Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal

Angelo Peter Karavolos

University of Texas at El Paso, contact@desastrisgeneration.com

Follow this and additional works at: https://digitalcommons.utep.edu/open_etd

Part of the Biomedical Commons, Materials Science and Engineering Commons, Mechanics of Materials Commons, and the Nanoscience and Nanotechnology Commons

Recommended Citation

https://digitalcommons.utep.edu/open_etd/472
IMPLEMENTATION OF NEW SYSTEM FOR OXYGEN GENERATION AND
CARBON DIOXIDE REMOVAL

ANGELO PETER KARAVOLOS

Doctoral Program in Materials Science and Engineering

APPROVED:

Eric Smith, Ph.D., Chair

Jean-Jacques Favier, Ph.D., Co-Chair

Rosa Fitzgerald, Ph.D.

Binata Joddar, Ph.D.

Shailendra Varma, Ph.D.

Jose Hurtado, Ph.D.

Charles H. Ambler, Ph.D.
Dean of the Graduate School
Dedication

To my wife and all of those whose efforts made this product possible, especially the committee members and those in the space industry.
IMPLEMENTATION OF NEW SYSTEM FOR OXYGEN GENERATION AND CARBON DIOXIDE REMOVAL

by

ANGELO PETER KARAVOLOS, B.S., M.S.

DISSertation

Presented to the Faculty of the Graduate School of
The University of Texas at El Paso
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Doctoral Program in Materials Science and Engineering

THE UNIVERSITY OF TEXAS AT EL PASO
December 2017
Acknowledgements

The author would like to thank the following individuals for their invaluable assistance in helping me accomplish this work: Eric Smith, Boris Morukov, Molly Anderson, Jean Jacques Favier, Jaydeep Mukherjee, and Patricia Nava.
Abstract

This research effort develops an integrated system for CO₂ removal and O₂ production. A unique material, dodeca-tungsto-phosphoric acid (H₃PO₄W₁₂O₃; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC₂H₅)₄ or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O₂, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H₂O within the crystal also adsorbs CO₂. It can also be cross-linked with other polymers such as polycarbonate, for different applications and properties such as flexible textiles. A set of isolated bench experiments were designed to test CO₂ adsorption, O₂ production, heat production, and voltage production were conducted to test the hypothesis that DTPA can provide CO₂ adsorption, O₂ generation, heat generation and electrical generation. Five experiments with this apparatus were conducted: (1) a mass balance experiment; (2) an X-ray diffraction experiment; (3) a photo spectroscopic experiment; (4) a calorimetric experiment; and (5) a dielectric experiment. Results illustrate that approximately 2880 grams of this material produces 576 grams of O₂, and removes 1760 grams of CO₂. The reaction also produces approximately 844 kJ/mole heat, and can supply 12.2 V potential over a period of 4.5 hours. The amount of unused material and the recycling ability suggests the usefulness of the technique to achieve between a 50-75% closed system. In addition, an experiment using ¹⁸O tracer demonstrated that approximately 20% of the O₂ produced comes from processed CO₂ adsorbed by the crystal, while the remaining 80% of the O₂ produced comes from replaced O₂ within the crystal itself. The device has multiple applications including environmental control and life support for
aircraft cabins, space vehicle interiors, submarine pressure vessels, sealed armored vehicles, and personal protective equipment for individuals working in confined spaces such as mines.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

ABSTRACT ... vi

TABLE OF CONTENTS ... viii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

1. INTRODUCTION .. 1
 1.1 Summary .. 1
 1.2 Material Selection Process Summary ... 2
 1.3 Description of Device ... 3
 1.4 Device Function .. 7
 1.5 Methods of Measurement .. 7
 1.6 Experimental Methods .. 9
 1.7 Modeling Experiments .. 12
 1.8 Comparison with Existing Data .. 12

2. OBJECTIVES ... 13
 2.1 Summary .. 13
 2.2 Technical Objectives ... 14
 2.3 Degeneration and Regeneration Chemistry 15
 2.3.1 Oxygen Production ... 15
 3. LITERATURE REVIEW .. 17
 3.1 Summary .. 17
 3.2 Previous Studies .. 18
 3.3 Current Commercial Techniques for Oxygen Production 19
 3.4 The Case for Use of WO₃ for O₂ Release 22
 3.5 Example of an Integrated System Design 23

4. RESEARCH DESIGN ... 26
 4.1 Summary .. 26
 4.2 Theoretical Considerations ... 27
 4.3 Experimental Design Considerations 29
 4.4 Example System Process ... 30
5. METHODOLOGY ..33
 5.1 Summary ...33
 5.2 General Assumptions ..35
 5.3 Experimental Procedure: Collection of Samples ...36
 5.4 Experimental Procedure: Preparation of Controls ..36
 5.5 Experimental Procedure: Preparation Si(OC2H5)4 ..37
 5.6 Experimental Procedure: Preparation of H3PO4W12O3639
 5.7 Experiment 1: Measurement of pH ...39
 5.8 Experiment 2: Measurement of Dielectric Constant40
 5.9 Experiment 3: Measurement of Heat Capacity ...44
 5.10 Experiment 4: Measurement of O2 Concentration ..46
 5.11 Experiment 5: Measurement of CO2 Concentration47
 5.12 Experiment 6: Decomposition of H3PO4W12O36 ..47
 5.13 Experiment 7: Regeneration of H3PO4W12O36 ...48
 5.14 Experiment 8: Tracking O2 ...49
 5.15 Experiment 9: X-Ray Diffraction ...50
 5.16 Experimental 10: Photospectrometer Measurements51
 5.17 Experiment 11: Raman Spectroscopy Sample Preparation and Tests52
 5.18 Experiment 12: Mass Spectroscopy Sample Preparation and Tests53
 5.19 Experiment 13: Effectiveness of Pressure Drop to Remove Dissolved O2 ..54
 5.20 Experiment 14: Super Oxide Regeneration from Tungsten Products55
6. RESULTS AND DISCUSSION ..56
 6.1 Summary ...56
 6.2 pH Data (Experiment 1) ...58
 6.3 Dielectric Constant Data (Experiment 2) ...58
 6.4 O2 Gas Production Data (Experiment 3) ...60
 6.5 CO2 Gas Consumption Data (Experiment 3) ..61
 6.6 DTPA Decomposition Experiment (Experiment 6)62
 6.7 DTPA Re composition Experiment (Experiment 7)63
 6.8 Trace O2 Test (Experiment 8) ...64
 6.9 XRD Data (Experiment 9) ...64
 6.10 Photo Spectroscopy Data (Experiment 10) ..68
 6.11 Raman Spectroscopy Data ...69
 6.12 Mass Spectroscopy Data ..70
 6.13 Pressure Drop Data (Experiment 13) ..71
 6.14 Experimental Recycling from Spent WO (Experiment 14)72
7. CONCLUSTIONS ..73
 7.1 Summary ...73
 7.2 Experimental vs. Modeled Data ..75
 7.3 Final Thoughts ...75
LIST OF REFERENCES ...77
CURRICULUM VITA ..82
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Various species of decomposing H3PO4W${12}$O${36}$ at different pH of the disassociation process.</td>
</tr>
<tr>
<td>Table 2</td>
<td>This table of data was obtained from mass balance experiment. Data were compared to predictions using modeling Ceries II Molecular Modeling, and data from previous investigations.</td>
</tr>
<tr>
<td>Table 3</td>
<td>Summary of H3PO4W${12}$O${36}$ properties using Ceres II modeling compared to accepted values calculated by experimentation.</td>
</tr>
<tr>
<td>Table 4</td>
<td>Sample data from Tests 1 and 2 illustrate the concentration increase in O$_2$, the increase of mass in the filter, and the amount of CO$_2$ released into the chamber.</td>
</tr>
<tr>
<td>Table 5</td>
<td>Sample data from Tests 1 and 2 illustrate a comparison between the amounts of WO that can be harvested from decomposition from DTPA.</td>
</tr>
<tr>
<td>Table 6</td>
<td>Sample data from tests 1 and 2 illustrate the amount of DTPA that can be harvested from WO. The WO was the same sample that was harvested from the DTPA decomposition experiment illustrated in Table 5.</td>
</tr>
<tr>
<td>Table 7</td>
<td>Illustration of presence of 18O$_2$ isotope in DTPA during decomposition to WO, and recomposition of WO to DTPA.</td>
</tr>
<tr>
<td>Table 8a&b</td>
<td>X Ray Diffraction data for various species of Tungsten. These samples were evaluated before interaction between NaOH, CO$_2$, and H3PO4W${12}$O${36}$. They are the controls.</td>
</tr>
<tr>
<td>Table 9</td>
<td>Illustration of presence of WO and DTPA during decomposition (test 1) and recomposition (test 2) using photo spectrometry. Spectral ranges used were between 400 nm and 900 nm).</td>
</tr>
<tr>
<td>Table 10</td>
<td>Illustration of Mass Spectroscopy for various species with and without the molecule 18O2.</td>
</tr>
<tr>
<td>Table 11</td>
<td>Illustration of pressure drop and amount of O$_2$ harvested.</td>
</tr>
<tr>
<td>Table 12</td>
<td>Thermodynamic properties of selected species during reformation of H3PO4W${12}$O${36}$ from WO. The quantities of each species were calculated from calculated values of H3PO4W${12}$O${36}$, O$_2$, and CO$_2$.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: Decision process for material selection of dielectric, and matrix material. 3
Figure 2: Illustration of CooRS device. .. 4
Figure 3: Schematic diagram of CO2 Removal – O2 Regeneration System (CooRS). The system consists of an outside shell housing the CO2 or air pumped through the filters, and the filter itself, which could be described as a dielectric material sandwiched between two conductive materials. This dielectric material contains CO2 adsorbing material, which generates sufficient heat in order to release O2 from O2-rich super oxides, such as H3PO4W12O36. ... 5
Figure 4: The device developed in this investigation, in which CO2 was removed and O2 regenerated in the system (Coors). The grids at the center were coated with H3PO4W12O36-Si(OC2H5)4 mixtures. Grid spacing could be varied for larger or smaller throughput of gas. Carbon dioxide enters the port at the bottom left, and O2 and N2 gas were allowed to escape at the opposite end of the unit. ... 6
Figure 5: The structural arrangement of Si(OC2H5)4and H3PO4W12O36. The H3PO4W12O36 lies in the center while four Si(OC2H5)4 molecules, surrounding the center molecule. The configuration returns to H3PO4W12O36 upon addition of Na2WO4, NaOH, PO4, and HCl. .. 6
Figure 6: (Right) The ECLSS CO2 removal system, used by NASA on the space station (Perry et al., 2004). (Left) The CO2 removal system developed by Paragon Space Corporation (Paragon Space Systems, 2010). ... 20
Figure 7: Illustration of the mole weight of CO2 removed per mole weight of amine, as a function of time. Notice that the amount of CO2 removed remains stable after a small amount of time. From Dibenedetto et al., 2002. .. 21
Figure 8: Illustration of MOXIE Carbon Dioxide- Oxygen Production system. (with permission from authors) .. 24
Figure 9: Illustration of the O2-CO2 gas exchange system in terms of mass balance. Each species produces a product and all reactants were accounted for in the closed system. 32
Figure 10: The instrument used to evaluate the pH within the dielectric material 40
Figure 11: Schematic illustration of capacitor chamber for separation of ions. Dielectric constant were before and after introduction of CO2, and during ion collection on each plate. .. 43
Figure 12: Illustration of Calorimmetry set up to measure the temperature change during decomposition and recomposition of DTPA or WO... 46
Figure 13: A Bruker X ray Diffraction Instrument .. 50
Figure 14: A Bosh and Lomb Portable Spectro Photometer Used to Identify W, P, Na and other Minerals in the Sample. .. 51
Figure 15: Illustration of a typical Raman Spectrometer .. 53
Figure 16: Illustration of Mass Spectrometer unit (Courtesy Triton Instruments). 54
Figure 17: Relationship between pH and time for the decomposition phase of the system 58
Figure 18: The rate of O2 production as a function of the partial pressure applied to the dielectric chamber .. 60
Figure 19: Diagram Illustrating the Positions and Concentrations of WO3 after Introduction to CO2. .. 66
Figure 20: Regenerated sample of WO3, Spent DTPA After Introduction to CO2. 67
Figure 21: Raman Spectroscopy of species Na2WO4, WO3, and H3PO4W12O36.................... 69
1. INTRODUCTION

1.1 Summary

This effort addresses the task of designing an integrated system for CO₂ removal and O₂ production, using a super oxide material within a capacitor chamber. The general chemical process involved in this approach can be summarized as:

1. Remove H₃PO₄ from H₃PO₄W₁₂O₃₆,
2. Introduce NaOH into a reaction chamber to form Na₂CO₃ and Na₃PO₄,
3. Use heat to release O₂ from WO and WO₂,
4. Regenerate H₃PO₄W₁₂O₃₆ from WO and WO₂ by using Na₂WO₄, H₃PO₄, HCl, and NaCl,
5. Remove waste C and Na₂CO₃ from the system.

This process can be used for enriching air with O₂, providing electrical current and heat, and removing CO₂. Using this process, a pressurized capacitor compartment could be constructed which can perform many functions needed for crew life support.

