∆M −∆(E2) = ∆M − 2 ·E ·∆E −∆E2,

we get
∆V = ∆Mi + ∆Mi+1−

2 · E ·∆Ei − 2 · E ·∆Ei+1 − (∆Ei)2 − (∆Ei+1)2 − 2 ·∆Ei ·∆Ei+1.

Hence,

∆V = (∆Mi − 2 · E ·∆Ei − (∆Ei)2) + (∆Mi+1 − 2 · E ·∆Ei+1 − (∆Ei+1)2)

−2 ·∆Ei ·∆Ei+1,

i.e.,
∆V = ∆Vi + ∆Vi+1 − 2 ·∆Ei ·∆Ei+1.

We already have the expressions for ∆Vi, ∆Vi+1, ∆Ei = −2 ·∆i

n
, and ∆Ei+1 =

2 ·∆i+1

n
, so we conclude that ∆V =

4
n
·D(E), where

D(E) def= ∆i ·
(
−x̃i + E − ∆i

n

)
+∆i+1 ·

(
x̃i+1 − E − ∆i+1

n

)
+

2
n
·∆i ·∆i+1. (6)

Since the function V attains maximum at x, we have ∆V ≤ 0, hence D(E) ≤ 0
(for the population mean E corresponding to the optimizing vector x).

The expression D(E) is a linear function of E. From (4) and (5), we know
that

x̃i+1 − ∆i+1

n
≤ E ≤ x̃i +

∆i

n
.
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For E = E− def= x̃i+1 − ∆i+1

n
, we have

D(E−) = ∆i ·
(
−x̃i + x̃i+1 − ∆i+1

n
− ∆i

n

)
+

2
n
·∆i ·∆i+1 =

∆i ·
(
−x̃i + x̃i+1 +

∆i+1

n
− ∆i

n

)
.

We consider the case when |x̃i+1 − xi| >
|∆i −∆i+1|

n
. Since the values x̃i are

sorted in increasing order, we have x̃i+1 ≥ x̃i, hence

x̃i+1 − x̃i = |x̃i+1 − x̃i| > |∆i −∆i+1|
n

≥ ∆i

n
− ∆i+1

n
.

So, we conclude that D(E−) > 0.

For E = E+ def= x̃i +
∆i

n
, we have

D(E+) = ∆i+1 ·
(

x̃i+1 − x̃i − ∆i

n
− ∆i+1

n

)
+

2
n
·∆i ·∆i+1 =

∆i+1 ·
(
−x̃i + x̃i+1 +

∆i

n
− ∆i+1

n

)
.

Here, from |x̃i+1 − xi| > |∆i −∆i+1|
n

, we also conclude that D(E+) > 0.

Since the linear function D(E) is positive on both endpoints of the interval
[E−, E+], it must be positive for every value E from this interval, which con-
tradicts to our conclusion that D(E) ≥ 0 for the actual population mean value
E ∈ [E−, E+]. This contradiction shows that the maximum of the population
variance V is indeed attained at one of the values x(k), hence the algorithm is
justified.

The general case when |x̃i − x̃j | ≥ |∆i −∆j |
n

can be obtained as a limit of
cases when we have strict inequality. Since the function V is continuous, the
value V continuously depends on the input bounds, so by tending to a limit, we
can conclude that our algorithm works in the general case as well.

The geometric meaning of the new condition. The condition |x̃i− x̃j | ≥
|∆i −∆j |

n
means that if x̃i ≥ x̃j , then we have

x̃i − x̃j ≥ ∆i −∆j

n
,

i.e.,

x̃i − ∆i

n
≥ x̃j − ∆j

n

6



and also
x̃i − x̃j ≥ ∆j −∆i

n
,

i.e.,

x̃i +
∆i

n
≥ x̃j +

∆j

n
.

This means that no narrowed interval (1) is a proper subinterval of the interior
of another narrowed subinterval.

Vice versa, if one of the narrowed intervals is a proper subinterval of another
one, then the condition (3) is not satisfied. Thus, the condition (3) means that
no narrowed subintervals are proper subintervals of each other.

It is worth mentioning that there is another polynomial-time algorithm for
computing V [6] – an algorithm which computes V for the case when no intervals
are proper subintervals of each other. That condition can be similarly described
as |x̃i− x̃j | ≥ |∆i−∆j |, hence that condition implies our condition (2). So, our
algorithm generalizes that algorithm as well.
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