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Abstract

We are often interested in phases of complex quantities; e.g., in non-destructive testing of
aerospace structures, important information comes from phases of Pulse Echo and magnetic
resonance.

For each measurement, we have an upper bound A on the measurement error Az = T — z,
so when the measurement result is Z, we know that the actual value z is in [ — A, T + A].
Often, we have no information about probabilities of different values, so this interval is our
only information about z. When the accuracy is not sufficient, we perform several repeated
measurements, and conclude that x belongs to the intersection of the corresponding intervals.

For real-valued measurements, the intersection of intervals is always an interval. For phase
measurements, we prove that an arbitrary closed subset of a circle can be represented as an
intersection of intervals.

Handling such complex sets is difficult. It turns out that if we have some statistical informa-
tion, then the problem often becomes tractable. As a case study, we describe an algorithm that
uses both real-valued and phase measurement results to determine the shape of a fault. This
is important: e.g., smooth-shaped faults gather less stress and are, thus, less dangerous than
irregularly shaped ones.

Keywords: Aerospace Structures, Phase Intervals, Fault Shapes

AMS Subject Classification: 65G20, 656G40, 65G30, 68U10, 74Rxx

1 Interval Uncertainty for Real-Valued Measurements

In most measurements, the measured quantity is a real number; see, e.g., [14].
Measurements are never 100% accurate; as a result, the measurement result 7 is usually different
from the actual (unknown) value z of the measured quantity. For each measuring instrument,

the manufacturer provides an upper bound A on the (absolute value of the) measurement error

N |Az| < A. (If no such bound is provided, this means that an arbitrarily large and/or

arbitrarily small value of z is possible, so T is rather an estimate and not a measurement.)
Often, in addition to this upper bound, we know the probabilities of different values of Ax.
However, in many practical situations, we have no information about these probabilities. In such



cases, after we performed the measurement and found the measurement result Z, the only informa-
tion about the (unknown) actual value z is that z cannot differ from Z by more than A - i.e., in
other words, that = belongs to the interval x = [z — A, T + A].

Often, measurement results serve as inputs to complex data processing algorithms, algorithms
that use the measurement results z1, . . . , T, to estimate the values of the quantity y that are difficult
(or even impossible) to measure directly. There exist techniques — known as interval computations
(see, e.g., [5, 7, 8, 11]) — that analyze how the interval uncertainty xi,...,x, in the inputs z;
propagates to the uncertainty y of the result y of data processing.

Sometimes, the measurement error is too large, so the accuracy resulting from a single measure-
ment is not sufficient. In this case, a natural idea is to perform repeated measurements of the same
quantity. After each measurement, we get an interval x(/) that contains the actual value z of the
measured quantity. After N measurements, we know that the value z belongs to all n intervals x\):
therefore, the actual value z belongs to the intersection (1x\9) of these intervals. This intersection
is always an interval, so using this intersection instead of the original (wider) interval does not
increase the complexity of the corresponding data processing.

This method is not only in accordance with common sense: it can actually be proven (see, e.g.,
[17, 18]) that under reasonable conditions, for large N, the intersection is indeed much narrower
than each of the original intervals — in other words, repeated measurements do drastically improve
the measurement accuracy.

2 Phase Measurements: Necessity

In most measurements, the measured quantity is a real number; however, in many cases, the
measured quantity is determined by the delay between the two waves. In such situations, it is often
impossible to determine the actual delay, because if the delay coincides with the full period (2 - 7
radians), then the two waves — original and delayed one — are practically indistinguishable. In such
situations, we cannot measure the actual delay, we can only measure the relative phase @ of the two
waves, the phase that takes values from 0 to 27 in such a way that 0 and 2- 7 are indistinguishable.
In geometric terms, we can describe the phase ¢ by a point on the unit circle whose radius forms
an angle ¢ with the OX axis. Let us give two examples of phase measurements.

In Very Large Baseline Interferometry (VLBI; see, e.g., [15]), we use two (or more) distant
antennas (separated by several thousand miles) to record the signal from the same extra-galactic
radio source. Each antenna site is equipped with a super-precise clock, so we are able to exactly
reference each observation to time and thus, to compare the times that it takes for the signal to
reach the two antennas. Unfortunately, to be able to effectively amplify the signal, we must restrict
ourselves to a narrow frequency band. Within this narrow band, the signal is so close to being
periodic that we cannot effectively measure the actual delay between the two recorded signals —
only the phase shift between these signals.

