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Abstract

Feature extraction from images to perform object classification is a very hard problem for general
solution. We prove that under interval uncertainty, linear classification is NP-hard.

Feature extraction and pattern recognition. One possible application of intelligent virtual environ-
ments is to train people to classify objects of certain type into several known classes (categories). To check
how well they are trained, the system must be able to do this classification automatically. Thus, we must be
able to design a system which can automatically classify objects of certain type into several known classes.

As a case study, we will take an automatic inspection problem, where, based on an image of a printed
circuit board (PCB), we want to check whether a given Surface Mounted Device (SMD) is attached to this
PCB or not [1, 2, 3]. In general, we measure (directly or indirectly) several characteristics x1, ..., z, of the
image, and we want to make our decision based on the results of these measurements; these characteristics
are called features.

In the ideal case, these features should uniquely characterize the desired properties of the analyzed image.
Feature extraction is usually problem dependent [4]; the right selection of the features can simplify greatly
the job of the classifier [5]. In this paper, we will assume that the features have already been selected. For
example, we can take as z;, either the brightnesses values of different image pixels, or the results of applying
functions or transformations to these brightness values.

Linear classifiers: the simplest case. Many of such classification problems have been successfully solved,
by well-justified methods [5, 6]. In some cases, the solution is very computationally complicated (e.g., requires
several thousand iterations on a neural network), but in many other cases, the solution is computationally
very simple: we have linear classifiers that separate each pair of classes. A linear classifier is a pair consisting
of a linear discriminant function £(z) =¢; -1 + ... + ¢, - T, and a threshold value ¢g such that £(z) > ¢
for all objects from the first class, and £(z) < ¢o for all images from the second class [5, 6].

Informal formulation of the problem. If linear classifiers are possible, then we can easily classify an
arbitrary object by computing the values of the (easily computable) function £(z). It is, therefore, desirable
to check whether it is possible to separate two given classes by a linear classifier. If we already know that
a linear classification is possible, then the next natural question is to find the coefficients ¢; of the linear
discriminant function. In this paper, we will analyze the computational complexity of these problems: i.e.,
the problem of checking whether a linear classifier is possible, and the problem of computing the coefficients
of the classifier.

When measurements are absolutely accurate, these problems are easy to solve. Let us describe
the above problems in precise terms. We have several examples of objects from the first class, and we have



several examples of objects from the second class. Let us denote the number of known objects from the first
class by p, and let us denote, for each i from 1 to p, the features of i-th object by z(? = (mgi), ... ,a:gf)).
Similarly, we will denote the total number of known objects from the second class by ¢, and the features
of i-th object from the second class by y(® = (y%i), . ,yg )). The vectors which describe the features of
known objects are usually called feature vectors, or patterns [5, 6]. If the measurements are accurate, then
the possibility of a linear classifier is equivalent to the existence of the real numbers ¢y, ..., ¢,, ¢y for which
the following inequalities are true:

cl-xgi)—l—...—}—cn-wg)zco,lgigp; (1)
) @D ;
ey ...ty <o, 1<i<gq. (2)
(Of course, these inequalities are always true if we take ¢; = ... = ¢, = ¢o = 0, so we must exclude this

degenerate case.)

In algorithmic terms, the possibility of a linear classifier is equivalent to the solvability of the system of
linear inequalities (1), (2). The problem of checking such solvability is well known in applied mathematics:
it is a particular case of linear programming. There exist polynomial-time algorithms for solving linear
programming problems; therefore, in the case of precise measurements, the problem of checking the existence
of a linear classifier is computationally feasible (i.e., it can be solved in polynomial time [7]).

Similarly, the problem of computing the values ¢; for which (1) and (2) are true can also be solved by
known linear programming algorithms and therefore, this problem is also computationally feasible.

Entering interval uncertainty. In many practical problems, measurements are not precise: For each
object, the measured values Z; of the features differ from the (unknown) actual values z; of these features.
Usually, we know the upper bound A; on the corresponding measurement errors Ax; = &; — x;; as a result,
from the measurement result Z;, we can conclude that the actual value z; can take any value from the interval
X; = [ﬁi AV T Az] [8]

In some cases, in addition to upper bounds, we also know the probabilities of different measurement
errors, but in many practical problems, we do not know these probabilities. With these problems in mind,
in this paper, we will consider the classification problem under interval uncertainty.

