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Abstract—To describe expert uncertainty, it is often useful to
go beyond additive probability measures and use non-additive
(fuzzy) measures. One of the most widely and successfully
used class of such measures is the class of Sugeno λ-measures.
Their success is somewhat paradoxical, since from the purely
mathematical viewpoint, these measures are – in some reasonable
sense – equivalent to probability measures. In this paper, we
explain this success by showing that while mathematically, it is
possible to reduce Sugeno measures to probability measures, from
the computational viewpoint, using Sugeno measures is much
more efficient. We also show that among all fuzzy measures
equivalent to probability measures, Sugeno measures (and a
slightly more general family of measures) are the only ones with
this property.

I. FORMULATION OF THE PROBLEM

Traditional approach: probability measures. Traditionally,
uncertainty has been described by probabilities. In mathemat-
ical terms, probabilistic information about events from some
set X of possible events is usually described in terms of a
probability measure, i.e., a function p(A) that maps some sets
A ⊆ X into real numbers from the interval [0, 1].

The probability p(A) of a set A is usually interpreted as
the frequency with which events from the set A occur in real
life. In this interpretation, if we have two disjoint sets A and
B with A ∩B = ∅, then the frequency p(A ∪B) with which
the events from A or B happen is equal to the sum of the
frequencies p(A) and p(B) corresponding to each of these
sets.

This property of probabilities measures is known as addi-
tivity: if A ∩B = ∅, then

p(A ∪B) = p(A) + p(B). (1.1)

Need to do beyond probability measures. Since the appear-
ance of fuzzy sets (see, e.g., [7], [9], [13]), it has become clear
that to adequately describe expert knowledge, we often need
to go beyond probabilities. In general, instead of probabilities,
we have the expert’s degree of confidence g(A) that an event
from the set A will actually occur.

Clearly, something should occur, so g(∅) = 0 and g(X) =
1. Also, clearly, the larger the set, the more confident we are
that an event from this set will occur, i.e., A ⊆ B implies

g(A) ≤ g(B). Functions g(A) that satisfy these properties are
known as fuzzy measures.

Sugeno λ-measures. M. Sugeno, one of the pioneers of fuzzy
measures, introduced a specific class of fuzzy measures which
are now known as Sugeno λ-measures [10]. Measures from
this class are close to the probability measures in the following
sense: similarly to the case of probability measures, if we know
g(A) and g(B) for two disjoint sets, we can still reconstruct
the degree g(A∪B). The difference is that this reconstructed
value is no longer the sum g(A) + g(B), but a slightly more
complex expression.

To be more precise, Sugeno λ-measures satisfy the follow-
ing property: if A ∩B = ∅, then

g(A ∪B) = g(A) + g(B) + λ · g(A) · g(B), (1.2)

where λ > −1 is a real-valued parameter.
When λ = 0, the formula (1.2) corresponding to the

Sugeno measure transforms into the additivity formula (1.1)
corresponding to the probability measure. From this viewpoint,
the value λ describes how close the given Sugeno measure
is to a probability measure: the smaller |λ|, the closer these
measures are.

Sugeno λ-measures have been very successful. Sugeno
measures are among the most widely used and most successful
fuzzy measures; see, e.g., [2], [11], [12] and references therein.

Problem. This success is somewhat paradoxical. Indeed:
• The main point of using fuzzy measures is to go beyond

probability measures.
• On the other hand, Sugeno λ-measures are, in some

reasonable sense, equivalent to probability measures (see
Section 2).

How can we explain this?

What we do in this paper. In this paper, we explain the
seeming paradox of Sugeno λ-measures as follows:

• Yes, from the purely mathematical viewpoint, Sugeno
measures are indeed equivalent to probability measures.

• However, from the computational viewpoint, processing
Sugeno measure directly is much more computationally
efficient than using a reduction to a probability measure.



We also analyze which other probability-equivalent fuzzy
measures have this property: it turns out that this property
holds only for Sugeno measures themselves and for a slightly
more general class of fuzzy measures.

The structure of this paper is straightforward: in Section 2,
we describe in what sense Sugeno measure is mathematically
equivalent to a probability measure, in Section 3, we explain
why processing Sugeno measures is more computationally ef-
ficient than using a reduction to probabilities, and in Section 4,
we analyze what other fuzzy measures have this property.

