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Abstract

Given a decision problem P and a probability distribution over binary strings, for each n,
draw independently an instance z, of P of length n. What 1s the probability that there is a
polynomial time algorithm that solves all instances z,, of P? The answer is: zero or one.
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At several meetings, J. Hartmanis asked: If it turns out that NP-hard problems are not solvable
in polynomial time, will it mean that there is a “hard” sparse sequence of instances, i.e., a sequence
which is hard for every polynomial-time algorithm? A natural next question is: how frequent are
such “hard” sequences? If we pick a sequence “at random”, what is the chance that this randomly
chosen sequence is hard?

In principle, it could happen that almost all sequences are hard; it could happen that almost
all sequences are easy; in principle, it may seem that a third alternative is also possible: that, say,
half of all sequences (or any other portion different from 0 and 1) are hard, and the rest are easy.
In this paper, we show that this third alternative is impossible.

To be more precise, we show that for each decision problem, either almost all sequences of
instances are easy, or almost all sequences of instances are hard.

Consider a decision problem P on binary strings. For each positive integer n, fix a probability
distribution over binary strings of length n. Let X" be the set of infinite sequences = (z,, : n > 1)
of binary strings where the length |z,| equals n. View # as a sequence of independent trials. In
other words, consider the probability distribution over A" given by the product measure [1].

Let Ap be the collection of polynomial time-bounded algorithms A such that, for every binary
string @ we have:

e if A(z)= Yes, then 2 € P, and
e if A(z)= No, then z ¢ P.

It is possible that A outputs neither Yes nor No on z; in this case A fails on . We say that A
solves the restriction P, of the problem P to z if A(z)is Yes or No. A solves a restriction Pz if
it solves P, for every component z, of z. A restriction Pz is solvable in polynomial time if there
exists an A € Ap that solves Pz. Let p,(A) be

pn(A) = Prob (A fails on the nth component z,, of z)

where & ranges over X.
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Theorem. For any decision problem P, one of the following two statements holds:

(1) For almost all sequences x, the restriction Pz of the problem P to ¥ is solvable in polynomial
time, that is

Prob <P|x is solvable in polynomial time) =1
(2) For almost all sequences &, the restriction Pz is not solvable in polynomial time, that is

Prob <P|x is solvable in polynomial time) =0

Proof. We consider two cases.

Case 1: There exists A € Ap with }°, pn(A) < co. Fix such an A and let z € A'.

Recall the first Borel-Cantelli Lemma [1, VIII.3, Lemma 1]: Let Fy, F5,... be an infinite se-
quence of events each of which depends on a finite number of trials. If >~ Prob(£,) < oo, then
with probability one only finitely many events £, occur.

Let F,, be the event that A fails at the component z,, of . By the first Borel-Cantelli Lemma,

Prob (there are infinitely many n such that A fails on z,,) = 0

Hence, for almost all #, A solves P, for all but finitely many x,. Hence, for almost all z, there
exists A" € Ap (namely, A augmented with an appropriate finite lookup table) which solves P.
Thus (1) is established.

Case 2: For every A € Ap, we have }_, p,(A) = o0. Let 7 € X

Recall the second Borel-Cantelli Lemma [1, VIIL.3, Lemma 2]: Let Fy, Eq, ... be as above (i.e.,
an infinite sequence of events each of which depends on a finite number of trials). In addition
assume that these events are mutually independent. If Y~ Prob (F,) = oo, then with probability
one infinitely many events F, occur.

Again, let F,, be the event that A fails at the component z, of z. By the second Borel-Cantelli
Lemma,

Prob (there are infinitely many n such that A fails on z,,) = 1.

Hence, for every A, Prob (A solves Pjz) = 0. Since there are only countably many algorithms,

Prob ((3A4)(A solves Pz)) = 0. Thus, (2) is established. O
The proof gives a little more.

Corollary. For any decision problem P:

1. If conclusion (1) of the theorem holds, then there exists a polynomial time-bounded decision
algorithm A € Ap and there exists a sequence of reals ¢, > 0 with 3 &, < oo such that

pa(A) < ey

2. If conclusion (2) of the theorem holds, then, with probability 1, for a random sequence %, the
restriction Pz of P to @ is not solvable in polynomial time.

Actually, the theorem and the corollary are more general. Instead of polynomial time algo-
rithms, one can use any type of partition of binary strings into two parts (fail, solve) provided that
(i) the type is closed under finite changes and (ii) there are only countably many partitions of that
type.

For example, this proof also holds for an alternative definition of a solving algorithm, where
A(z) = Yes does not necessarily imply « € P, and A(z) = No may not imply =z ¢ P. For such
algorithms, we say that A solves P, if A(z) coincides with the truth value of z € P; if it does not,
we say that A fails on x. As above, we say that A solves the restriction Pz of P to the sequence &
if it solves Py, for every component z,, of z.
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