Towards the exact formulation of the interval classification problem. Each object is character-
ized by n different features zi,...,2,. So, if we take interval uncertainty into consideration, the result of
measuring features for each object is a sequence of intervals x = (x1,...,%,). We know such sequence

x( = (xgi), .. .,xg)) for each of p objects from the first class, and we know the corresponding sequences

y@ = (ygi), ... ,ygf)) for each of g objects of the second class. We say that a linear classifier is possible if
there exist coefficients c1, ..., ¢n, o, and values z;° € x;

() ) and y](-i) € yg-i) for which the inequalities (1) and
(2) are both true. We will show that checking this condition is computationally intractable (NP-hard) [7].
Definition.

e Let an integer n be given; this integer will be called the number of features.
e A sequence x = (X1,...,X,) of n intervals will be called an (interval) pattern.

e By an interval classification problem, we mean a pair (F,S), where F' and S are finite sets of interval
patterns.

e We say that for an interval classification problem, a linear classifier is possible if there exist real
numbers ci, .. ., ¢y, co which satisfy the following three conditions:
— these numbers are non-degenerate (i.e., ¢; # 0 for some i from 1 to n);

— for every pattern x = (X1,...,X,) from the set F, there exist values z; € x; for which ¢; - 1 +
eo.tcCp-xy > co; and

— for every pattern'y = (y1,...,yn) from the set S, there exist values y; € y; for which ¢; - y; +
oot cenyn < cp.



Theorem. The problem of checking whether a linear classifier is possible for an interval classification
problem is NP-hard.

Proof. We will show that if we can check, for every interval classification problem, whether a linear classifier
exists or not, then we would be able to solve a partition problem which is known to be NP-hard [7, 9]. The
partition problem consists of the following: given N integers si,...,sn, check whether exist N integers
¢; € {—1,1} for which ¢y -s1+...+¢en-sy =0.

To solve this problem, let us formulate the following interval classification problem. In this problem,
n =N +1,ie., we have N + 1 features z1,...,Zn,Zn+1. We will form the sets S and F' as follows:

e First, we add an interval pattern ([s1, s1],..., [sn,sn],[1,1]) both to F and to S.
e Next, for each ¢ from 1 to N, we add:
— a pattern ([0,0],...,[0,0],[-1, 1] (¢—th place), [0,0],...,[0,0]) to F;
— a pattern ([0,0],...,[0,0],[1,1] (i—th place), [0,0],...,[0,0]) to S;
— a pattern ([0,0],...,[0,0],[-1, —1] (i—th place), [0,0],...,[0,0]) also to S.
e Finally, for i = N + 1, we add a pattern ([0,0],...,[0,0],[1,1]) both to F and to S.

The possibility of having a linear classifier for these interval pattern is equivalent to the existence of the
coefficients ¢y, ..., ¢y, co for which:

€181 +...+cen SN+ eny1 > co; (3a)
c1-81+...+en sy +envyr < co; (3b)
for each i from 1 to N,

z; - ¢; > ¢o for some z; € [-1,1]; (4)
¢ < Co; (5)
—¢; < co; (6)

and finally, for ¢ = N + 1, we have
CN+1 2 Co; (7a)
en+1 < . (7b)

This system of inequalities can be simplified if we take into consideration that two inequalities (3a) and (3b)
are equivalent to the equality
€181 +...+cen SN +eny1 = o, (3)

and similarly, (7a) and (7b) are equivalent to a single equality
CN+4+1 = Cg. (7)

So, we have to satisfy conditions (3), (4), (5), (6), and (7).

If the partition problem has a solution ¢; € {—1,1},1 <1 < N, then we can easily show that these values
¢;, together with cy11 = ¢ = 1 and z; = ¢;, satisfy the conditions (3)—(7).

Vice versa, let a non-degenerate vector ¢; satisfy the conditions (3)—(7). Then, for i = N + 1, from (7),
we conclude that ¢yy1 = ¢g, and therefore, (3) takes the form

c1-81+...+env-sn=0. 8)
For : < N:

e On one hand, from (5) and (6), we conclude that |¢;| < ¢ and therefore, ¢g > 0; we cannot have ¢y = 0,
because otherwise ¢; = 0 for all 7, and we will have a degenerate vector, so ¢ > 0.

e On the other hand, from (4), we conclude that |z;| - |c;| > co, i-e., that |¢;| > co/|2i]- Since |z;| < 1, we
conclude that |¢;| > ¢o.



Combining the two inequalities |¢;| < ¢o and |¢;| > ¢g, we conclude that |¢;| = ¢g, i.e., that either ¢; = ¢y,
or ¢; = —cg. So, if we take & = ¢;/cy, we conclude that & € {—1,1}. Dividing both sides of (8) by ¢, we
conclude that

¢1-s1+...+¢cn-sn=0,

i.e., that the values ¢;,...énx € {—1,1} form a solution of a partition problem.

Thus, the constructed interval classification problem has a linear classifier if and only if the original
partition problem has a solution. Since we know that the partition problem is NP-hard, we can thus
conclude that the problem of checking whether a linear classifier is possible is also NP-hard.
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