II. SUGENO λ-MEASURE IS MATHEMATICALLY
EQUIVALENT TO A PROBABILITY MEASURE

What we mean by equivalence. According to the formula
(1.2), if we know the values a = g(A) and b = g(B) for
disjoint sets A and B, then we can compute the value c =
g(A ∪B) as

c = a+ b+ λ · a · b. (2.1)

We would like to find a 1-1 function f(x) for which
p(A)

def
= f−1(g(A)) is a probability measure, i.e., for which,

if c is obtained by the relation (2.1), then for the values

a′ = f−1(a), b′ = f−1(b), and c′ = f−1(c),

we should have
c′ = a′ + b′.

How to show that a Sugeno λ-measure with λ ̸= 0 is
equivalent to a probability measure. Let us consider the
auxiliary values A = 1+λ ·a, B = 1+λ ·b, and C = 1+λ ·c.
From the formula (2.1), we can now conclude that

C = 1+λ ·(a+b+λ ·a ·b) = 1+λ ·a+λ ·b+λ2 ·a ·b. (2.2)

One can easily check that the right-hand side of this formula
is equal to the product A ·B of the expressions A = 1+ λ · a
and B = 1 + λ · b. Thus, we get

C = A ·B. (2.3)

We have a product, we need a sum. Converting from the
product to the sum is easy: it is known that logarithm of the
product is equal to the sum of logarithms. Thus, for the values

a′ = ln(A) = ln(1 + λ · a),

b′ = ln(B) = ln(1 + λ · b),

and
c′ = ln(C) = ln(1 + λ · c),

we get the desired formula

c′ = a′ + b′.

To get this formula, we used the inverse transformation f−1

that transforms each value x into a new value

x′ = ln(1 + λ · x). (2.4)

When λ > 0, then for x ≥ 0, we get 1 + λ · x ≥ 1 and thus,
x′ = ln(1 + λ · x) ≥ 0.

When λ < 0, then for x > 0, we have 1 + λ · x < 1 and
thus, x′ = ln(1 + λ · x) < 0. However, we want to interpret
the values x′ as probabilities, and probabilities are always non-
negative. Therefore, for λ < 0, we need to change the sign
and consider

x′ = − ln(1 + λ · x). (2.5)

For these new values, (2.1) still implies that c′ = a′ + b′.
From the relations (2.4) and (2.5), we can easily find the

corresponding direct transformation x = f(x′). Indeed, for
λ > 0, by exponentiating both sides of the formula (2.4), we
get 1 + λ · x = exp(x′), hence

f(x′) =
1

λ
· (exp(x′)− 1). (2.6)

For λ < 0, by exponentiating both sides of the formula
(2.5), we get 1 + λ · x = exp(−x′), hence

f(x′) =
1

λ
· (exp(−x′)− 1), (2.7)

i.e., equivalently,

f(x′) =
1

|λ|
· (1− exp(−x′)). (2.8)

In both cases, we can conclude that a Sugeno λ-measure is
indeed equivalent to a probability measure.

So why do we need Sugeno measures? Because of the
equivalence, we can view the values of the Sugeno measure
as simply re-scaling probabilities g(A) = f(p(A)) for the
corresponding probability measure.

So why not just store the corresponding probability values
p(A)? In other words, why not just re-scale all the values g(A)
into the corresponding probability values p(A) = f−1(g(A))?
At first glance, this would be a win-win arrangement, because
once we do this re-scaling, we can simply use known proba-
bilistic techniques.

III. PROCESSING SUGENO MEASURES DIRECTLY IS MORE
COMPUTATIONALLY EFFICIENT THAN USING A

REDUCTION TO PROBABILITIES

What we plan to do. Let us show that:
• while from the purely mathematical viewpoint, a Sugeno

λ-measure is equivalent to a probability measure,
• from the computational viewpoint, the direct use of

Sugeno measures is much more efficient.
To explain this advantage, let us clarify what we mean by
direct use of Sugeno measure and what we mean by an
alternative of using a reduction to a probability measure.

The corresponding computational problem: a brief de-
scription. We are interested in understanding the degree of
possibility of different sets of events. These degrees g(A)
come from an expert.

Theoretically, we could ask the expert to provide us with
the values g(A) corresponding to all possible sets A, but this
would require an unrealistically large number of questions.



A feasible alternative is to elicit some values g(A) from
the experts and then use these values to estimate the missing
values g(A). A possibility of such estimation follows from the
definition of a Sugeno λ-measure. Namely, once we know the
values g(A) and g(B) corresponding to a two disjoint sets A
and B, we do not need to additionally elicit, from this expert,
the degree g(A∪B: this degree can be estimated based on the
known values g(A) and g(B).

Let us explain how the desired degree g(A ∪ B) can be
estimated.