Another case when phase measurements are very important is ultrasonic testing of structural
integrity; see, e.g., [2, 3]. In this testing, a transmitter emits an ultrasonic wave; part of this wave
goes directly to the sensor, part is first reflected by the fault. The delay between the two detected
signals indicates how far away the fault is. Similarly to the VLBI case, often, by comparing the
two waves, we cannot determine the delay exactly, we can only determine the phase shift between
the two waves.

In both examples — VLLBI and non-destructive testing — there exist efficient methods for handling
the phases. In addition to the above-cited sources, we can mention [1, 4, 9] for radioastronomical
data processing, and [19] for data processing in non-destructive testing.



3 Phase Measurements: Interval Uncertainty

Similarly to the case of real-valued measurements, phase measurements are never 100% accurate.
The measurement error of a phase measurement can be described by a distance d(z, Z) between the
actual (unknown) value of the phase z and the measured value Z. On a unit circle, this distance
can be defined as the length of the shortest of the two arcs that connect the corresponding points.
In analytical terms, the distance between the two values from 0 to 2 - 7 can be defined as

d(z,z) = min(jlz — Z|,|[z —Z—2-7|,|lz —Z + 2 - 7|).

For example, the distance between the values 0 and 6 is equal to the smallest of 6 and 2-7—6 =~ 0.28,
i.e., to ~ 0.28.

Similar to the real-valued measurements, in many real-life situations, the only information we
have about the measurement error of the phase measurement is the upper bound A on the distance
between x and Z. In this case, once we have performed the measurement and measured the value
z, the only information that we have about the actual value z of the phase is that the distance
between z and Z cannot exceed A, i.e., d(z,Z) < A. Once can easily see that this is equivalent to
the condition that z belongs to the interval [z — A, Z + A]; see, e.g., [9].

For simplicity, let us illustrate these intervals in terms of degrees (not radians); in terms of
degrees, the full circle is 360°.

o If we measured the phase as T = 180°, and the upper bound on the measurement accuracy is
A = 100°, then the actual value of the phase can be anywhere between 180 — 100 = 80° and

180 + 100 = 280°.
80

180

280

o If we measured the phase as £ = 0°, and the upper bound on the measurement accuracy is
A = 100°, then the actual value of the phase can be anywhere between 0—100 = —100° = 260°
and 0 4+ 100 = 100°. In terms of angles from 0 to 360, this interval goes from 260 to 360
(which is the same as 0) and then from 0 to 100.

100

260

Similarly to the real-valued measurements, if we are not satisfied with the accuracy of a single
measurement, a natural idea is to perform repeated measurements of the same quantity and then
take the intersection of the corresponding intervals. For real-valued measurement, this intersection
is always an interval. In contrast, for phase measurements, the intersection of two intervals may
no longer be an interval. Indeed, for the above two measurements, the intersection of the intervals

[180 — 100, 180 + 100] = [80, 280]

and
[0 — 100, 0 + 100] = [—100, 100] = [260, 360] U [0, 100]

is not a single interval, but a union of two disjoint intervals: [80,100] and [260, 280].
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180 0
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How complex can such an intersection be?

4 How Complex Can Such an Intersection Be?

We have already seen that the intersection of two intervals can consist of two disjoint intervals.
If we add the third interval [270 — 175,270 + 175] to the above intersection, we conclude that the
triple intersection consists of three disjoint intervals: [260,280], [80,85], and [95,100]. Our main
result is that this intersection can be arbitrarily complex:

Theorem. An arbitrary closed subset of a circle can be represented as an intersection of intervals.

Restriction to closed sets is necessary because each interval is a closed set, and the intersection
of closed sets is always closed. So, this theorem says, in effect, that the interval approach to phase
measurements can lead to arbitrarily complex sets.