Several issues must be addressed in order to successfully meet the selected Lockheed Martin Environmental Control Life Support System validation process (Lockheed Martin Telecommunication, 2016). One system requirement shall be the need for a unit to produce at least 640 grams of O₂ per person per day (Lockheed Martin Telecommunication, 2016). A second systems requirement is that the unit removes 1760 grams of CO₂ per person per day. Thirdly, materials needed to accomplish the mission should be available as by-products of other sub systems. The amount of O₂ production and CO₂ adsorption must meet the needs of a person to perform respiration.
After a literature review of candidate oxide materials, several oxygen rich metal oxides were considered such as dodeca-tungsto-phosphoric-acid (H$_3$PO$_4$W$_{12}$O$_3$). The material was chosen because it contains 560 grams of O$_2$ per mole for one person at rest, per day. Dodeca-tungsto-phosphoric-acid (H$_3$PO$_4$W$_{12}$O$_{36}$) also contains one of the components needed to recharge the material, H$_3$PO$_4$.

1.2 Material Selection Process Summary

Figure 1 below illustrates a summary of the process used for dielectric material selection. The selection process for the material H$_3$PO$_4$W$_{12}$O$_{36}$ consisted of a survey of chemicals, both organic and inorganic that contains a high ratio of oxygen compared to the entire molecule. Such molecules include super oxides such as K$_2$O, Na$_2$O, and H$_3$PO$_4$W$_{12}$O$_{36}$. The molecule H$_3$PO$_4$W$_{12}$O$_{36}$ was chosen because it contains 22 % by weight oxygen, and was not chemically unstable, as both K$_2$O and Na$_2$O are flammable.
An added benefit to using DTPA chemistry for \(O_2 \) production can be seen by the production of heat and electrical charge within the container system.

1.3 Description of Device

The device itself consists of an internal container with several slots intended for individual filters. These filters are actually specialized capacitors containing a dielectric that changes as a function of \(CO_2 \) content.

The device could be described as a rectangular box. Other designs include a cylindrical shape. The total volume of the device was chosen such that a suitable amount of DTPA could adsorb approximately 1760 grams of \(CO_2 \) per day per person, and produce approximately 640 grams of \(O_2 \) per day per person. (Figure 2).
The rectangular box contains a series of sandwiched dielectric material (DTPA and TEOS) that serves as a CO$_2$ adsorbent and O$_2$, heat and voltage producer. The material, which lay between two conductive aluminum wafers, interacts with CO$_2$, H$_2$O, and NaOH to produce carbonates (Na$_2$CO$_3$, Na$_3$PO$_4$, and WO) and O$_2$. Figure 2 below illustrates some geometric configurations of the device.
Figure 3: Schematic diagram of CO2 Removal – O2 Regeneration System (CooRS). The system consists of an outside shell housing the CO2 or air pumped through the filters, and the filter itself, which could be described as a dielectric material sandwiched between two conductive materials. This dielectric material contains CO2 adsorbing material, which generates sufficient heat in order to release O2 from O2-rich super oxides, such as H3PO4W12O36.

There are five components within the chamber of the CO2 removal- O2 production system, two material components within the filter system, and two chemicals within the dielectric system.

The chamber itself (Figure 2) houses the filters that adsorb the CO2 and release the O2. Attached to this chamber are the O2 collection tank and the CO2 feed tank. These are seen in Figure 6a.

The filters themselves (Figure 6b) contain the dielectric material itself. It could be applied to one side of the plastic grid, seen in Figure 6b. If the electrical current generated during the gas exchange process was desired, two polyaniline or aluminum wafers can be placed on both sides of the dielectric material. Two alligator leads could be connected to the grids, so that charge generated by the break-up of DTPA could collect on the surface of the wafers.

The dielectric material itself could be seen in Figures 7, 8 and 9. There are two chemical components of this system- the dodeca tungsto phosphoric acid (DTPA) and the tetra ethyl ortho
silicate (TEOS) gelatin. The arrangements of these two molecules were predicted using Ceries II and Spartan Chemical Modeling Software. The configuration represents the lowest energy state that the molecules can exist while 10-100 nm away from each other, at standard temperature (25 C) and pressure (1 atm) conditions. The material exhibits useful properties such as hydrophilicity, and stability at higher temperatures (25-80 C) as well.

Figure 4: The device developed in this investigation, in which CO2 was removed and O2 regenerated in the system (Coors). The grids at the center were coated with H3PO4W12O36-Si(OC2H5)4 mixtures. Grid spacing could be varied for larger or smaller throughput of gas. Carbon dioxide enters the port at the bottom left, and O2 and N2 gas were allowed to escape at the opposite end of the unit.

Figure 5: The structural arrangement of Si(OC2H5)4 and H3PO4W12O36. The H3PO4W12O36 lies in the center while four Si(OC2H5)4 molecules, surrounding the center molecule. The configuration returns to H3PO4W12O36 upon addition of Na2WO4, NaOH, PO4, and HCl.
The center molecule consists of a central H₃PO₄ molecule (phosphoric acid) surrounded by twelve W atoms, which are in turn surrounded by thirty-six oxygen atoms. This molecule is a crystalline that has a dodecahedron shape (Figure 5). The entire complex contains multiple H₂O molecules.

The configuration of the dielectric once CO₂ begins to percolate through the TEOS and reacts with H₃PO₄W₁₂O₃₆, according to reaction probabilities calculated by chemical modeling (Ceries II).

1.4 Device Function

The device functions as a receptacle container for gas that has been exhaled from human occupants, and transferred to the container using a positive pressure, with a regulator device for adjusting gas flow rate. In addition, the device contains ports for electrical leads connecting each of the conductive layers of the filter to a voltmeter. The voltmeter device collects information on the electrical activity of the conductive surfaces, such as contact with ions within the dielectric. Once the CO₂ was adsorbed within the dielectric, heat was released and O₂ begins to move from the solid phase to the dissolved gas phase within the dielectric. In order to harvest the O₂ dissolved in the dielectric, the pressure in the system is lowered below the partial pressure of O₂, and O₂ is released.

1.5 Methods of Measurement

There were seven methods of characterizing the chemical process involving the release of O₂ from H₃PO₄W₁₂O₃₆ (DTPA) during NaOH and CO₂ adsorption. These were mass balance, X Ray
Diffraction, Raman Spectroscopy, Mass Spectroscopy, Photo Spectroscopy, measurement of
dielectric constant, and calorimmetry. The first method used was mass balance experimentation.
This process involved measurement of the incoming CO₂ from a container of known volume and
weight. The tank was connected to a pressure gage and regulator so that the flow rate, pressure,
and flux could be calculated. This experiment was completed during real-time release of CO₂.

Two other sets of experiments were completed to identify quantities dielectric constant and
heat output. The dielectric was separately encased between two conductive polymer materials
(polyaniline or thin aluminum wafer), so that a voltage potential could be generated during the
ionization of H₃PO₄W₁₂O₃₆, NaOH and CO₂.

Several experiments were completed in order to characterize the quantity of heat released.
A sample of the dielectric material was placed in a double glass tube calorimeter fitted with a
port for CO₂ gas insertion. About 200 grams of NaOH were added through a top port, and then
CO₂ gas fed into the inner glass tube. Water was placed in the outer tube, and a thermometer was
placed in the tube to measure the temperature increase. This heat value was compared to the heat
generated within the chamber containing initial reactants.

The fourth experimental method involved measuring samples of initial reactants, and
products during CO₂ introduction. These methods were X Ray Diffraction, Raman Spectroscopy,
Mass Spectroscopy, and Photo Spectrophotometry. Samples were prepared for each method
using the respective spectrometer sample preparation protocols. In addition, a smaller experiment
to determine the source of O₂ (H₂O, H₃PO₄W₁₂O₃₆ or CO₂), were completed using doped H₂O,
and CO₂ doped with ¹⁸O before reaction with H₃PO₄W₁₂O₃₆.

This experiment was repeated for both H₃PO₄W₁₂O₃₆ degeneration and WO regeneration.
Thus, a capacitor containing H₃PO₄W₁₂O₃₆ and NaOH, and one containing tungsten residue were
used as the dielectric. The capacitor containing $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ and NaOH were introduced to CO$_2$. The final products were compared to the initial reactants using X Ray Diffraction, Raman Spectroscopy, and Photo Spectroscopy. Another experiment whose dielectric material was WO, NaOH, H_3PO_4, and HCl mixed prior to application were also evaluated using these spectroscopic techniques.

1.6 Experimental Methods

Mass Spectroscopy

Mass Spectroscopy could be described as an analytical technique where molecules could be separated according to their ratio of charge to mass by the interaction with an energy source and a magnet. The energy source splits the large molecules into desired species and the magnet separates the different molecules according to mass and charge. The chemicals must be isolated within a special compartment in order to apply the energy for ionization.

The samples in this investigation were Na$_2$WO$_4$, with and without 18O$_2$, $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$, with and without 18O$_2$, and WO$_3$, with and without 18O$_2$. These were diluted to a concentration that would not contaminate the column of the instrument while measuring the concentration of 18O above background in each sample. Samples were mixed thoroughly for 2 hours in order to ensure uniform exchange between 18O$_2$ in H$_2$O and in each species.

Raman Spectroscopy

Raman spectroscopy could be used in chemistry to identify molecules and study chemical bonding. Because energy frequencies are specific to a type of bond, the structure and species of a chemical could be characterized.
The Raman effect could be explained as an interaction between the electrons in the orbital shells and the external electrical field produced by incident energy. This change in energy changes the chemical dipole moment during the excitation, and then relaxes when the excitation discontinues. Scans of Na$_2$WO$_4$, with and without 18O$_2$, H$_3$PO$_4$W$_{12}$O$_{36}$ were taken by sampling the dielectric material before and after the flow of CO$_2$ was initiated. Samples were taken using a small syringe (1 mm diameter) and inserting it into the dielectric material.

Photo Spectroscopy

Photo- Spectroscopy could be described as the measurement of the amount of reflection or transmission of energy as it passes through a material. For example, reactions can occur in the forward and reverse direction have various species in various concentrations can be shown through a clear glass container that houses the sample. Certain wavelengths of light could be adsorbed and others transmitted, based on Beer’s Law. The amount of light that was transmitted indicates the concentration of a particular chemical species. Samples of material for analysis were taken using a 1 mm syringe and scraping the dielectric before and after CO$_2$ was allowed to flow into the chamber.

X Ray Diffraction Spectroscopy

X-ray diffractometers operate by heating a wire filament, producing electrons, which could be then directed using electromagnets toward a target sample. Electrons that have sufficient energy to dislodge an electron of the target material. A target material such as Copper, that produces x rays of a specific energy when they are exposed to high energy electrons are used in this technique. Once these x rays interrogate the sample and create a pattern of exposure, they were
collected using an X-ray detector. The intensity and energy of these X-rays are analyzed and displayed as spectral lines.

Samples of $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ and Na_2WO_4 were dried in an oven to 100 C and placed in desiccators for future analysis. The samples were in a dried powder form and were placed on the instrument sample containers with no special preparation.

Heat Capacity

To find the heat energy change (enthalpy per mole) of $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ and Na_2WO_4 in a reaction between two substances A and B, the substances are added to a calorimeter and temperature before, during and after the reaction were recorded using a thermometer.

In this particular experiment, the temperature of the container was taken with a Soil Survey Instruments Thermometer, before, during, and after the CO$_2$ was fed into the container. The temperature data was compared to other data such as concentration of O$_2$, and dielectric constant of the material as a function of experiment time.

Dielectric Constant

During this experiment, two 14 gage wire leads were connected to a Texas Instrument Voltmeter, and one to each end of the aluminum wafers confining the dielectric. This dielectric was the CO$_2$ adsorbing- O$_2$ releasing material. The dielectric constant was calculated by measuring the voltage at subsequent times (one hour) during the introduction of CO$_2$ into the system. These data were compared to temperature data, and O$_2$ concentration data, so that thermodynamic data can be correlated with electrical property data.
1.7 Modeling Experiments

For this approach, several thermodynamic parameters are needed in order to predict or quantify the types of reactants, products and their rates of formation/decomposition. This particular approach is a mathematical model or approximation, and should be used when no experimental data can be obtained.

In this particular exercise, various reactants were selected and products predicted as candidate dielectric materials. Thermodynamic data for each scenario were recorded for comparison. In particular, parameters of interest were the temperature during the experiment, the Gibbs Free Energy, and Enthalpy of the system. These pieces of information provide clues for predicting the likelihood of the reaction, or whether the reaction could be possible at all.

1.8 Comparison with Existing Data

It is also useful to compare the modeled predictions and experimentally measured parameters to data that has been previously obtained by other researchers. Again, these parameters include the temperature, entropy, enthalpy and free energy of the system. In addition, other values such as reaction rates, pH, solubility, and activation energy (the energy needed to overcome electrostatic forces between two species) could be used to identify possible reactions between reactants, and probable reaction products.
2. OBJECTIVES

2.1 Summary

The primary objective of this investigation is to investigate and implement a chemical process that adsorbs CO₂ and releases O₂. Several experimental and modeling efforts were undertaken in order to test and validate the hypothesized system. One test, a mass balance test, describes the release of concentrated CO₂ from a known volumetric source and its adsorption on a dielectric material placed between two conductive plates. The second mass balance test describes the release of O₂ from H₃PO₄W₁₂O₃₆ within dielectric. This dielectric consists of a Si(OCH₃)₄ and H₃PO₄W₁₂O₃₆ powder homogeneously dispersed throughout the mixture. A third test describes the regeneration of the decomposed dielectric H₃PO₄W₁₂O₃₆ material through a sequence of chemical reactions. A fourth test outlines the procedure for computing the dielectric constant of the dielectric, and a fifth experiment outlines a method to calculate the temperature change of the dielectric during the decomposition of the dielectric material.