Estimating g(A∪B) by a directly use of Sugeno measure.
The first alternative is to simply estimate the degree g(A∪B)
by applying the formula (1.2).

Estimating g(A ∪ B) by a reduction to a probability
measure. An alternative idea – which is likely to be used by
a practitioner accustomed to the probabilistic data processing
– is to use the above-described reduction to a probability
measure. Namely:

• first, we use the known reduction to find the correspond-
ing values of the probabilities

p(A) = f−1(g(A)) and p(B) = f−1(g(B));

• then, we add these probabilities to get

p(A ∪B) = p(A) + p(B);

• finally, we re-scale this resulting probability back into
degree-of-confidence scale by applying the function f(x)
to this value p(A ∪B), i.e., we compute

g(A ∪B) = f(p(A ∪B)).

Direct use of Sugeno measure is computationally more
efficient. If we directly use Sugeno measure, then all we need
to do is add and multiply. Inside a computer, both addition
and multiplication are very directly hardware supported and
therefore very fast.

In contrast, the use of reduction to probability measures
requires that we compute the value of logarithm (to compute
f−1(x)) and exponential function (to compute f(x)). These
computations are much slower than elementary arithmetic
operations.

Thus, the direct use of Sugeno measure is definitely much
more computationally efficient.

How to explain the use of Sugeno measure to a probabilist.
The above argument enables us to explain the use of Sugeno
measure to a person who is either skeptical about (or unfamil-
iar with) fuzzy measures. This explanation is as follows.

We are interested in expert estimates of probabilities of
different sets of events. It is known that expert estimates of
the probabilities are biased (see, e.g., [5], [8]): the expert’s
subjective estimates g(A) of the corresponding probabilities
p(A) are equal to g(A) = f(p(A)) for an appropriate re-
scaling function f(A).

In this case, a natural ideas seems to be:

• to re-scale all the estimates back into the probabilities,
i.e., to estimate these probabilities p(A) as

p(A) = f−1(g(A)),

and then
• to use the usual algorithms to process these probabilities.
In particular, if we know the expert’s estimates g(A) and

g(B) corresponding to two disjoint sets A and B, and we
want to predict the expert’s estimate g(A ∪B) corresponding
to their union, then we:

• first, re-scale the values g(A) and g(B) into the un-biased
probability scale, i.e., compute

p(A) = f−1(g(A)) and p(B) = f−1(g(B));

• then, we compute

p(A ∪B) = p(A) + p(B);

• finally, we estimate g(A∪B) by applying the correspond-
ing biasing function f(x) to the resulting probability:

g(A ∪B) = f(p(A ∪B)).

It turns out that for some biasing functions f(x), it is compu-
tationally more efficient not to re-scale into probabilities, but
to store and process the original biased values g(A). This is,
in effect, the essence of applications of a Sugeno λ-measure
are about.

IV. WHICH OTHER FUZZY MEASURES HAVE THIS
PROPERTY: AN EXPLANATION WHY SUGENO MEASURES

ARE SO SUCCESSFUL

Reminder: what are we looking for. We want to de-
scribe fuzzy measures which are mathematically equivalent
to probability measures, but in which processing the fuzzy
measure directly is more efficient than using the corresponding
reduction to a probability measure.

Equivalence of a fuzzy measure g(A) to a probability
measure p(A) means that g(A) = f(g(A)) for some 1-1
function f(x). For the empty set A = ∅, for both measures,
we should have zeros p(∅) = g(∅) = 0, so we should have
f(0) = 0.

In general, for such fuzzy measures, if we know the values
g(A) and g(B) corresponding to two disjoint sets A and B,
then we can compute the measure g(A ∪B) as follows:

• first, we use the known values g(A) and g(B) and the
relations

g(A) = f(p(A)) and g(B) = f(p(B))

to reconstruct the corresponding probability values

p(A) = f−1(g(A)) and p(B) = f−1(g(B)),

where f−1(x) denotes the inverse function;
• then, we add the resulting values p(A) and p(B), and get

p(A ∪B) = p(A) + p(B);



• finally, we transform this probability back into the fuzzy
measure, as

g(A ∪B) = f(p(A ∪B).