Comment. This theorem says, in effect, that a simple problem of measuring the angle (or, to be
more precise, measuring the value of an angular physical quantity) becomes much more complicated
if we take interval uncertainty into consideration:

e If we do not take the interval uncertainty into consideration, i.e., if we assume that the
measurements are absolutely accurate, then, as a result of these measurements, we get a
single value — the actual value of the measured angle. We can repeat this measurement
several times, and, within our assumption, we get the exact same value every time.

e On the other hand, if we take the interval uncertainty into consideration, then after each
measurement, instead of a single value of the angle, we get an interval that contains the
(unknown) actual value z. If we repeat this measurement several times, we get several inter-
vals each of which contains the actual angle. So, after these measurements, the information
that we have about the actual value z is that = belongs to the intersection of the intervals
corresponding to individual measurements. According to the Theorem, this intersection can
be a arbitrary closed set — and thus, it can be much more complex than a single number
corresponding to the case when there is no interval uncertainty.

The fact that taking interval uncertainty into consideration leads to an increase in complexity is in
line with other similar situations; for example (see, e.g., [10]):

o If the values z1,...,xz, are known exactly, then computing the value of a given polynomial
f(z1,...,2z,) for these values z; is a straightforward and easy problem, solvable by known
polynomial-time algorithms. On the other hand, if we only know the inputs z; with interval
uncertainty, i.e., if we only know the intervals x; of possible values of x;, then the natural
problem is to compute the range {f(z1,...,Zn |21 € X1,...,X,} of the given polynomial f
on these intervals. The problem of computing such a range is NP-hard even for quadratic
polynomials f.



e If we know the exact values of the coefficients a;; and of the right-hand sides b;, then the
problem of solving an n x n system of linear equations }_; a;;-z; = b; can be solved by known
polynomial-time algorithms. On the other hand, if we only know the intervals a;; and b; of
possible values of these coefficients, then, depending on which values a;; € a;; and b; € b; we
choose, we get different values of ;. The problem of computing, for a given j, the range of
possible values of z; is also NP-hard.

Proof of the Theorem. For clarity, we prove this result for the unit circle. One can easily see
that this result is true for an arbitrary circle.

Let S be a closed subset of the unit circle C. Then, its complement —S is an open set (see, e.g.,
[6]). By definition, an open set contains, together with each of its points a, an open ball I,. On a
circle with the above-defined metric d, an open ball is an open interval, so for every point o € — 8,
there exists an open interval I, C —S for which « € I,.

e Since each of the open intervals I, is contained in the set —S, the union (J I, of these open
intervals is also a subset of —S: I, C —S.

e Since every element a of the set —S belongs to the corresponding open interval I, and
therefore, belongs to their union, we can also conclude that —S is a subset of the union {J I,:
-SCUlL-

Thus, the complement —S' is equal to the union |J I, of the open intervals I,.
Due to de Morgan’s laws, we can now conclude that

§=—(-8)=- (u Ia) = (1)

On a circle, a complement —1, to an open interval is a closed interval. Therefore, the set S can
indeed be represented as an intersection of closed intervals. The theorem is proven.

Comment 1. In this proof, we represent a closed set as an intersection of continuum many open
intervals. It is, however, possible to get a similar representation with no more than countably many
intervals. Indeed, the open set —S can be represented as a union of its connected components J,.
Each connected component is an open interval. Each component contains a rational number. There
are countably many rational numbers, and different components cannot contain the same number;
thus, there are at most countably many components. Therefore, —S is a union of at most countably
many open intervals J,. Hence, S is an intersection of at most countably many closed intervals
—Ju. (The authors are thankful to the anonymous referees for this comment.)

Comment 2. Tt is worth mentioning that the statement of the theorem is not true if we replace the
circle with a real line. The arguments that we used in the proof do not apply to intervals on the
real number line because on this line, in contrast to the circle, a complement to an open interval is
not a closed interval.

5 What Can We Do: Case Study

In the previous section, we have proved that an arbitrary (in particular, arbitrarily complex) closed
subset of a circle can be represented as an intersection of intervals.

Handling such complex sets is difficult. It turns out that if we have some statistical information,
then the problem often becomes tractable.