Other experimental procedures described in this investigation pertain to characterization of the species produced by the decomposition and recomposition reactions within the dielectric. These instrumental techniques include Mass Balance Testing, X Ray Diffraction Spectroscopy, Mass Spectroscopy, Raman Spectroscopy, and Photo Spectroscopy. In addition, experiments were completed which outline the chemical pathway for dielectric regeneration to H₃PO₄W₁₂O₃₆ from WO, and a special experiment demonstrating how to use ¹⁸O₂ to determine the origin of outgased O₂. Specifically, the experiment design illustrated whether O₂ within the DTPA (H₃PO₄W₁₂O₃₆) came from H₂O within the crystal, or from CO₂.
2.2 Technical Objectives

The primary objective of this investigation was to validate the proposed CO₂ adsorption – O₂ generation design satisfies the requirements for a self-enclosed life support system. These requirements were specified by sources from NASA and Lockheed Martin Space Systems Inc (NASA, LMCO Telecommunication, 2016). Carbon dioxide gas was allowed to pass through the dielectric of the filter material to determine CO₂ absorptivity. Guidelines were established outlining how to measure the CO₂ adsorbed by the system. Another mass balance experiment was conducted which outlines how to measure the amount of O₂ produced from dielectric decomposition (H₃PO₄W₁₂O₃₆ break up). The amount of gas in each container, as well as the dielectric constant was measured before and after the experiment. The difference between the amount of CO₂ gas released and the amount of O₂ collected in a collection bottle should be approximately equal to the amount of carbon accumulated in the dielectric material. The amount of CO₂ adsorbed and O₂ produced shall be comparable to the requirements outlined for space missions. (Lockheed Marin Telecommunication, 2016).

A third objective shall outline procedures to measure the temperature change by the decomposition reaction of H₃PO₄W₁₂O₃₆. The filter chamber was placed within another Styrofoam container filled with water, and lined with polyethylene to prevent seepage. A thermometer was placed into the water periodically (1 hour) during the decomposition process.

A fourth objective shall outline procedures for measuring the dielectric constant of the dielectric. During periodic releases of CO₂ into the filter container, the voltage would also be measured hourly.
2.3 Degeneration and Regeneration Chemistry

The reactions involved in this system are pH reactions. Initially, reactions involving a change in pH occur where CO₂ interacts with a large molecule, DTPA, which breaks down to WO, WO₂, WO₃ and H₃PO₄. Once these species migrate within the dielectric, they begin to move toward a specific pole. At this point, REDOX reactions begin to occur where the tungsten (W) reduces from WO, WO₂ and WO₃. The charge released by these ions collects on the charged capacitor plates.

Initially, HCl and NaOH were introduced into the system as products from other processes in other systems. For example, NaOH could be produced from electrolysis of NaCl and H₂O. Hydrochloric acid could be produced from the chlorination of water. Once these reactants were produced, the reactions described in the following sections could be completed in order to remove CO₂, produce O₂, and regenerate H₃PO₄W₁₂O₃₆.

2.3.1 Oxygen Production

There are many reactions that produce O₂. The most well known of these reaction are those of potassium or sodium permanganate and heated H₂O. These reactions were well documented in reports by (Yu et. al., 2012, Wachsman, 2003, 2007, Chang et. al., 2010 and Lide, 1995). The reaction proposed in this investigation could be illustrated below:

\[
3\text{CO}_2 \text{g} + 3\text{H}_2\text{O} = 3\text{H}_2\text{CO}_3 \quad (1)
\]

\[
\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36} + 5\text{NaOH} + 2\text{CO}_2 = 2\text{NaHCO}_3 + \text{Na}_3\text{PO}_4 + 12\text{O}_2 + 3\text{H}_2\text{O} + 12\text{WO} \quad (2)
\]

\[
\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36} + 5\text{NaOH} + \text{CO}_2 = 2\text{NaHCO}_3 + \text{Na}_3\text{PO}_4 + 5\text{O}_2 + 3\text{H}_2\text{O} + 12\text{WO}_2 \quad (3)
\]
2.3.2 Regeneration Process

The regeneration of H$_3$PO$_4$WO$_{36}$ can be expressed as

$$12WO_2 + 24NaOH = 12Na_2WO_4 + 12H_2 \quad (4)$$

$$12WO + 24NaOH = 12Na_2WO_4 + 12H_2 \quad (5)$$

$$12Na_2WO_4 + H_3PO_4 + 26HCl + 2NaOH = H_3PO_4W_{12}O_{36} + 26NaCl + 14H_2O \quad (6)$$

This research develops an integrated CO$_2$ removal and O$_2$ production system using dodeca-tungsto-phosphoric acid (H$_3$PO$_4$W$_{12}$O$_{36}$; DTPA) and tetra-ethyl-ortho silicate-polycarbonate (Si(OC$_2$H$_5$)$_4$. TEOS) filler material. Mixing these two compounds provides packed oxygen atoms in a dodecahedral arrangement and functions as a dielectric.
3. LITERATURE REVIEW

3.1 Summary

The relevant literature describes methods of CO₂ removal and O₂ generation. The super oxide DTPA, or its hydrate, H₃PO₄W₁₂O₃₆*59H₂O presents a better material for O₂ production and CO₂ removal than current CO₂ removal techniques such as LiOH.

Historically, LiOH was the material of choice for CO₂ removal in space vehicles and submarine (NRL, 1993). This material, though very effective, has toxic effects when becoming airborne by surface particle convection (NRL, 1993). In addition, in order to produce O₂, another system was needed, involving the breakdown of another valuable resource: water (Breaux et. al., 1978). In an attempt to replace LiOH a substitute material was developed: amines (Breaux et. al., 1978). In addition a CO₂ removal system and an O₂ production system were needed in current space applications (NRL, 1993).

A particularly promising material is H₃PO₄W₁₂O₃₆ (DTPA). The unique chemistry of this material discovered in the literature (Keggan, 1937), Nakamura et.al., (1979), Akimoto et. al., (1985), Subramanian et.al., (2007), characterizes the nature of the conductive properties of H₃PO₄W₁₂O₃₆. Other characterizations of the material demonstrate a high O₂ content and mechanisms for oxygen release within the crystal (Lee and Chen, 2005). The high conductivity and oxygen content of this material make it ideal for an oxygen supply. Added benefits of material are its exothermic release of heat upon introduction to water, or NaOH. A very important property of the H₃PO₄W₁₂O₃₆ crystal resides in its ability to retain water (Estrada et al. (2003). In addition, the crystal has the ability to transfer O₂ from the interior to the exterior of the crystal in the form of hydroxyl ions (Lee and Chen, 2005). Oxygen can be harvested from
H$_3$PO$_4$W$_{12}$O$_{36}$ using electrostatic separation (Lee and Chen, 2005) followed by a depressurization of the dielectric.

Two innovative functions discovered in this investigation were that O$_2$ could be harvested from CO$_2$ through the following steps. First, add it to water to form H$_2$CO$_3$. The bicarbonate (H$_2$CO$_3$) then becomes trapped within the H$_3$PO$_4$W$_{12}$O$_{36}$- Si(OC$_2$H$_5$)$_4$ complex, and the O$_2$ can be liberated from the crystal using a small amount of heat, followed by a decompression of the material within a chamber. The carbon from CO$_2$ incorporates within a carbonate ion.

3.2 Previous Studies

Previous patent work developed by Karavolos et al. (1999, 2000, 2000) discussed the mathematical basis for characterizing gas dissolved in aqueous gelatin media. This work serves as the framework with which to start a model for a new material that adsorbs CO$_2$ and produces O$_2$. Other investigators made similar contributions such as Quin et al. (2000), Qui and Hu (2013), Sakar (1979, 1995), Estrada et al. (2003), Pourjavadi et al. (2006), Karewicz et al. (2010), Qi, et. al., (1985), Malek et. al., (1997), Kondo and Gray, (1991), Kruelen et al. (1993), Khan et al. (2010), and Shariff et al. (2007). These investigators developed protocols and hardware that remove CO$_2$ from media, or produce O$_2$ from various oxide species.

Investigators such as Li and Chen (2005), Yang and Cussler (1986), Malek et al. (1997), and Kruelen et al. (1993) have provided particularly useful information concerning the fluid dynamics describing the O$_2$ and H$_2$O within the crystal. These papers provided valuable insight for deciding what experimental parameters such as equilibrium constants of species such as WO, WO$_2$, PO$_4$W$_{12}$O$_{36}$. Based upon these papers, the important parameters are the
system temperature, system pH, and the heat required to release CO₂ gas dissolved in solution. Several research efforts have addressed this question (Weiss, 1974, Bando et al., 2003).

Quinn et al. (2000), Qui and Hu (2013), Khan et al. (2010), and Kondo and Gray (1991) outlined experimental techniques that identify cellulose compounds that have suitable properties for use as gelatins. These gelatins could be used to emulsify CO₂ capturing agents such as amines. Shariff et al. (2007), Karewicz et al. (2010), and Pourjavadi et al. (2006) developed novel concepts for encapsulating material in polymeric substrates. These efforts support the supposition made in this investigation that gelatins could be used to emulsify CO₂ capturing agents such as O₂ rich super oxides. Kruehen et al. (1993) and Malek et al. (1997) developed useful models for describing gas transfer within materials. The work is similar to models developed to describe how N₂ moves from the dissolved phase to the gas phase in various media. This work supports the supposition made in this investigation that dissolved gases could be removed from media using a drop in external pressure.

3.3 Current Commercial Techniques for Oxygen Production

There are three basic methods used for producing O₂. One method involves the use of energy from a laser or electrical current (energy ablation) to split a singlet oxygen or O₂ from carbon. This requires a considerable amount of energy, over 1000 kJ/mole. Oxygen could be harvested by separating oxides from oxide minerals such as Na₂O₂, K₂O and others. Electrical current can remove O₂ from these minerals and they could be dissolved in an aqueous solution. This process requires less energy than energy ablation, but requires voltages between 3-12 volts. Other methods utilize catalyst molecules that lower the activation energy of a chemical complex, and it is this approach that was used in this investigation.
Investigators such as Perry et al. (2006), Ward et al. (1993), and Ryder et al. (1998) have designed mechanical apparatus to remove CO₂, and mechanically re-circulate air.

The ECLSS life support system on the right, developed by Perry et. al., (2004), was demonstrated within the decade. In this system, CO₂ was recovered on the left and O₂ was produced on the right side of the system.

Paragon Space Corporation, Inc. has proposed using an approach where one surface was heated to drive off CO₂ while another captures CO₂ (Paragon Space Corporation Report, 2016). Their unit draws the air from one bed to another. The process repeats itself with alternating collection surfaces (one collects while one heats) so that total removal time is increased.

The systems developed by Paragon Space Corporation describe methods for CO₂ removal. The methods are not able to be regenerate O₂. They also require separate systems for O₂ production (Paragon Space Corporation Report, 2016).
In the case of the amine materials, some amine byproducts such as RNH$_3^+$RNHCO$_2$ are produced which require detoxification treatments (DaSilva and Svendsen, 2010). Mechanical approaches consume about 1-2 W/hr to operate (DaSilva and Svendsen, 2010).

\[\text{R-NH}_2 + \text{CO}_2 \rightarrow \text{RNH}_3^+\text{RNHCO}_2 \quad (7) \]

Both of the products, R-NH$_3^+$ (aliphatic ammonium) and CNH-R-CO$_2^-$, (ammonium carbamate) are toxic according to their respective material data safety sheets. Qi and Cussler, 1985). Figure 2 below illustrates the effectiveness of amines in CO$_2$ removal. These compounds are ammonia and nitrogen amine groups that have a high affinity towards CO$_2$. The symbol R represents a cyclic benzene molecule. However, these compounds are toxic to human health, and thus a disadvantage in using this approach to removing CO$_2$ from an air supply. The use of this approach shall require safety systems to ensure that these toxic groups would not be introduced into the air supply.

Figure 7: Illustration of the mole weight of CO$_2$ removed per mole weight of amine, as a function of time. Notice that the amount of CO$_2$ removed remains stable after a small amount of time. From Dibenedetto et al., 2002.
3.4 The Case for Use of WO₃ for O₂ Release

Tungsten crystals offer four distinct advantages over conventional LiOH, Amine, and K₂O techniques. First, the crystals have unique water adsorption properties. Secondly, they are effective in adsorbing water that has been saturated with CO₂. In addition, the same H₂O absorbing mechanism can be modified to an HCO₃⁻ or H₂CO₃ mechanism. Thirdly, this same mechanism also initiates a process where O₂ can be expelled from the crystal, and the O₂ within the crystal and this O₂ can be regenerated using water. Finally, the tungsten crystal can generate both heat exothermically, and electrical charge.

Lithium hydroxide can only provide CO₂ adsorption, and because of its low valence cannot provide significant electrical charge. It can produce heat exothermically, but this heat output cannot be sustained, because the LiOH process for removal of CO₂ cannot be sustained.

Amines provide CO₂ adsorption and some residual heat output, but like LiOH, cannot generate O₂ within the same process, and the reaction does not proceed in a manner that can be sustainable.