The resulting value can be described by an explicit expression

g(A ∪B) = f(f−1(g(A)) + f−1(g(B))),

i.e., an expression of the type

g(A ∪B) = F (g(A), g(B)),

where
F (a, b)

def
= f(f−1(a) + f−1(b)) (4.1)

For a = b = 0, due to f(0) = 0, we get F (0, 0) = 0.
We are looking for situations in which the direct compu-

tation of a function F (a, b) is more computationally efficient
than using the above three-stage scheme. Thus, we are looking
for situations in which the corresponding function F (a, b) can
be computed fast. In the computer, the fastest elementary oper-
ations are the hardware-supported ones: addition, subtraction,
multiplication, and division. So, we should be looking for the
functions F (a, b) that can be computed by using only these
four arithmetic operations.

In mathematical terms, functions that can be computed
from the unknowns and constants by using only addition,
subtraction, multiplication, and division elementary are known
as rational functions (they can be always represented as ratios
of two polynomials). In these terms, we are looking for
situations in which the corresponding aggregation function is
rational.

Natural properties of the aggregation function. From the
formula (4.1), we can easily conclude that the operation
F (a, b) is commutative: F (a, b) = F (b, a).

One can also easily check that this operation is associative.
Indeed, by (4.1), we have

F (F (a, b), c) = f(f−1(F (a, b)) + f−1(c)).

From (4.1), we conclude that

f−1(F (a, b)) = f−1(a) + f−1(b).

Thus,

F (F (a, b), c) = f(f−1(a) + f−1(b) + f−1(c)).

The right-hand side does not change if we change the order
of the elements a, b, and c. Thus, we have

F (a, F (b, c)) = f(f−1(a) + f−1(b) + f−1(c)),

i.e., F (F (a, b), c) = F (a, F (b, c)). So, the operation F (a, b)
is indeed associative.

Since we are looking for rational functions F (a, b) for
which F (0, 0) = 0, we are thus looking for rational commuta-
tive and associative operations F (a, b) for which F (0, 0) = 0.

There is a known classification of all rational commutative
associative binary operations. A classification of all possible

rational commutative associative operations is known; it is
described in [4]. Namely, the authors of [4] show that each
such operation is “isomorphic” to either x+y or x+y+x ·y,
in the sense that there exists a fractional-linear transformation
a → t(a) for which either F (a, b) = t−1(t(a) + t(b)) or
F (a, b) = t−1(t(a) + t(b) + t(a) · t(b)).

In other words, F (a, b) = c means either than t(c) = t(a)+
t(b) or that t(c) = t(a) + t(b) + t(a) · t(b).

Comment. It should be mentioned that the paper [4] calls this
relation by a fractional-linear transformation equivalence, not
isomorphism; we changed the term since we already use the
term “equivalence” in a different sense.

Let us use this known result. Let us use this result to classify
the desired operations F (a, b). First, we want an operation for
which F (0, b) = b for all b. In terms of t, this means that either
t(b) = t(b) + t(0) for all b, or t(b) = t(b) + t(0) + t(0) · t(b)
for all b. In both cases, this implies that t(0) = 0. Thus, t(a)
is a fractional-linear function for which t(0) = 0.

A general fractional-linear function has the form

t(a) =
p+ q · a
r + s · a

.

The fact that t(0) = 0 implies that p = 0, so we get

t(a) =
q · a

r + s · a
. (4.2)

Here, we must have r ̸= 0, because otherwise, the right-hand
side of this expression is simply a constant q/s and not an
invertible transformation. Since r ̸= 0, we can divide both the
numerator and the denominator of this expression by r and
get a simplified formula

t(a) =
A · a

1 +B · a
, (4.3)

where we denoted

A
def
=

q

r
and B

def
=

s

r
.

For this transformation, the inverse transformation can be
obtained from the fact that

a′ =
A · a

1 +B · a
implies

1

a′
=

1 +B · a
A · a

=
1

A · a
+

B

A
.

Thus,
1

A · a
=

1

a′
− B

A
,

so
A · a =

1
1

a′
− B

A

and

a =

1

A
1

a′
− B

A

=
a′

A−B · a′
. (4.4)



So, for operations equivalent to x+ y, we get

c′ = a′ + b′ = t(a) + t(b) =
A · a

1 +B · a
+

A · b
1 +B · b

.

Thus,

c = F (a, b) = t−1(c′) =

A · a
1 +B · a

+
A · a

1 +B · b

A− A ·B · a
1 +B · a

− A ·B · b
1 +B · b

.

Dividing both numerator and denominator by the common
factor A, we get

F (a, b) =

a

1 +B · a
+

b

1 +B · b

1− B · a
1 +B · a

− B · b
1 +B · b

. (4.5)

Bringing the sums in the numerator and in the denominator
to the common denominator and taking into account that
this common denominator is the same for numerator and
denominator of the expression (4.5), we conclude that

F (a, b) =
a · (1 +B · b) + b · (1 +B · a)

(1 +B · a) · (1 +B · b)−B · a−B · b
=

a+ b+ 2B · a · b
1 +B · a+B · b+B2 · a · b−B · a−B · b

.