5.1 Shape Detection and Why It Is Important

As a case study, we describe an algorithm that uses both real-valued and phase measurement
results to determine the shape of a fault; see [12] for details. This shape detection is important:
e.g., smooth-shaped faults gather less stress and are, thus, less dangerous than irregularly shaped
ones.

Faults are usually detected as outliers, i.e., as points in which the value of some physical quantity
are drastically different from the usual values of this quantity. Detecting shapes of regions formed
by outlier points is useful in other applications as well; for example:

e in military applications, we want to be able to distinguish between a tank and a heap of
rubbish;

e in medical imaging, we must be able to detect the shapes of skin formations: regularly shaped
formations are mostly harmless, but the irregularly shaped ones could mean cancer.

As a test case, we used a benchmark B-52 plate provided by Boeing which contains 16 artificially
induced smooth-shaped (circular) and angular-shaped (square) faults of 4 different sizes both inside
and on the edge: 4 inside squares of sizes 1/2" x 1/2", 3/8" x 3/8", 1/4" x 1/4", and 1/8" x 1/8",
4 edge squares of the same sizes, 4 inside circles with diameters 1/2", 3/8", 1/4" and 1/8", and
4 edge circles of the same diameters. Seven different measurements were done on this plate: two
Pulse Echo measurements at different frequencies, four measurements of magnetic resonance, and
one measurement of Eddy current. Six of these 7 measurements measure phase (Eddy current is
the only exception).

None of these 7 measurements detects all the faults; e.g., Eddy current only detects circular
faults, etc. We therefore need to combine (“fuse”) the results of these measurements.

5.2 Possible Interval Approach to Data Fusion and Fault Detection: Brief Ex-
planation and Related Difficulties

As we have mentioned, 6 of 7 measurements measure phases. For each point A and for each such
measurement z;(A), we know the upper bound A; on the measurement error, i.e., on the distance
d(z;(A),z;(A)) between the actual (unknown) value of this phase z;(A) and the measurement result
z;(A).

If this upper bound is the only information that we have about the measurement error, and
we have no information about the probabilities of different possible values of measurement error,
then the only information that we have about the actual value of z;(A) is that z;(A) belongs
to the interval {z|d(z,Z;(4)) < A;}, the interval that we, in the previous section, denoted by
[Zi(A) — Ay, Ti(A) + Ag.

In many practical cases, the measurement error is close to 7, so the resulting interval is close to
the entire circle. In such cases, before the measurement, we know that the phase is somewhere on
this circle; after the measurement, all we added to this original knowledge is that we excluded values
from a small portion of this circle as impossible. This exclusion does not add much knowledge, so
no wonder that very little can be deduced from the results of such measurements.

To bring in more information, we can perform several measurements of the same phase-valued
quantities. Since every measurement adds a little bit of information, we can expect that after
performing sufficiently many independent measurements, we will gather enough information to
make meaningful conclusions about the faults.



Theoretically, this conclusion sounds reasonable, but in practice, when we tried this approach,
we encountered the problem that we described in Section 4. Namely, as a result of each measure-
ment, we get an interval that covers almost the while circle. After two measurements, we get two
such intervals, so we can conclude that the actual value of z;(A) belongs to their intersection. As we
have mentioned, this intersection often consists of two disconnected intervals — the union of which
still covers almost the entire circle. After the third measurement, we get one more almost circular
interval, and the intersection often further increases the number of disconnected components that
form the set X;(A) of possible values of z;(A).

In short, the more measurements we undertake, the more accuracy we want, the more complex
the resulting set becomes. In principle, it is possible to describe such a set, but it is extremely
difficult to use the information that z;(A) € X;(A) in any data processing algorithm. Due to the
huge number of components, this information simply means that z;(A) belongs to one of the many
components.

Traditional data processing techniques are ill-equipped for constraints that contain the word
“or” between inequalities; in most cases, the best we can do is consider each of these cases separately.
We could do that for each individual point A, but the multiple-component phenomenon occurs for
numerous points A. So, we have to consider all possible combinations of such components — and
this make this approach practically non-feasible.