Potassium super oxide (K₂O) holds more promise since it can adsorb CO₂ and produce O₂, but due to its low valence cannot produce significant quantities of charge, and also does not output a significant amount of heat.
3.5 Example of an Integrated System Design

The lessons learned from previous investigations were applied to the research design of this investigation. First, the most efficient environmental habitats are those that are sustainable (Kibert, 2005). This means that the products produced by one system could be used as reactants in another system, ideally a closed system. Second, materials with high surface area are best suited for maximum adsorption of CO\textsubscript{2} (Bennett, 1989). Most importantly, materials such as zeolites and gels appear to be well suited for clatheritically trapping super oxide, water. Such a chemical environment would allow gases such as CO\textsubscript{2} and O\textsubscript{2} to move in and out of the substrate.

This investigation expands upon the concepts developed from a previous patent submission, (Karavolos, Patent Application US 5855570A, 2014, 2015) by integrating CO\textsubscript{2} adsorption mechanisms with O\textsubscript{2} releasing mechanisms. The selected metal oxide H\textsubscript{3}PO\textsubscript{4}W\textsubscript{12}O\textsubscript{36} were integrated using first principles of capacitor physics Halliday and Resnik, (1978) and barrofluid mechanics (Halliday and Resnik, 1978). Such a device can provide CO\textsubscript{2} elimination, O\textsubscript{2} production, heat production, and voltage generation.

The relation describes the total flow between each chamber:

\[Q = VA, \]

(8)

Where \(Q \) represents the volume of gas moving per unit time, \(V \) is the velocity of the gas, and \(A \) is the cross sectional area of the chamber (Bennett, 1989).

Solid oxide electrolysis cell works on the principle that, using elevated temperatures, ceramic oxides, become O\textsubscript{2} conductors. A solid electrolyte cab be sandwiched between two porous electrodes. For oxygen generation from carbon dioxide, CO\textsubscript{2} diffuses through the porous electrode (cathode) and reaches the vicinity of the electrode-electrolyte boundary. Through a
combination of thermal dissociation and electro catalysis, oxygen atom can be liberated from the CO₂ molecule. The net reaction is shown below:

\[2\text{CO}_2 \quad + \quad 2\text{CO} + \text{O}_2 \]

The present system has dimensions of approximately 22 cm. by 10 cm, by 3 cm. Three kg of material, and a 0.5 kg cartridge, can produce 560 grams of O₂ per day, and remove 1760 grams of CO₂ per day. It does not require an external power source because the driving energy was an

Figure 8: Illustration of MOXIE Carbon Dioxide- Oxygen Production system. (with permission from authors)
exothermic reaction. In fact, it can produce heat and electrical voltage- approximately 844 kJ/day, and about 6.2 volts for 2 hours.

The difference between the two technologies can be seen as that the current proposed system contains a silicon sol gel, which can produce H₂ during certain reaction conditions. Another advantage of using a sol gel, can be seen in that H₂O and other liquids can be introduced into the system for easier control of reaction parameters. In addition, the MOXIE system produces CO, which can be toxic for human physiology, and not a very suitable propellant, such as H₂. Finally, the MOXIE system uses electrodes to drive the reaction, and in the present embodiment, charge (voltage) can be produced.

Using these ideas, a portable, self-contained device can be designed for CO₂ removal and O₂ production (US 5855570A). This work was completed as a design requirement of the current chamber design.
4. RESEARCH DESIGN

4.1 Summary

There are specific purposes for each experiment of the system. The container was constructed to be approximately 600 cubic cm, so that it could process 880 grams of CO$_2$, and produce 640 grams of O$_2$ per day per person. Secondly, the unit contains sufficient space for filters, which can absorb approximately at least 880 grams of CO$_2$. This is the amount of CO$_2$ exhaled by one person per day. (Mcardle et. al., 1991). Third, the unit contains ports for inserting electrical leads, so that the charge collected on the plates of the filter could be measured by a voltmeter. An optional component of the system entails a water-filled Styrofoam box so that heat produced by the exothermic reactions can be transferred to the water.

The filter itself consists of three components. The top and bottom layer consists of either a layer of conductive polyaniline or thin metal grid so that charge can collect on the top and bottom surface of the capacitor. The dielectric material itself was a H$_3$PO$_4$W$_{12}$O$_{36}$-Si$_2$H$_{12}$O$_4$ mixture. The H$_3$PO$_4$W$_{12}$O$_{36}$ within the dielectric can break down to WO, WO$_2$ and WO$_3$ upon introduction of CO$_2$ and NaOH.

In addition, the WO, WO$_2$ or WO$_3$ could be regenerated to H$_3$PO$_4$W$_{12}$O$_{36}$ by introduction of Na$_2$WO$_4$, H$_3$PO$_4$ and HCl using classic chemical techniques (Keggin,1937). This section discusses the reasoning and strategy behind the individual experimental procedures. The strategies were structured to accommodate the systems requirements of the customers who will eventually use this system for space exploration, navy operational vehicles, army operational vehicles, and the mining industry. These system requirements could be summarized as follows:
1. The material must be able to function within an ECLSS system (NASA Countermeasures Office, telecommunication, 2014).

2. The system must produce at least 640 grams of O\textsubscript{2} per day per person (NASA Countermeasures Office, telecommunication, 2014).

3. The system must remove approximately 1760 grams of CO\textsubscript{2} per day per person (NASA Countermeasures Office, telecommunication, 2014).

4. The system optionally can provide heat for other systems.

5. The system optionally can provide electrical current for other systems.

In order to validate the requirements of the system five experiments were implemented to show that:

1. Carbon dioxide (CO\textsubscript{2}) could be removed from the air supply.

2. Oxygen (O\textsubscript{2}) could be introduced into the air supply.

Another requirement shall be that the O\textsubscript{2} should be furnished from within H\textsubscript{3}PO\textsubscript{4}W\textsubscript{12}O\textsubscript{36}. A tracer gas containing (18O\textsubscript{2}) could identify the origin of O\textsubscript{2} by using GC mass spectrometry and Raman spectroscopy. A final requirement shall be that the material should be capable of breaking down and release O\textsubscript{2} upon adsorption of CO\textsubscript{2}. It should be able to regenerate itself using water and carbonates.

4.2 Theoretical Considerations

A desirable capability for CO\textsubscript{2} removing-O\textsubscript{2} producing material could be a high surface charge capacity. This would provide a large charge to the device.

In the arrangement of Figure 9, CO\textsubscript{2} interacts with H\textsubscript{3}PO\textsubscript{4}W\textsubscript{12}O\textsubscript{36} –Si\textsubscript{2}H\textsubscript{12}O\textsubscript{4} dielectric sandwiched between two permeable, electrically charged surfaces (b). A reaction occurs within
the plates (b) that allows the O$_2$ in the dielectric to escape. In Figure 9, the reaction proceeds, and species such as PO$_4$, and WO$_3$ begin to appear as the H$_3$PO$_4$W$_{12}$O$_{36}$ begins to break apart as the pH increases. The reverse process begins where the reaction proceeds from WO$_3$ to H$_3$PO$_4$W$_{12}$O$_{36}$ as it begins to react with NaOH, Na$_2$WO$_4$, HCl and H$_3$PO$_4$.

The molecule illustrated in Figure 5 was modeled using the Spartan and Ceres II molecular modeling software packages. Using the software, it was predicted that Si$_2$H$_{12}$O$_4$ and H$_3$PO$_4$W$_{12}$O$_{36}$ lay in close proximity to each other so that columbic forces draw them close to each other.

The dielectric material produced for the device consists of a porous paste. Once CO$_2$ was allowed to permeate the material, the pH begins to increase from acidic to basic, and H$_3$PO$_4$W$_{12}$O$_{36}$ begins to break apart into small WO$_2$ and WO$_3$ molecules, along with H$_3$PO$_4$, and H$_3$PO$_4$ molecules and ions. Once the smaller molecules such as WO, WO$_2$, PO$_4$, Na, and OH appear, they are able to pass through the interstitial spacing between the Si$_2$H$_{12}$O$_4$ molecules, toward the positive and negative charged plates of the capacitor. Neutral species simply remain within the crystal (Figure 5).

A final theoretical consideration involved identification of O$_2$ source. An isotope could be used which contains more neutron or proton in each of its atoms. Because 18O$_2$ has more mass than 16O$_2$, it follows a different pathway when traveling in a Mass Spectrometer. In this way, the molecule to which it was attached, or separated from, could be differentiated from other species, In addition to the information provided by isotopic analysis, thermodynamic information can also be obtained by measuring temperature changes in the reactions. The thermodynamic information can provide insight as to what reactions are favorable under standard temperature and pressure, and those that were not favored.
4.3 Experimental Design Considerations

One experiment was conducted so that the source of O₂ could be identified from either CO₂, H₂O, or H₃PO₄W₁₂O₃₆. Distilled water was mixed with ¹⁸O₂. Next, CO₂ was fed into the chamber. In a control experiment, CO₂ which was not mixed with ¹⁸O₂. was fed into the chamber. Evaluation by photo spectroscopy, X Ray Diffraction and Mass Spectroscopy would then reveal the presence of ¹⁸O₂ by measuring its background presence quantity in the O₂ gas chamber and SiO₂ filter material.

As background information, human breath contains 2-3% less O₂ after exhalation. The system therefore only needs to replace that 2-3 % (Tortora and Anagnostakos, 1987). For example, a crew of seven people consumes 3,920 grams of O₂ per day (Patton and Thibodeau (2009).

For a crew to maintain health and fitness, the air must be replenished with approximately 650 grams of O₂ per day. At the same time, six people produce 10,780 grams per day of CO₂, and this gas must also be removed. Crewmembers need O₂ at the rate of 23.3 grams per hour, and this rate is too high for biological process with limited surface area or time, as is the case for spacecraft, military aircraft and other confined spaces.

Therefore, two tasks must be completed: the design of the material, and the implementation of the material within the system. A material must be selected that can either produce O₂ during a physical or chemical process, or contain O₂ so that it can be released by a physical or chemical process.

First, a capacitor could supply energy through dissociation of molecules and generating charge by collection of ions to each side of the capacitor. Secondly, the dielectric within the
capacitor could be modified for suitable use as a CO₂ absorber, and this adsorption process could be used to release O₂ from an O₂ rich metal oxide.

Other oxides such as K₂O, and Na₂O₂ could be used, but they do not have the O₂ rich nature of H₃PO₄W₁₂O₃₆, and the material would have to be recycled numerous times in order to produce the desired amount of O₂ (560 grams), because only 32 grams of O₂ are available per mole per unit recycle time (Unpublished data, Ceries II modeling results, 2017).

In summary, a material and process could be developed where H₃PO₄W₁₂O₃₆ was used as a dielectric, suitably modified in order to provide O₂ and remove CO₂. Since the H₃PO₄W₁₂O₃₆ decomposition entails an exothermic reaction, so heat was produced. Since the chemical breakdown of species produces ions, and ions have charge, current was generated.

4.4 Example System Process

Below is a systematic illustration of the gas exchange process:

1. Carbon Dioxide (CO₂) entered a chamber constructed as shown in Figure 6. The gas combines with the H⁺ ion, creating HCO₃⁻. A pH of 2.0 was used to start the reaction, based on previous literature (Keggan, 1937).

2. The pH of the system began to increase as NaOH was adsorbed, and H₃PO₄W₁₂O₃₆, composed of H₃PO₄ and W₁₂O₃₆ separated to H⁺,PO₄⁻³, and WO₃. The Tungsten molecule formed (W₁₂O₃₆) was unstable, and various species of tungsten oxide formed.

 When applying a bias voltage (0.5-1.0 V) the plates, the W begins to move toward the negative cathode.
Table 1: Various species of decomposing H$_3$PO$_4$W$_{12}$O$_{36}$ at different pH of the disassociation process.

<table>
<thead>
<tr>
<th>pH</th>
<th>Ionic Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>PO4WO${36}$</td>
</tr>
<tr>
<td>2.2</td>
<td>PO4W${12}$O$_{36}$</td>
</tr>
<tr>
<td>3.5</td>
<td>PO4W${12}$O$_{36}$, WO$_3$</td>
</tr>
<tr>
<td>5.4</td>
<td>PO$_4$W9O${34}$, O$_2$, WO$_2$</td>
</tr>
<tr>
<td>8.3</td>
<td>PO$_4$WO$_3$, WO</td>
</tr>
</tbody>
</table>

This particular table illustrates the pH of solution needed in order to attain some of the precursor ions needed for DTPA decomposition to WO$_3$, WO$_2$ and WO.
DE GENERATION

35H₂O + H₃PO₄Na₂O₃₆ + 5NaOH + 40CO₂ = Na₂CO₃ + Na₃PO₄ + 12 O₂ + 39H₂CO₃ + 12WO

RE GENERATION

23H₂O + NaOH + 12WO + H₃PO₄ + HCl = H₃PO₄Na₂O₃₆ + NaCl + 24H₂

Figure 9: Illustration of the O₂-CO₂ gas exchange system in terms of mass balance. Each species produces a product and all reactants were accounted for in the closed system.
5. METHODOLOGY

5.1 Summary

A test chamber was constructed to test the functionality of DTPA material. It consisted of three components (See Figure 2). The first part allowed CO₂ gas to flow from the container to the capacitor chamber. The second part allowed CO₂ to flow into the dielectric material. The pH of the mixture increased as the reaction continued, and WO₃ forms. After depressurization O₂, the gas flowed to a gas collection chamber.

The following experiments were done chronologically in order to satisfy design requirements reported by discussions with Lockheed Martin (Lockheed Martin, telecommunication 2016). Specifically, the following experiments were completed in order to validate (or invalidate) the proposed mechanism by which H₃PO₄W₁₂O₃₆ degenerates to WO, and regenerates back to H₃PO₄W₁₂O₃₆.