Finally, by cancelling equal terms in the denominator, we get
the final formula

F (a, b) =
a+ b+ 2B · a · b
1 +B2 · a · b

. (4.6)

For operations equivalent to x+ y + x · y, we similarly get

c′ = a′ + b′ + a′ · b′ = t(a) + t(b) + t(a) · t(b) =

A · a
1 +B · a

+
A · b

1 +B · b
+

A2 · a · b
(1 +B · a) · (1 +B · b)

.

If we bring these terms to a common denominator, we get

c′ =
A · a · (1 +B · b) +A · b · (1 +B · a) +A2 · x · y

(1 +B · a) · (1 +B · b)
=

A · (a+ b+ (2B +A) · a · b)
(1 +B · a) · (1 +B · b)

.

Therefore,

F (a, b) = t−1(c′) =

A · (a+ b+ (2B +A) · a · b)
(1 +B · a) · (1 +B · b)

A− A ·B · (a+ b+ (2B +A) · a · b)
(1 +B · a) · (1 +B · b)

.

Dividing both the numerator and the denominator of this
expression by A, we conclude that

F (a, b) =

a+ b+ (2B +A) · a · b
(1 +B · a) · (1 +B · b)

1− B · (a+ b+ (2B +A) · a · b)
(1 +B · a) · (1 +B · b)

.

By bringing the difference in the denominator to the common
denominator, we get

F (a, b) =
N

D
,

where
N

def
= a+ b+ (2B +A) · a · b

and

D
def
= 1+B·a+B·b+B2·a·b−B·a−B·b−B·(2B+A)·a·b) =

1−B · (B +A) · a · b).

Thus

F (a, b) =
a+ b+ (2B +A) · a · b
1−B · (B +A) · a · b)

. (4.7)

Conclusion. We consider the fuzzy measures g(A) which are
equivalent to probability measures. For such fuzzy measures,
once we know the values g(A) and g(B) for two disjoint sets
A and B, we can compute the degree d(A∪B) as d(A∪B) =
F (g(A), g(B)) for the corresponding aggregation operation
F (a, b).

This value g(A∪B) can be computed in two different ways:
• we can reduce the problem to the probability measures,

i.e., compute the corresponding probabilities, add them
up, and use this sum p(A · B) to compute the desired
value g(A ∪B);

• alternatively, we can compute the value g(A∪B) directly,
as F (g(A), g(B)).

We are looking for operations for which the direct use of fuzzy
measures is computationally faster, i.e., in precise terms, for
which the aggregation operation can be computed by using
fast (hardware supported) elementary arithmetic operations. It
turns out that the only such operations are operations (4.6) and
(4.7) corresponding to different values of A and B.

By using these operations, we thus get a class of fuzzy
measures that naturally generalizes Sugeno λ-measures. Let us
hope that fuzzy measures from this class will be as successful
as Sugeno λ-measures themselves.

When do the original Sugeno λ-measures lie in this class?
To understand it, let us recall that not all arithmetic oper-
ations require the same computation time. Indeed, addition
is the simplest operation. Multiplication is, in effect, several
additions, so multiplication take somewhat longer. Division
requires several iterations, so it takes the longest time. So,
any computation that does not include division is much faster.
Of our formulas (4.6) and (4.7), the only cases when we do not
use division are cases when B = 0, i.e., cases when we have
F (a, b) = a + b (corresponding to probability measures) and
F (a, b) = a+b+A·a·b corresponding to Sugeno λ-measures.
From this viewpoint, Sugeno λ-measures are the ones for
which the direct use of the fuzzy measure has the largest
computational advantage over the reduction to probability
measures.



Comment. Our result is similar to the known result that the
only rational t-norms and t-conorms are Hamacher operations;
see, e.g., [1], [3], [6]. The difference is in our analysis, we do
not assume that the aggregation operation corresponding to
the fuzzy measure is a t-conorm: for example for the Sugeno
aggregation operation, F (1, 1) = 1+1+λ = 2+λ > 1, while
for t-conorm, we always have F (1, 1) = 1.

Also, the result from [4] that we use here does not depend
on the use of real numbers, it is true for any field – e.g.,
for subfields of the field of real numbers (such as the field
of rational numbers) or for super-fields (such as fields that
contain infinitesimal elements).
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