What can we do? As we have mentioned, the above difficulty occurs if the only information that
we have about the measurement errors is the upper bound on the measurement error. In practice,
often, in addition to this upper bound, we also have some information about the probabilities of
different values of this error — actually, in many cases, the observation data are consistent with the
assumption that this measurement error is normally distributed. We will show that this additional
statistical information indeed helps — it provides a way out of the complexity caused by the interval
approach to angle measurements.

5.3 Existing Methods of Fault Detection

Several statistics-based methods have been proposed that fuse the results of different measurements
and thus, detect the faults [3]; the best of the known fusion methods is the following one (see [13]
for more detail).

This method is based on the fact that faults can be detected by unusual values of different
measured quantities; in statistical terms, we can say that faults can be detected as outliers. For
each plate, and for each measurement type z;, the probability distribution of measurement result
for regular (non-fault) points is close to Gaussian. As a result, it is natural to declare a point A an
outlier if the corresponding value z;(A) is outside the corresponding 2 sigma interval (or 3 sigma),
i.e., for which |z;(A) — a;| > 2 - 04, where a; and o; are the mean and standard deviation of the
corresponding Gaussian distribution®.

How can we compute the values a; and ;7 If we had a plate with no faults, then we could simply
compute a; as the average of all the values z;(a), and, accordingly, o; as /(1/N) - 3 4(z;(A) — a;)?,
where N is the total number of pixels. However, the whole point is that there are faults, and if we
take the average of all the values z;(a), including the fault points A, we get a biased estimate for
a;. To avoid this bias, we can apply an iterative method in which we sequentially re-calculate the
values a; and o; and also mark points as possible outliers. At first, none of the points are marked.
At each step, we:

In this paper, capital letters A, B will denote points on a plate.



e compute the new value of a; as the average of z;(A4) over all un-marked points, and then
compute o; as \/(1/N) - > 4(z;(A) — a;)?, where N is the total number of un-marked points;

e then, we additionally mark points for which |z;(A) — a;| > 2 - o as outliers.

We stop when no new points are marked.

Based on the resulting estimates of a; and o;, we compute, for every measurement ¢ and for

every pixel A, the normalized value z;(A) %ef (zi(A) — a;)/oi. According to normal distribution,

the probability that a non-fault point A has value z;(A) is proportional to exp(—(z;(4))?).

It is reasonable to assume that the measurement results x; and z; are statistically independent
(if z; was strongly dependent on z;, then measuring z; would not make much sense after we
have already measured z;). In this case, the normalized values are also independent, and so the
probability for a non-fault point to have values (z1(A),...,z,(A4)) is proportional to

p=TTew(~(a(4)) = exp (— iui(A))?) .

i=1

If this probability is very small (smaller than a certain threshold pg), then this point cannot be a
regular point and is, therefore, an outlier. Turning to logarithms, we can transform the criterion
p < po into an equivalent form 3 (z;(A))% > to for some new threshold .

How can we determine this value ¢¢? For outliers, we have already selected a 2 sigma criterion.
According to this criterion, even if we start with a population that is perfectly normally distributed,
we will classify 5% of this population as not belonging to this distribution. In other words, even
in the absence of any faults, with a normally distributed population of regular points, 5% of these
perfectly normal points will be (mis)classified as outliers. It is reasonable to accept a similar 5%
criterion for selecting the value ¢y. This leads to a tg = n- (14 2-/2/n). So, we mark a point A
a fault if the sum Y (z;(A))? exceeds this threshold ty.

To make this algorithm work better, we need to make two minor modifications:

¢ First, we have to process edges separately and the interior of the plate separately. Reason:
crudely speaking, faults are points where the plate is thinner; near the edges, it is also
drastically thinner, so if we combine the edge pixels with the interior ones, then the entire
edge will show as one big fault. We said “crudely speaking” because, in reality, naturally
occurring small variations in plate thickness does not cause any trouble; however, a drastic
change in thickness — e.g., the change near the edges — does affect the results.

e Second, some of the outlier values z;(A) are caused by a malfunctioning of the measuring
instrument. To avoid marking such points as outliers, we mark a point as fault only if, in
addition to the condition |z;(A4)| > 2 (corresponding to the two sigma deviation), at least one
more mode j # ¢ detects an outlier either at this very point A or at some point B in the
nearest neighborhood of this point A (i.e., for which p(A, B) < ¢ for some small ¢ > 0). If
for all other measurements j # 4 in this small neighborhood, we have |z;(B)| < 2, we dismiss
the value z;(A) as a probable malfunctioning of the measuring instrument. For this pixel, we
thus combine only 6 remaining values z;(A) (j # i) instead of the usual seven.