1. Sodium hydroxide and H₃PO₄W₁₂O₃₆ in solution produce Na₃PO₄, WO and water.
 A sample of reactants and products were taken using a manual 10 ml pipette.
2. Samples were placed on a glass slide and air-dried at room temperature and standard pressure for 24 hours.
3. Samples were evaluated using X Ray Diffraction analysis for identification of products based on crystalline structure.
4. Samples were evaluated for molecular signature using spectro-photometry analysis.
5. Samples were evaluated using $^{18}\text{O}_2$ doped CO$_2$ and H$_2$O, to determine the source of O$_2$ in solution.

6. The next experiment involved a reaction between WO$_3$, obtained from the H$_3$PO$_4$W$_{12}$O$_{36}$ decomposition experiment (1), and mixed with dissolved CO$_2$ to produce reactants Na$_2$WO$_4$. These samples were also sampled using a 10 pipette.

7. Samples were placed on a glass slide and dried at room temperature and standard pressure for 24 hours.

8. Samples were evaluated for structure identification using X Ray Diffraction analysis, Mass Spectroscopy, Raman Spectroscopy and Photo Spectroscopy.

9. Samples were evaluated for molecular signature based on spectral signatures.

10. At this point in the reaction, a voltmeter indicated a voltage of 0.22 volts (baseline) to 6.2 volts over a period of 16 minutes.

11. The chamber reactants began to separate according to charge.

12. Oxygen gas began to dissolve into solution.

13. A small piece of sensitive litmus paper for O$_2$, was taped to the entry port of the O$_2$ collection chamber to detect the presence of gas.

14. Spent WO$_3$ was harvested from the residue of experiment (2), and placed in a 50 ml Erlenmeyer flask.

15. The sample was then titrated with H$_3$PO$_4$ and then HCl according to techniques outlined by Zhu et. al, (2003), Gouzerh and Che (2006).

16. A small aliquot of the resultant precipitate and solution was placed on a glass slide and dried to remove water at room temperature and standard pressure.
In summary, the first experiment tests the idea that dodeca tungsto phosphoric acid could be decomposed through interaction with NaOH. The second experiment illustrated that spent WO could be used to regenerate DTPA.

5.2 General Assumptions

Experiments were completed which release measured amounts of CO₂ gas to the filter material, and measured using a Pinpoint II O₂ concentration meter. Oxygen gas concentration moving into the capture container was measured after each hour CO₂ was allowed to move through the dielectric material.

An assumption was made that reactions taking place within the chamber were occurring in a homogeneous mixture, throughout time in a curvilinear manner, slowing down after availability of reactants began to diminish. The second assumption was that all of the CO₂ shall be consumed in the process, and all of the O₂ contained in the super oxide moves into solution upon decompression. The length of time (30 seconds) that the samples were mixed was assumed to provide <99% uniformity of mixing during the preparation of the H₃PO₄W₁₂O₃₆ (DTPA) and the Si₂H₁₂O₄ (TEOS). Thus, if the CO₂ absorbing material was uniformly distributed throughout the dielectric, CO₂ introduced into the dielectric would also be uniformly distributed.

A test chamber was constructed to test the behavior of the material. It consisted of three containers. Carbon dioxide gas flows from the container to the capacitor (second) chamber. In this container, CO₂ flowed and the pH of the mixture reduced by the addition of NaOH. At that time the chamber depressurizes to 0.5 atmosphere. Oxygen gas then outgased into
the third and final chamber. Other depressurization experiments were done for 0.75 atm. and 0.92 atm.

A second effort reduced the pressure below the partial pressure of O₂, so that the gas moved into the solution as gas bubbles. Another effort tested the hypothesis that WO₃ could be recycled back to H₃PO₄W₁₂O₃₆ using water combined with Na₂WO₄. This mixture was titrated with H₃PO₄, to generate Na₃PO₄W₁₂O₃₆, followed by HCl to produce H₃PO₄W₁₂O₃₆. A test chamber was constructed to test the ability of the super oxide material to regenerate itself. It consisted of three components. The first part allowed CO₂ gas to flow from the container to the capacitor chamber. The second part allowed CO₂ to flow into the dielectric material. The pH of the mixture increased as the reaction continues, and tungsten oxide formed. After depressurization to the vapor pressure of O₂, the gas flowed to a gas collection chamber.

5.3 Experimental Procedure: Collection of Samples

Samples taken for evaluation of CO₂, O₂ concentration, pH temperature (ΔH), voltage and capacitance were made on an hourly basis under a set flow rates of CO₂ into the capacitor chamber. The values of each of these dependent variables are a function of time and cross sectional area.

5.4 Experimental Procedure: Preparation of Controls

Experimental controls were completed as described below.

Control 1 The first control that was prepared was a mixture of dodeca tungsto phosphoric acid and H₂CO₃.

Control 2 The second control that was prepared was a mixture of H₃PO₄W₁₂O₃₆ and Si₂H₁₂O₄.
Control 3 The third control that was prepared was H$_2$CO$_3$.

Control 4 The fourth control prepared was H$_3$PO$_4$W$_{12}$O$_{36}$.

Control 5, These controls were composed of Si$_2$H$_{12}$O$_4$.

Each of the controls were checked for O$_2$. The purpose was to ensure that the sources of O$_2$ were not from the raw materials themselves. A small amount of 18O$_2$ (0.1 microliter) was introduced into each of the controls so that a background trace of the source of O$_2$ could be ascertained. Background O$_2$ levels were measured with a dissolved O$_2$ meter, and CO$_2$ were measured with a CO$_2$ gas meter. The 18O$_2$ were evaluated using mass spectroscopy techniques.

5.5 Experimental Procedure: Preparation Si(OC$_2$H$_5$)$_4$

The purpose of this experimental procedure was to prepare the inert material serving to surround the tungsten crystal with a protective hydrated layer of water. It was also to serve as adsorbent for H$_2$ release during the decomposition process. The gelatin material was inert and did not take part in the decomposition or recomposition process itself. It also provided a degree of temperature insulation from the surrounding environment.

The matrix material tetra ethyl ortho silicate was prepared by the standard method listed below:

1. Two grams of NH$_4$F were added to 100 ml of distilled water.
2. Five grams of Si$_2$H$_{12}$O$_4$ and 10.0 g ethanol were mixed in a 250 ml beaker.
3. Ten grams of water and 15.0 g ethanol were mixed in another 100 ml beaker.
4. Pour the catalyst solution into the solution and stir at 200 rpm for 30 seconds.
5. A small amount of polycarbonate polymer was then added to the mixture for decreasing the viscosity material.

6. The material was placed in a desired mold (10 cm by 10 cm by 2 mm), and stored in a desiccator at room temperature and 1 atmosphere of pressure.

7. A solution was prepared as a 5% solution of H$_3$PO$_4$W$_{12}$O$_{36}$ and distilled water, and then mixed to 15% tetra ethyl ortho silicate, in a 200-ml beaker. The speed of the mixing was set at 200 rpm for 30 seconds, in 10-second intervals, to avoid over heating the specimen.

8. This resulting mixture above was allowed to set for 1 hour at room temperature, and kept in a desiccator to eliminate water adsorption. This solution was also mixed at 200 rpm for 30 seconds, allowing for 10 second intermissions in order to dissipate heat released during the mixing process.

1. In another variation, the tungsto phosphoric acid H$_3$PO$_4$W$_{12}$O$_{36}$ was mixed with Si$_2$H$_{12}$O$_4$ (TEOS). The operating temperature for the polymerization is 155 C, well below the melting temperature of dodeca tungsto phosphoric acid.

2. A solution was prepared as a 5% solution of H$_3$PO$_4$W$_{12}$O$_{36}$ and distilled water, and then mixed to 15% tetra ethyl ortho silicate, in a 200-ml beaker. The speed of the mixing was set at 200 rpm for 30 seconds, in 10-second intervals, to avoid over heating the specimen.

3. This resulting mixture above was allowed to set for 1 hour at room temperature, and kept in a desiccator to eliminate water adsorption. This solution was also mixed at 200 rpm for 30 seconds, allowing for 10 second intermissions in order to dissipate
heat released during the mixing process.

5.6 Experimental Procedure: Preparation of $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$

The purpose of this experiment was to verify that the chemistry used to generate $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ from WO crystals was possible. In this particular experiment, the reactants were not tested while in the chamber, but separately under laboratory conditions. This aspect of the test would eliminate possible variations due to unknown (or known) variables such as temperature, sample in homogeneity, and variations in air moisture.

For the deposition of thin films of phosphoric tungstic acid [$\text{H}_3(\text{PW}_{12}\text{O}_{40})$], 2% solution of sodium tungstate in distilled water was made in 200 ml glass beaker. The speed of the mixture rotation was kept 200 rpm for 30 seconds, with 10-second cooling intervals. After half hour, the precipitate was introduced to H_3PO_4, as white colored precipitate formed at the bottom of the beaker [$\text{Na}_3(\text{PW}_{12}\text{O}_{40})$]. The next step was to introduce the precipitate to HCl so that the resulting precipitate results in $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$.

5.7 Experiment 1: Measurement of pH

The purpose of this experiment was to identify the change in pH of the system, because this parameter was important for predicting the different species of tungsten produced in the dielectric. The pH of the system varied between 2.0 and 9.0. During the experiment, pH values began at approximately 2.0 while the material was acidic, and rose to about 8.0 when sufficient CO₂ (as H_2CO_3) was added to become basic.
The pH of the system was measured using a Pinpoint II pH meter. The pH of the dielectric was experimentally measured at one-hour intervals during the introduction of CO₂ in the dielectric material. A pH meter probe was inserted within 1-3 mm of the dielectric.

During the experiment, a total of 24 measurements of pH were taken. The gas CO₂ was introduced into the system so that the number of anions and cations increase or decrease. This change was reflected as the negative of the log of the hydrogen ion concentration.

![Image](image.png)
Figure 10: The instrument used to evaluate the pH within the dielectric material.

5.8 Experiment 2: Measurement of Dielectric Constant

The purpose of this experiment was to identify the amount of current that was produced during the break down of the super oxide to WO and other components. In addition, measurement of the dielectric during the introduction of CO₂ and also regeneration of the WO to DTPA were also obtained in order to further understand the temporal nature of the super oxide breakdown and formation. One critical question to be answered was whether the breakdown and or reformation
proceeded in a linear, curvilinear, or logarithmic pace. The answer to this question would provide insight as to the longevity of the system, and its potential use as an energy source.

The capacitance and voltage of the capacitor chamber was measured by connecting the top and bottom of the capacitor (which were each aluminum wafers) to the respective leads of a digital multimeter (voltmeter). The value of capacitance and voltage of the capacitor chamber was measured as a function of time, in this particular case, one hour, since the pH of the system was measured on an hourly basis. Since CO₂ was continuously introduced into the system, the number of anions and cations increased or decreased, thus changing the totals charge on each conductive film. Since the charge changed, so do the voltage and capacitance of the system.

The procedure for measuring the dielectric constant of the material involved these steps.

1. The first is connecting the top and bottom aluminum film of the device to the positive and negative terminals of a voltmeter.

2. The top aluminum film of the dielectric was assigned to the positive lead of the voltmeter and the negative lead was connected to a variable resistor. The assembly made was an RC circuit.

3. At periodic (1 hour) intervals, the voltmeter was checked after the setting on the voltmeter was re-zeroed.

4. The variable resistor was set to a bias 1000 milliohm for hours 1 to 5, and 10 milliohm for hours 6 to 12, and 24 total hours. Based upon previous test runs and the O₂-CO₂ curve, the volume of O₂ generated at the beginning of the reaction was larger, generating more current. So, a larger resistance was used in order to reduce the surge in current.
5. Figures 4 and 8 illustrate the device. The chamber was built not only as a de-
pressurizeable chamber but a capacitor as well. This allows the unit to be capable of
collecting and electrical charge on the aluminum wafers, as well as adsorbing CO$_2$ and
releasing O$_2$. These charges accumulated when the introduction of CO$_2$ into the gelatin
induced a break-up of the super oxide (H$_3$PO$_4$W$_{12}$O$_{36}$). Separated ions were H$^+$, PO$_4^{-3}$,
HCO$_3^-$, Na$^+$, and Cl$^-$. The actual charge collected upon the plates was measured using a
standard voltmeter (Figure 2).

6. The capacitance of the unit was measured using a voltmeter. The capacitance can also be
calculated using the relation

$$ C = \varepsilon k \frac{A}{d}, $$

(9)

where ε was the electrical permeability constant, k was the dielectric constant of the
material, A was the cross sectional area of wafer and d was the distance between the
wafers, or the thickness of the dielectric material (dodeca tungsto phosphoric acid-tetra
ethyl ortho silicate. See Figure 11 below.
Figure 11: Schematic illustration of capacitor chamber for separation of ions. Dielectric constants were measured before and after introduction of CO2, and during ion collection on each plate.
The arrows indicate the direction and quantity of ions, reactants and products that enter and leave the chamber. In addition, a global equation is included to illustrate the general chemical processes, which occur within the chamber. Both degeneration of DTPA and regeneration of DTPA could be seen in the diagram (Figure 9).

5.9 Experiment 3: Measurement of Heat Capacity

The purpose of this experiment was to determine how much heat was produced during the breakdown of the dielectric material. In addition, measurement of the amount of heat needed for reformation of the crystal was also an important parameter. The results of this experiment would determine whether the system could function as a tri-use system—CO₂-O₂ gas exchange, electrical current, and heat exchanger. The dielectric constant varied between 1.98 to 10.55, but occasionally peaked between 92 to 101.0. It cannot be determined why the dielectric constant peaked intermittently throughout the experiment. It was assumed to be related to the formation of gas pockets within the dielectric.

The release of heat from the successive exothermic reactions benefits the system. There are two reactions that were exothermic in nature. The first is the breakdown of the superoxide DTPA into components H₃PO₄ and WO, which essentially was the breakdown of the dodecahedron complex. Theoretical calculations from reaction-modeled data suggest that approximately 844 kJ per mole material was released during the decomposition reaction.

An exothermic reaction involved the addition of NaOH with the H₃PO₄W₁₂O₃₆ (DTPA) to produce Na₂PO₄, Na₂WO₄, and H₂O. This reaction produces about 844 kJ/mole of heat, and
increase the temperature of 1 gram of material from 30 C to 80 C in approximately 10 minutes. The heat generated was measured by obtaining a small sample of dielectric and observing the temperature change of a small 1-gram sample. During the CO₂ adsorption process, the temperature within the device chamber was also measured by thermocouple attached to the conductive plates of the filter.

1. A Styrofoam container of suitable size (larger than the capacitor chamber, about 15 cm by 15 cm by 15 cm) was used to contain the capacitor chamber during the experiment. A thermocouple was used to measure the temperature at successive (hourly) intervals of the super oxide decomposition and regeneration experiment.

2. A Sigma Aldrich thermocouple was inserted into one of the portholes of the capacitor chamber and sealed using Teflon tape.

3. Measurements of temperature were taken before the CO₂ was introduced into the chamber, and at hourly intervals thereafter.

4. Temperatures of the reaction were calculated using the relation:

\[\Delta H = mc_p \Delta T \]

These experiments described the physical characteristics of the system. Further experimentation and spectroscopy methodologies can identify the chemical nature of the system.
The figure just above illustrates the experimental set up used to identify the heat output of the decomposition system. Theoretically, the same system could be used to identify the amount of heat needed for regeneration, but not presented herein.

5.10 Experiment 4: Measurement of O₂ Concentration

The concentration of O₂ in the system was measured using a Pinpoint II O₂ meter. The concentration of O₂ was measured by placing a probe immersed in water. The concentration of the gas was measured on an hourly basis, to coincide with the measurement of pH.

Measurements were completed on an hourly basis just before the addition of a small (50-100 ml) water to the filters. In order to correct for error created by drift, the meter was turned off and on before the measurement. The drift could be as much as 2-3 mg/ml.
For O\textsubscript{2} tracing experiments with 18O\textsubscript{2}, distilled water with the isotope were added instead of distilled water. The same amount of water (50-100 ml) was added periodically at one hour intervals just before measurement.

5.11 Experiment 5: Measurement of CO\textsubscript{2} Concentration

The concentration of CO\textsubscript{2} in the system was measured using a Pinpoint II CO\textsubscript{2} meter connected to the CO\textsubscript{2} supply valve. Values were measured in increments of one hour, and recorded for statistical analysis. Measurements were completed on an hourly basis just after addition of a small (50-100 ml) water to the filters, as maintenance, to ensure integrity of the gelatinous state.

During each measurement, the Pinpoint II meter was zeroed so that drift from static charge could be eliminated. This was done by pressing the reset button of the device. The instrument provided consistent measurements during the experiment, having a repeatability rate of 7 out of 10 measurements.

For O\textsubscript{2} tracing experiments using gas with 18CO\textsubscript{2}, a sample of the gas provided by Sigma Aldrich Chemical Company was connected by T valve to the experimental assembly. Approximately 1 ml per 100 ml of CO\textsubscript{2} gas from the non-tracer CO\textsubscript{2} source was added during a test run. It was assumed that natural 18CO\textsubscript{2} in the non-tracer CO\textsubscript{2} source was below the amount of 18CO\textsubscript{2} introduced.

5.12 Experiment 6: Decomposition of H\textsubscript{3}PO\textsubscript{4}W\textsubscript{12}O\textsubscript{36}

The objective of this experiment was to determine the characteristics and properties of the decomposition process of H\textsubscript{3}PO\textsubscript{4}W\textsubscript{12}O\textsubscript{36}, (DTPA). Four specific answers to the following questions were sought. One question was -what were the products from the decomposition
process. Another question was- how much CO₂ could be consumed in the process. A third question was- how much O₂ could be produced from the process. Finally, where does the O₂ come from- the crystal itself, or the CO₂ adsorbed by the dielectric.

The steps taken to decompose the super oxide, listed below:

1. A small amount of H₃PO₄W₁₂O₃₆, (DTPA) was placed in a 200 ml beaker.
2. To this powder, 100 gm of distilled water was added.
3. Approximately 50 ml, 100 ml, and 200 ml CO₂, at a ratio of 3 moles of gas to 1 mole of H₃PO₄W₁₂O₃₆ was introduced to the powdered water. The same step was completed for ¹⁸CO₂ in a later experiment.
4. A sufficient amount of CO₂ was added to the solution to increase the pH from 2.0 to 8.0. Sampling was monitored using a pH meter.
5. The CO₂ entry port was closed and the exit port for O₂ was opened. Apply a small vacuum to the exit port to initiate O₂ flow to create 0.5, 0.75, and 0.92 atm. pressure. The collection chamber was modified and sealed using Teflon tape with the O₂ concentration probe inserted into the chamber.

For the illustration of the experimental set up, see Figures 4 and 8.

5.13 Experiment 7: Regeneration of H₃PO₄W₁₂O₃₆

The question of whether the DTPA could be regenerated was explored. The molecule dodeca tungsto phosphoric acid could be regenerated using a process proposed by Keggin (1937), but this process needs to be verified. In addition, the reactants and products of the system need to be identified and quantified in order to build a reactor chamber for space applications. These reactants are CO₂, H₂O and H₃PO₄W₁₂O₃₆. The products are O₂, Na₂CO₃, Na₃PO₄, H₂CO₃ and
WO. Carbon Dioxide serves to raise the pH to disassemble the DTPA, each of the carbonates serves to remove the carbon from the system, and the DTPA itself serves as the source of O₂.

The steps taken to regenerate the super oxide, listed below:

1. A small amount of WO₃ powder was added to a 200 ml beaker. This powder was mixed with 100 grams of distilled water.
2. A small amount (50 mg) of Na₃WO₃ was mixed with the WO₃ and H₂O mixture.
3. To this mixture, about 30 ml of H₃PO₄ was added, until Sodium Phospho-Tungstate- Na₃PO₄W₁₂O₃₆ precipitated.
4. The sample was then decanted, and added to a few drops of HCl so that (H₃PO₄W₁₂O₃₆) could precipitate.

5.14 Experiment 8: Tracking O₂

A desirable objective was to know what the source of O₂ was for the regenerated H₃PO₄W₁₂O₃₆. Using an isotope molecule such as¹⁸O₂, the concentration of O₂ was measured before and after the processes of degeneration of H₃PO₄W₁₂O₃₆.

The amount of¹⁸ O₂ was determined using Mass Spectroscopy and Raman Spectroscopy, and comparing the spectral signatures to those reported in literature. (Filipescu et. al., 2012).

The experimental setup used was the same for evaluation of CO₂ and O₂ gas adsorption and production.

Four samples were taken in order to evaluate the samples using Mass Spectroscopy, Photo Spectroscopy and Raman Spectroscopy. These were stored under the same conditions as samples without addition of¹⁸O₂. See Figure 4 for an illustration of the experimental set up.
5.15 Experiment 9: X-Ray Diffraction

Figure 12 illustrates the instrument used to collect X Ray Diffraction data.

Figure 13: A Bruker X ray Diffraction Instrument.

The principle of operation of X Ray Diffraction could be summarized as a process where a sample interrogated with electrons generates secondary electrons. This tube contains a tungsten or metallic filament. The heated filament generates electrons that move through a collimator (a hole in a piece of metal) and strike the electrons of atoms in the sample. When the exited atom’s electrons relax to a lower energy state, a characteristic energy was produced, captured and analyzed. This energy characterized the material.

Specifically, the sample was prepared by using a razor blade to orient the sample on a polyethylene wafer substrate.

1. The material was placed on a polyethylene wafer for X Ray Diffraction analysis.

 The sample z elevation was corrected (using a screw) for the position needed to interrogate the sample.
2. The sample was placed on an X Ray Diffraction platform, the powder moved to the center of the platform using a razor blade. The sample z elevation was corrected (using a screw) for the position needed to interrogate the sample.

5.16 Experimental 10: Photospectrometer Measurements

A Bosh and Lomb photospectrometer was used to collect information on the concentration of WO₃, H₃PO₄W₁₂O₃₆, PO₄ and NaOH based on reflected light. A set of controls were necessary in order to identify the different peaks.

![Figure 14: A Bosh and Lomb Portable Spectro Photometer Used to Identify W, P, Na and other Minerals in the Sample.](image)

1. Standard aliquots of WO₃, DTPA, H₃PO₄, and NaOH were prepared to 0.1N concentrations of each reactant. If the absorbance was above the range reported for the spectra of the sample, the solution was diluted to bring the concentration to the range that the instrument was capable of measuring. A distilled water solution was used as a control. The faces of the sample containers were wiped with ethyl alcohol.
2. The instrument was turned on and placed in sample container. Standards were treated in the same manner. Place filter in slot for light path obstruction.

3. At intervals, the samples were rechecked to remove drift from the system.

5.17 Experiment 11: Raman Spectroscopy Sample Preparation and Tests

This particular objective involves the thermodynamic characterization $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$, CO_2 and H_2CO_3. After a sequential amount of time (1 hour), a sample were obtained for Raman Spectroscopy evaluation. A set of controls (pure $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ and H_2CO_3 solution) were also prepared as a 0.1 N solution. In addition, each sample was duplicated for tracer O^{18} analysis. This procedure provided spectral information of where the O_2 is coming from – the CO_2 or water.

The Raman measurements were acquired at ambient conditions with an alpha 300 RAS WITec confocal Raman system, using the 532 nm excitation of a Nd:YAG laser. An acquisition time of 10s for each spectrum and a 20X objective lens with a NA = 0.40 was used in all experiments.

During the third or fourth cycle a small amount of the dielectric material was harvested in order to evaluate it using Raman Spectroscopy. Approximately 5-10 grams were removed from the sample before, during and after the test. Multiple trial runs were completed for statistical consistency.
The samples were placed in the spectrometer by first establishing a baseline. Next, the sample was placed in the sample holder. The sample was then interrogated using selected wavelengths based on previous literature (Filipescu et. al. 2012). Sample spectra were then acquired for analysis. Samples were evaluated courtesy of Manciu, (2017).

5.18 Experiment 12: Mass Spectroscopy Sample Preparation and Tests

This particular objective involves the thermodynamic characterization $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$, CO$_2$ and H$_2$CO$_3$. After a sequential amount of time (1 hour), a sample was obtained for Mass Spectroscopy evaluation. A set of controls (pure $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ and H$_2$CO$_3$ solution) were also prepared by dilution in 10 ml distilled water. Another sample was prepared using 1 ml distilled water with $^{18}\text{O}_2$. (0.1 N) solution.

During the third or fourth cycle a small amount of the dielectric material was harvested in order to evaluate it using Raman Spectroscopy. Approximately 5-10 grams were removed from the sample before, during and after the test. Multiple trial runs were completed for statistical consistency.
The spectrometer prepared for $^{18}\text{O}_2$ and blank samples were tested to establish baseline levels of the isotope. A total of 6 samples with varying amounts of $^{18}\text{O}_2$ in H$_2$O were evaluated using the instrument. Samples of NaOH, Na$_2$WO$_4$, H$_3$PO$_4$, W$_{12}$O$_{36}$, and WO were interrogated for analysis (Courtesy University of Texas Mass Spectroscopy Laboratory, 2017).

5.19 Experiment 13: Effectiveness of Pressure Drop to Remove Dissolved O$_2$.

The objective of this experiment was to determine whether pressure reduction below the partial pressure of O$_2$ would be sufficient to release the gas from the dissolved state in solution. The reaction would be similar to the reaction between NaOH and its co-reactant NaMnO$_4$. The partial pressure of O$_2$ at atmosphere depends was measured to be approximately 0.2 atmospheres.

Assuming that O$_2$ is removed from DTPA and O$_2$ is chemically exchanged into hydroxyl ions in solution, a reduction in pressure of the chamber below the partial pressure of O$_2$ should result in an outgas of O$_2$ from the system. The concentration of the gas, and the rate at which it
is released from solution, can be measured by using a CO$_2$ and O$_2$ concentration meter connected to the CO$_2$ outlet and O$_2$ inlet containers.

5.20 Experiment 14: Super Oxide Regeneration from Tungsten Products

The objective of this experiment was to identify the validity of using WO to produce H$_3$PO$_4$W$_{12}$O$_{36}$. In order to accomplish effort, other reactants were needed. These were H$_3$PO$_4$, HCl, and NaOH. Approximately 80 grams of NaOH were needed in order to form the precursor Na$_2$WO$_4$. This precursor was needed in order to form H$_3$PO$_4$W$_{12}$O$_{36}$.

It should be noted that the chemistry involving Na$_2$WO$_4$ was not fully understood, but since the process does work, and provides DTPA as a product without significant energy or material resources, the chemistry was selected for the system process.