On a test plate and on several other plates with known fault locations, the resulting method detects
the faults reasonably well, in the sense that it has a smaller number of false positives (regular points
erroneously marked as faults) and false negatives (fault points erroneously marked as regular) than
the previously known methods.



Figure 1: Existing Method

The results of applying this method to the test plate are described in Fig. 1. In this figure,
actual faults are outlined in black: by black squares and (broken) circular contours. The gray
points are the ones that the algorithm detected as faults.

5.4 Problems with the Existing Methods of Fault Detection

No material is flawless, so we are bound to find some faults. The important question is: how to
distinguish really dangerous faults that require repairs (or even a replacement of this part) from the
minor ones that do not present an immediate danger (but that may indicate the need for further
monitoring).

The fault’s degree of danger depends on its size, location, and shape. The dependence on the
size is straightforward: larger faults are more dangerous, miniscule faults can be safely ignored.
The dependence on the fault’s location is also pretty straightforward: faults at the edges are usually
dangerous (irrespective of their shape), because when they grow, they can easily get to the edge
and thus, provide a serious damage. In contrast, faults inside a plate are sometimes reasonably
harmless.

To what extent a fault inside a plant constitutes a danger depends not only on its size but also on
its shape: smooth-shaped faults gather less stress and are, thus, less dangerous than angular-shaped
ones.

Of these three criteria — location, size, and shape — the existing methods of fault detection
detect the location and size reasonably well. However, the shape of the reconstructed set of fault



points is not reproduced well: some square faults look like circles and vice versa.

It is therefore desirable to supplement the existing method — which is reasonably good at
detecting, locating, and gauging the size of the faults — with an additional algorithm that would
better determine the shape of the discovered faults.

In other words, once we applied the original method to detected the faults, we should then use
the new method to get a better idea of the shapes of these faults, and thus, to make a decision on
whether the plate needs repair or replacement.

5.5 A Supplemental Method for Shape Detection

The main reason why the existing method is not very good in detecting shape in that in the existing
method, our main objective was not to miss any faults — because faults are dangerous. Therefore,
when there was good evidence to support both hypotheses: that the pixel A is a fault and that the
pixel A is not a fault — we tended to declare it a fault. As a result, we “padded” the set of fault
points with extra points — thus distorting the shape of the set of all the fault points.

To get the shape better, it is therefore reasonable to treat the two hypotheses equally. Specifi-
cally, we consider two hypotheses: Hg that a point is not a fault and H; that the point is a fault,
and we use the standard techniques of hypothesis testing (see, e.g., [16]) to decide which of these
hypotheses is more probable: we choose H; if the probability P; of the hypothesis H; is larger than
the probability Py of the hypothesis Hy. ' ' '

According to Bayes Theorem, the ratio Py /Py is equal to (p1 - PP"")/(po - PY™"), where Py
and P} rior ,re prior probabilities of these hypotheses, py is the probability (density) of the observed
data under the hypothesis Hy, and p; is the probability (density) of the observed data under the
hypothesis Hy. Thus, the criterion P; > P, for choosing H; can be reformulated as P;/Py > 1, or,
equivalently, as p;/py > t, where ¢ def Py rior s pprior.

We already know how to describe the probability pg corresponding to Hy. It turns out that the
distribution of z;(A) for fault points is also approximately Gaussian — of course, with different values
azf and alf . (We can estimate the values azf and azf by processing the points that are marked as
outliers after the iterative algorithm for computing a; and 0;.) As a result, after taking logarithms
of both sides, we can transform the criterion p; /py > ¢ to an equivalent form

n Ay — T\ 2
> (@-(A))? - (%) ) > b,

i=1 %
The same arguments as before lead us to choose the same value for ¢g.