The tungsten super oxide was regenerated from the addition of NaOH, made from hydrolysis of water, NaCl. In addition, Na$_2$WO$_4$ was made by adding NaOH to NaCl and PO$_4$WO$_3$ ions. This solution was then titrated using H$_3$PO$_4$ and HCl.
6. RESULTS AND DISCUSSION

6.1 Summary

The following data was collected in this investigation: The data was arranged in the order of chronological development during the investigation. The experiments were completed at least 3 times in order to achieve statistical repeatability to a confidence level of 0.92, and a variance of 1.2 %.

1 pH range for the DTPA decomposition process (Experiment 1).
2 Dielectric constant variation during the DTPA decomposition process (Experiment 2).
3 Specific Heat Capacity data for the DTPA decomposition process (Experiment 3).
4 Measurement of O$_2$ concentration during DTPA decomposition (Experiment 4).
5 Measurement of CO$_2$ concentration during DTPA decomposition (Experiment 5).
6 Experimental and modeled data for DTPA decomposition (Experiment 6).
7 Experimental and modeled data for DTPA recomposition (Experiment 7).
8 Experimental data for tracing source of O$_2$ during recomposition (Experiment 8).
9 Experimental data for X Ray Diffraction tests (Experiment 9).
10 Experimental data for Photo spectroscopic tests (Experiment 10).
11 Experimental data for Raman Spectroscopy tests (Experiment 11).
12 Experimental data for Mass Spectroscopy tests (Experiment 12).
13 Experimental data for pressure data- outgas dissolved O$_2$ (Experiment 13).
14 Experimental data for DTPA (H$_3$PO$_4$W$_{12}$O$_{36}$) recycling from WO) Experiment 14).
Each of these experiments were completed for both degeneration of DTPA and regeneration of DTPA from WO. All experiments were conducted under standard temperature and pressure, except for the O₂ outgas experiment (Experiment 14). A summary of the properties of the reactants and state properties such as temperature, and dielectric constant can be seen in Table 2. Comparisons were made between experimentally obtained values and modeled values. Values from literature were also presented where available.

Table 2: This table of data was obtained from mass balance experiment. Data were compared to predictions using modeling Ceries II Molecular Modeling, and data from previous investigations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experimental</th>
<th>Modeling</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant</td>
<td>13.34</td>
<td>11.53</td>
<td>12.5</td>
</tr>
<tr>
<td>H₃PO₄ W₁₂O₃₆</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Increase</td>
<td>5 C</td>
<td>7.2 C</td>
<td>N/A</td>
</tr>
<tr>
<td>Reactant NaOH gm</td>
<td>250 gm</td>
<td>312 gm</td>
<td>N/A</td>
</tr>
<tr>
<td>Reactant CO₂ gm</td>
<td>1760 gm</td>
<td>1769 gm</td>
<td>N/A</td>
</tr>
<tr>
<td>Products Na₂CO₃ gm</td>
<td>470.32 gm</td>
<td>477.0 gm</td>
<td>N/A</td>
</tr>
<tr>
<td>Products O₂ gm</td>
<td>576 gm</td>
<td>642 gm</td>
<td>N/A</td>
</tr>
</tbody>
</table>
6.2 pH Data (Experiment 1)

The data shows that higher pH values of the dielectric material, increase the volumetric amount of O₂ produced, and also increase the amount of CO₂ removed from the air. The increase of temperature also appears to have the same effect on CO₂ adsorption and O₂ generation.

![Graph showing the relationship between pH and time for the decomposition phase of the system](image)

Figure 17: Relationship between pH and time for the decomposition phase of the system

6.3 Dielectric Constant Data (Experiment 2)

The dielectric constant data were obtained by obtaining samples from the filter material and placing them on a small capacitor (aluminum plate) arrangement. The voltages obtained during CO₂ adsorption were compared to the dielectric constant and voltage data obtained for CO₂ introduction. Data presented in the table below were also compared to modeled predictions.
Table 3 Summary of H₃PO₄W₁₂O₃₆ properties using Ceres II modeling compared to accepted values calculated by experimentation.

<table>
<thead>
<tr>
<th>Property</th>
<th>Ceres II</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronegativity</td>
<td>2.43</td>
<td>2.46</td>
</tr>
<tr>
<td>Crystal Structure</td>
<td>Body Cubic</td>
<td>Body Cubic</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>10.75</td>
<td>9.78</td>
</tr>
</tbody>
</table>

The data listed in Table 3 illustrates the basic information produced from a preliminary modeling effort using Ceres II Chemical Modeling software. Other properties were determined such as bond length, reaction kinetics and possible species produced, based on Gaussian statistics. However, the important parameters for this study were listed in the table above.

Tungsten oxide could be quantified and identified using the chamber as a capacitor. The charge that was generated, was directly proportional to the concentration of each species- WO₃, WO₂, W₂O₆, and W₄O₆. The species WO₂, W₂O₆, and W₄O₆ were intermediate species, and do not exist in solution long. (< 1 nanosecond), because modeling data suggests that the species were unstable thermodynamically. The two diagrams below illustrate a shift in the position of WO₃ depending on whether CO₂ was introduced into the system or not. Both the position and the magnitude of the peaks were changed between the control and the sample. An interesting plot showing the sample regenerated (WO₃) to H₃PO₄W₁₂O₃₆ resembles the original control. The question remains as to where the source of O₂ is from- the water, the CO₂, or both.
6.4 O₂ Gas Production Data (Experiment 3)

The rate of production for O₂ was slightly smaller than that of CO₂ adsorption into the dielectric material. The cause for this particular system characteristic could be attributed to higher activation energies needed in order to release the O₂.

Figure 18: The rate of O₂ production as a function of the partial pressure applied to the dielectric chamber.

Figure 17 illustrates the rate at which O₂ becomes available upon decomposition of H₃PO₄W₁₂O₃₆. Based on the curve, O₂ becomes available immediately, rising linearly with time for 10-12 hours, and then levels off for the remaining 24 hours.
The data listed in Table 3 illustrates the basic information produced from a preliminary modeling effort using Ceres II Chemical Modeling software. Other properties can be determined from modeling using the software, such as bond length, reaction kinetics and possible species produced, based on Gaussian statistics. However, the important parameters for this study were listed in the table above.

Tungsten oxide was quantified and identified using the chamber as a capacitor. The charge that was generated, appeared to be directly proportional to the concentration of each species- WO₃, WO₂, W₂O₆, and W₄O₆. The species WO₂, W₂O₆, and W₄O₆ were intermediate species, and do not exist in solution long. (< 1 nanosecond), because modeling data suggests that the species were unstable thermodynamically.

6.5 CO₂ Gas Consumption Data (Experiment 3)

Tables 4 and 5 below show how much CO₂ was consumed during Tests 1 and 2, during which O₂ was generated by the filters within the chamber. The CO₂ adsorption rate was compared to the weight increase by the filter material, and the concentration increase in the O₂ collection flask. Each measurement was repeated 2-3 times to maintain confidence in statistical repeatability. In this particular set of tests, statistical repeatability were set at 0.9 confidence level and a Range Difference of 3% between measurements.
Table 4: Sample data from Tests 1 and 2 illustrate the concentration increase in O2, the increase of mass in the filter, and the amount of CO2 released into the chamber.

<table>
<thead>
<tr>
<th>Test/Parameter</th>
<th>O2 (mg/l) measured</th>
<th>Filter Mass (mg)</th>
<th>CO2 released into chamber (mg/l)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 (1 hour)</td>
<td>2.42</td>
<td>0.303</td>
<td>2.645</td>
<td>0.078</td>
</tr>
<tr>
<td>Test 2 (1 hour)</td>
<td>2.53</td>
<td>0.154</td>
<td>2.657</td>
<td>0.027</td>
</tr>
</tbody>
</table>

6.6 DTPA Decomposition Experiment (Experiment 6)

Table 5: Sample data from Tests 1 and 2 illustrate a comparison between the amounts of WO that can be harvested from decomposition from DTPA.

<table>
<thead>
<tr>
<th>Test/Parameter</th>
<th>DTPA (mg)</th>
<th>WO (mg)</th>
<th>Amount NaOH added (mg)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 (1 hour)</td>
<td>6.95</td>
<td>7.04</td>
<td>8.45</td>
<td>0.09</td>
</tr>
<tr>
<td>Test 2 (1 hour)</td>
<td>6.81</td>
<td>7.034</td>
<td>8.79</td>
<td>0.224</td>
</tr>
</tbody>
</table>

The amount of WO produced from the decomposition reaction appeared to be 6.95 mg per hour, but the rate decreased after 12 hours of reaction time. The Range Difference was slightly higher at 0.224. More tests should be completed in order to reduce the Range Difference, and increase the confidence level.
6.7 DTPA Recomposition Experiment (Experiment 7)

Table 6: Sample data from tests 1 and 2 illustrate the amount of DTPA that can be harvested from WO. The WO was the same sample that was harvested from the DTPA decomposition experiment illustrated in Table 5.

<table>
<thead>
<tr>
<th>Test/Parameter</th>
<th>WO (mg)</th>
<th>DTPA (mg)</th>
<th>Amount Na₂WO₄ added (mg)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 (1 hour)</td>
<td>7.00</td>
<td>5.94</td>
<td>4.55</td>
<td>1.06</td>
</tr>
<tr>
<td>Test 2 (1 hour)</td>
<td>7.00</td>
<td>6.22</td>
<td>4.57</td>
<td>0.78</td>
</tr>
</tbody>
</table>

In this particular experiment the Range Difference between samples were smaller. More tests should be completed in order to increases the confidence level of the tests.
6.8 Trace O₂ Test (Experiment 8)

Table 7: Illustration of presence of 18O₂ isotope in DTPA during decomposition to WO, and recomposition of WO to DTPA.

<table>
<thead>
<tr>
<th>Test/Parameter</th>
<th>18CO₂ (mg)</th>
<th>18H₂O (mg)</th>
<th>Amount NaOH (mg)</th>
<th>Amount in DTPA (mg)</th>
<th>Amount in WO (mg)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 (1 hour) Decomposition</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0.91</td>
<td>0.83</td>
<td>0.08</td>
</tr>
<tr>
<td>Test 2 (1 hour) Recomposition</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0.443</td>
<td>1.02</td>
<td>0.577</td>
</tr>
<tr>
<td>Test 1 (1 hour) Decomposition</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.915</td>
<td>0.844</td>
<td>0.071</td>
</tr>
<tr>
<td>Test 2 (1 hour) Recomposition</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.445</td>
<td>1.00</td>
<td>0.555</td>
</tr>
</tbody>
</table>

The small values give rise to large percentage differences. The variance difference presents the difference between the highest and lowest values. The amount values were calculated from the Raman and XRD spectra obtained in subsequent tests.

6.9 XRD Data (Experiment 9)

Below is a summary of data collected using X Ray Diffraction Spectroscopy. Tables 8a and 8b illustrate the comparison between the H₃PO₄W₁₂O₃₆ that was decomposed for O₂ production. The peaks centering about 22 theta, 32 theta, are the most prominent peaks. These peaks correspond well to the peaks from the virgin sample of H₃PO₄W₁₂O₃₆. Thus, the method used to reconstruct DTPA appeared effective in regenerating the material once it is spent.
Table 8a&b: X Ray Diffraction data for various species of Tungsten. These samples were evaluated before interaction between NaOH, CO₂, and H₃PO₄W₁₂O₃₆. They are the controls.

<table>
<thead>
<tr>
<th>Species</th>
<th>Intensity (mV)</th>
<th>(2\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>1.92</td>
<td>20.35</td>
</tr>
<tr>
<td>WO₂</td>
<td>0.95</td>
<td>45.50</td>
</tr>
<tr>
<td>WO₃</td>
<td>1.50</td>
<td>68.05</td>
</tr>
<tr>
<td>W₂O₆</td>
<td>0.83</td>
<td>109.95</td>
</tr>
</tbody>
</table>

Table 8 above shows 2 theta estimations of species DTPA, WO, and NaOH during recomposition and decomposition processes for selected times during the process. These data were estimated by from X Ray Diffraction spectra peaks.

<table>
<thead>
<tr>
<th>Species/Time (hour)</th>
<th>H₃PO₄W₁₂O₃₆</th>
<th>NaOH ((2\theta))</th>
<th>WO ((2\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13.43</td>
<td>2.96</td>
<td>211.96</td>
</tr>
<tr>
<td>5</td>
<td>954.23</td>
<td>64.24</td>
<td>88.30</td>
</tr>
<tr>
<td>12</td>
<td>1177.92</td>
<td>92.99</td>
<td>25.80</td>
</tr>
<tr>
<td>24</td>
<td>2243.78</td>
<td>111.67</td>
<td>10.02</td>
</tr>
<tr>
<td>Species</td>
<td>Intensity (mV)</td>
<td>2 Theta Position</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>2.10</td>
<td>23.35</td>
<td></td>
</tr>
<tr>
<td>WO₂</td>
<td>2.21</td>
<td>47.15</td>
<td></td>
</tr>
<tr>
<td>WO₃</td>
<td>3.32</td>
<td>69.25</td>
<td></td>
</tr>
<tr>
<td>W₂O₆</td>
<td>4.32</td>
<td>111.03</td>
<td></td>
</tr>
</tbody>
</table>

Figure 19: Diagram Illustrating the Positions and Concentrations of WO₃ after Introduction to CO₂.
The species of tungsten, WO$_2$, W$_2$O$_6$ and W$_2$O$_6$ appeared in the sample after introduction to CO$_2$. After introduction to CO$_2$, these species begin to disappear. Each species has a distinct 2θ position as well.

<table>
<thead>
<tr>
<th>frequencies</th>
<th>Intensity (mV)</th>
<th>2θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>4.50</td>
<td>19.98</td>
</tr>
<tr>
<td>WO$_2$</td>
<td>5.36</td>
<td>43.94</td>
</tr>
<tr>
<td>WO$_3$</td>
<td>7.01</td>
<td>66.03</td>
</tr>
<tr>
<td>W$_2$O$_6$</td>
<td>8.32</td>
<td>107.65</td>
</tr>
</tbody>
</table>

Figure 20: Regenerated sample of WO$_3$, Spent DTPA After Introduction to CO$_2$.

In Figure 20 there were peaks that appeared to have shifted to the right in the spectra. These peaks were the tungsten oxide species and the NaOH. Changes the pH, began to change DTPA to WO and other tungsten species. In addition, the phosphate species began to dissipate on the left.
The first stage in the process consisted of the introduction of CO₂ into an aqueous solution of dodeca tungsto phosphoric acid. The pH of the system at this stage ranged between 1.4 and 2.3. The amount of heat generated at this stage was reported as 134.53 joules, and a voltage produced of 1.54 volts. During the following 1.5 hours, the pH increased from 2.3 to 10.9.

Heat was released during decomposition, and the heat calculated from the temperature increase, initial mass and cp measured was 846 joules. The voltage increases from 1.54 volts to 2.33 volts in the same time span. Approximately 70 % of the total O₂ released by the reaction occurred within the first 1.5 hours, with the remaining 30% released during the remaining 22.5 hours.

6.10 Photo Spectroscopy Data (Experiment 10)

Table 9: Illustration of presence of WO and DTPA during decomposition (test1) and recomposition (test 2) using photo spectrometry. Spectral ranges used were between 400 nm and 900 nm).

<table>
<thead>
<tr>
<th>Test</th>
<th>WO mg</th>
<th>DTPA mg</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 (decomposition)</td>
<td>5.88</td>
<td>6.30</td>
<td>0.57</td>
</tr>
<tr>
<td>Test 2 (recomposition)</td>
<td>6.45</td>
<td>6.53</td>
<td>0.08</td>
</tr>
</tbody>
</table>

The Range Difference of each test was acceptably small, and an 8.8 % difference between the decomposition and recomposition value. Thus, 8.8 % in WO of the sample material remains missing. For DTPA, the percent missing material was calculated at 3.3%. More sample tests would reduce the error in statistical sampling.
6.11 Raman Spectroscopy Data

Figure 21: Raman Spectroscopy of species Na2WO4, WO3, and H3PO4W12O36.

The peaks illustrated in Figure 21 represent the species WO3, Na2WO4, and H3PO4W12O36. These spectra were obtained for samples which were not introduced to \(^{18}\)O in H2O. A comparison to
the spectra of from the sample introduced to 18O$_2$ in H$_2$O, indicated a shift in the positions of 18O$_2$ to non-18O$_2$ samples to the right, for about 2-4 1/cm units. A possible cause for this shift could be the addition of the 18O$_2$ to the sample within the crystal.

6.12 Mass Spectroscopy Data

Table 10: Illustration of Mass Spectroscopy for various species with and without the molecule 18O2

<table>
<thead>
<tr>
<th>Species</th>
<th>m/Z without 18O2</th>
<th>m/Z with 18O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>0.022</td>
<td>0.0225</td>
</tr>
<tr>
<td>Na$_2$WO$_4$</td>
<td>0.049</td>
<td>0.053</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>0.009</td>
<td>0.011</td>
</tr>
<tr>
<td>WO$_2$</td>
<td>0.036</td>
<td>0.039</td>
</tr>
<tr>
<td>WO</td>
<td>0.0333</td>
<td>0.0335</td>
</tr>
</tbody>
</table>

Table 10 illustrates mass spectrograph data of a sample of H$_3$PO$_4$W$_{12}$O$_{36}$ crystal decomposed to WO, and WO$_2$. The trend illustrated in the table suggests that 18O$_2$ present in the H$_2$O was transferred to the NaOH, Na$_2$WO$_4$, and Na$_2$CO$_3$, since the ratio increased for these species. In addition, since the 18O$_2$ was originally in enriched water, that the O$_2$ in the was transferred from the water within the crystal.

Based upon the difference of values in the table, 18O$_2$ from CO$_2$ were transferred to WO$_3$ and H$_3$PO$_4$W$_{12}$O$_{36}$ crystals, but the amount was less than 1% by weight. This suggests that O$_2$ transfer from CO$_2$ is possible.

Oxygen isotope ratios were measured from 50% by volume water samples. Water from the
isotopically doped samples were diluted with an equal proportion of natural abundance water. 1ml of diluted water sample was pipetted into 12ml glass vials and were purged with a 3000 ppm mixture of CO2 in helium. Samples were prepared at 40°C for 12 hours. Oxygen 18 values were measured using CO2 equilibration with a Thermo Scientific Gas Bench II and a Thermo Scientific MAT253 isotope ratio mass spectrometer (IRMS). Measured 18O values of CO2 gas from IAEA-SMOW, IAEA-GISP and calibrated to generate a 18O calibration curve.

6.13 Pressure Drop Data (Experiment 13)

Table 11: Illustration of pressure drop and amount of O2 harvested

<table>
<thead>
<tr>
<th>DECOMPOSITION REACTION</th>
<th>Pressure Drop</th>
<th>O2 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 (10 hours)</td>
<td>0.5 atm</td>
<td>589 grams</td>
</tr>
<tr>
<td>Test 2 (10 hours)</td>
<td>0.92 atm</td>
<td>458 grams</td>
</tr>
</tbody>
</table>
6.14 Experimental Recycling from Spent WO (Experiment 14)

Table 12: Thermodynamic properties of selected species during reformation of H3PO4W12O36 from WO. The quantities of each species were calculated from calculated values of H3PO4W12O36, O2, and CO2

<table>
<thead>
<tr>
<th>Reaction Species</th>
<th>H₃PO₄W₁₂O₃₆ mg/ml</th>
<th>NaOH mg/ml</th>
<th>WO mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial.</td>
<td>2880.00</td>
<td>98.34</td>
<td>205.11</td>
</tr>
<tr>
<td>1 hour</td>
<td>1103.53</td>
<td>88.23</td>
<td>153.95</td>
</tr>
<tr>
<td>5 hour</td>
<td>534.34</td>
<td>105.32</td>
<td>175.43</td>
</tr>
<tr>
<td>10 hour</td>
<td>201.34</td>
<td>115.34</td>
<td>179.53</td>
</tr>
<tr>
<td>15 hour</td>
<td>0.002</td>
<td>203.32</td>
<td>184.54</td>
</tr>
</tbody>
</table>

An important feature illustrated in Table 14 is that spent WO can be used to re-build a DTPA molecule. Experimentation completed in previous experiments (Experiment 7 illustrated that chemically, WO can be used to construct DTPA, but experiment 14 illustrates that used WO can be used as well.
7. CONCLUSIONS

7.1 Summary

The chemical procedure developed by Karavolos (Patent Application # 62191167 2015) appears to be effective in breaking down H$_3$PO$_4$W$_{12}$O$_{36}$ acid to WO and other products. Further investigation using Spectrophotometric, Raman Spectroscopy, and Mass Spectroscopy further validate the process by verifying the presence of specific intermediate species in samples.

Data collected with this device illustrated a significant improvement in CO$_2$ collection efficiency and O$_2$ release rate. Using the bench top test, 2-3 percent of CO$_2$ was not captured. Oxygen release increased by as much as 90%, owing to the increased surface area.

The system can be regenerated as well (Tables 14,15). In addition, the method design was such that the O$_2$ released comes from the H$_2$O within the DTPA crystal. This entails a significant innovation that was currently not available with current technology, unless a significant amount of energy was consumed.

Another key design feature in this process involved the use of products from other system sources to produce consumable products, limiting the use of fresh water needed for human consumption. Na$_3$PO$_4$ and NaOH were used to produce Na$_2$WO$_4$, which in turn was used in conjunction with H$_3$PO$_4$ and HCl to produce H$_3$PO$_4$W$_{12}$O$_{36}$. The first stage in the process consists of the introduction of CO$_2$ into a gelatinous colloid of H$_3$PO$_4$W$_{12}$O$_{36}$. The amount of heat generated at this stage was measured at 834.53 joules, and an average voltage of 1.54 volts was produced.
In experiment 1, during the initial 1.5 hours, the pH increased from 2.3 to 10.9. An average of 834 joules was produced during the DTPA decomposition over a 24 hour period. Approximately 70% of the total O₂ released by the reaction occurred within the first 1.5 hours, with the remaining 30% released during the remaining 22.5 hours. The total amount of O₂ released was 846 grams.

Another key experiment (14) illustrated that WO could be regenerated back to dodeca DTPA. This part of the process, regeneration, required energy (944 kJ/mole), based upon measured temperature increase, a measured cp and known mass sample.

Key data from this investigation illustrate important products present given specific reactants in DTPA to WO, and WO to DTPA reactions. These products and reactants are present in Raman Spectroscopy, X Ray Diffraction Spectra and Photo Spectroscopic data. Spectral data illustrates a shift in the position of WO₃ depending on whether CO₂ was introduced into the system or not (the control). Both the position and the magnitude of the peaks were changed between the control and the sample.

A regenerated sample of WO that was introduced to \(^{18}\text{O}_2\) suggests that O₂ released from the sample originated within the water trapped within the DTPA crystal itself. A small percentage of this O₂ may have come from exchanges of O₂ between CO₂ and H₂O itself. More testing should reveal a more definitive answer.
Modeled results of the Gibbs Free Energy and calculated reaction constant K indicate that the decomposition reactions occur exothermically, while the recomposition reactions endothermically. The exothermically released energy from the decomposition of $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ could be used to satisfy some of the energy needed to initiate regeneration.

One noticeable feature of the process is that the initial rate of reaction appears to be almost exponential, decreasing to a linear or curvilinear rate at the end of a 24 hour period. This trend appears to be true for free phosphates as well as bicarbonates.

7.2 Experimental vs. Modeled Data

The experimentally collected data agrees with the theoretically predicted thermodynamic values predicted by Ceres II and Spartan Chemical Modeling Software. Based upon the X Ray Diffraction data, a significant portion of the O_2 used to re oxygenate WO_3 comes from the original CO_2 dissolved in the water. This conclusion is deduced from the fact that very little O^{18}, which is from water, appears in the final product.

7.3 Final Thoughts

In summary the experimental observations revealed by this research are that the $\text{H}_3\text{PO}_4\text{W}_{12}\text{O}_{36}$ (DTPA) could be broken down by using a strong base, such as NaOH. In addition, the DTPA can be regenerated using HCl, NaOH, H_3PO_4, and WO_3. An important characteristic of this technique demonstrates that a comparable amount of O_2 shall be released for human daily consumption.
Secondly, the interaction of NaOH with the super oxide generates electrical charge, and heat, which can also be harvested for future use within the system. Finally, reconstruction of the super oxide requires the use of chemicals such as Na$_2$WO$_4$, HCl, and H$_3$PO$_4$. Sodium tungstate could be prepared using WO$_3$, titrated with H$_3$PO$_4$ NaOH, and HCl. The chemical components HCl and NaOH can be prepared from water and other biological waste processes.

Experimental evidence suggests that the process produces about 576 grams of O$_2$, and removes about 1760 grams of CO$_2$, the proposed process could be used as a CO$_2$-O$_2$ gas exchange mechanism, having the advantage over current systems by using waste products from other systems to produce consumables. In addition, a small amount of material (about 1 kg) produces sufficient O$_2$ for one person per day. The method also utilizes a novel method of removing CO$_2$, and simultaneously removing carbon in the process. This process removes carbon as carbonates, which can be re-utilized in other systems (plant growth). Finally, the system produces a suitable amount of heat and electrical current to supplement other systems.
LIST OF REFERENCES

Wachsman, D., Duncan, L., Hagelin-Weaver, E., Concurrent CO₂ Control and O₂ Generation for Advanced Life Support, NASA Report Contract # NNJ06HB01C (2007).

CURRICULUM VITA

Mr. Angelo Karavolos began his career as a medical officer in the Medical Corps of the U.S Air Force. During his tenure as a bioenvironmental and aerospace engineer, Mr. Karavolos developed a fiberglass nose cone, a first for the Air Force Research Laboratory. In addition, he developed a small device for removing cancerous tissue using a carbon prepreg thin rod. He served as the lead bioenvironmental engineer for the TITAN IV SRMU project, and participated in the Space Shuttle Recovery Team at Edwards AFB CA. During the remaining tenure in the military, Mr. Karavolos served in a variety of operational capacities in the National Guard Reserves. In the interim between serving in the military and his pursuit of graduate work, he began a consulting company developing aerospace technology for applications in outpatient health care, homeland defense and space physiology. He has won awards such as the Ross McFarland Graduate Fellowship Award, the NASA Space Grant Fellowship Award, and authored four patents in materials engineering. He also inspired the formation of two companies which develop technology for astrobiology and space systems. His PhD dissertation was the culmination of work initiated during his Space Grant Fellowship, involved the development of a material which adsorbs carbon dioxide and releases consumables such as oxygen, heat, and electrical charge. Other technologies designed were a textile material for space suit applications, and an identification method for micron sized gas bubbles in tissue. Mr. Karavolos currently acts as the chief technology officer for De Astris Generation LLC, and lives in Houston TX with his wife Diane Karavolos.

Permanent address: 2422 Loyanne Drive
Spring TX 77373