Comment. As we have mentioned, from the practical viewpoint, it is mostly important to detect
the shapes of the faults that are located inside the plate — because all the faults near the edge are
dangerous, irrespective of their shape. From the theoretical viewpoint, however, it would be nice
to be able to detect the shape of edge faults as well. We cannot do that with the above algorithm
because to apply this algorithm, we need to have enough fault points to be able to conclusively
estimate aZJ-c and sz ; there are enough such points on the edge. Thus, if a need would appear to
detect shapes of edge faults, new methods must be invented.

5.6 Comparing the Quality of Shape Detection under the Two Methods

In order to find out whether the new method indeed improves the quality of shape detection, we
must be able to gauge how well the shape is reconstructed. In other words, we need a numerical
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characteristic that describes how well a method captures a shape. In the vicinity of each fault, we
have two sets: the true fault Fy (whose shape, for the test plate, we know), and the set F' of all
the points that are marked as faults in this neighborhood. How can we compare the true fault Fj
with the reconstructed fault F'?

As we have mentioned, our main objective is to reconstruct the shape of the fault. Specifically,
we want to be able to distinguish between angular and smooth (circular-type) faults. From this
viewpoint, if the reconstruction method preserves the fault set Fy intact but shifts it a little bit as
a whole — i.e., if F' can be obtained from Fj by shift — we would say that the shape was preserved
perfectly. Similarly, if the reconstructed set F' can be obtained from Fj by scaling, it is natural to
say that the shape was preserved.

If we cared not only about the shape but also about the exact location and size of the fault,
then it would be natural to gauge the difference between the actual fault Fy and the reconstructed
fault ¥’ by counting the total number of false positives and false negatives, i.e., in mathematical
terms, the total number of pixels |[FyAF| in the symmetric difference FyAF between the sets Fy
and F.

From our viewpoint, however, this measure of difference is not fuzzy adequate because if F' has
exactly the same shape as Fy but differs by a shift, the above distance measure can be large. So,
since we do not mind if F' and Fj differ by shift and by scaling, it is natural to define a different
measure of distance: instead of taking |FoAF|, we take the minimum of the values |T'(Fy)AF)| for
all possible combinations T' of shifts and scalings. In this case, if F' indeed has the same shape
as Fy but differs from it only by a shift and/or a scaling, the resulting distance will be 0. Vice
versa, if the resulting metric is 0, it means that the sets F' and T'(Fp) are identical, i.e., that the
reconstructed shape F' can indeed be obtained from the actual shape Fy by some combination T' of
a shift and a scaling.

On the test plate, we have square faults (whose axes are parallel to coordinate axes) and circular
faults. For a square fault Fp, the shifted and scaling also result in a square (with the same direction
of axes); moreover, any axes-parallel square can be obtained from F by an appropriate combination
of shift and scaling. Therefore, for such faults, sets T'(Fp) corresponding to all possible T" are exactly
all possible squares S whose axes are parallel to the coordinate axes. Thus, for such faults, the
above-defined distance is equal to the minimum of the value |SAF'| over all possible axes-parallel
squares S. Hence, for such faults, to gauge how well the reconstructed fault F' reproduced the shape
of the original fault, we must find the axes-parallel square S that is the closest to F' (in the sense
that the total number of pixels in the symmetric set difference is the smallest), and then estimate
the number of false positives and false negatives by comparing F' and S.

Similarly, for circular faults, any circular disc can be obtained from F{ by an appropriate shift
and scaling. Thus, to gauge the quality of reproducing a circular shape, it is sufficient to compare
the set F' with the closest circular disc C.

To gauge the overall quality of shape detection, we added the numbers of false positives over
all 8 inside faults, and we also added the numbers of false negatives over these faults. Here is the
result of our comparison:

e When we applied this procedure to the original method from [13], we got 2,443 false positives
and 19 false negatives inside the plate.

e For the new method, we got 1,895 false positives and 11 false negatives inside the plate.

The results of applying the new method to the test plate are given in Fig. 2. In this figure, for each
of the 8 faults, in addition to the black contour of the actual fault Fy, we also marked, in black,
the contour of the set S = T'(Fy) that is the closest to the detected shape F.
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Figure 2: New Method

Conclusion: if, after using the original method to detect the faults, we run the new method, we
indeed get a better understanding of the shape of the faults.
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