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Abstract

We utilize the Bayesian approach to estimate the parameters of the Birnbaum-Saunders

(BS) distribution devised by Birnbaum and Saunders (1969a), as well as the Generalized

Birnbaum-Saunders (GBS) distribution obtained by Owen (2006), in the presence of ran-

dom right censored data. We also derive the classical MLE expressions for the observed

Information matrix of the GBS distribution, in order to illustrate the fact that no closed

form expressions are available for the MLE, and numerical approximations are required to

obtain the point estimates and asymptotic confidence intervals. Where Bayesian approach

is concerned, new sets of priors are considered based on the model assumptions adopted by

Birnbaum and Saunders (1969a) and Owen (2006). To handle the presence of random right

censored observations, we utilize the data augmentation technique introduced by Tanner

and Wong (1987), to circumvent the arduous expressions involving the censored data in

obtaining posterior inferences. Simulation studies were carried out to assess performance of

these methods under different parameter values, with small and large sample sizes, as well

as various degrees of censoring. Two illustrative examples and some concluding remarks

were finally presented.
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Chapter 1

Introduction

Birnbaum and Saunders (1969a) developed a family of two-parameter distributions to model

failure time due to fatigue under cyclic loading of “stress”. This distribution is known as the

Birnbaum-Saunders (henceforth abbreviated as BS) distribution. It is worth noting that

the term “stress” is not only restricted to mechanical stress, but also encompasses other

engineering response processes such as temperature, voltage and many others. The BS dis-

tribution, and its generalizations, have seen vast areas of practical applications, including

engineering, business, environmental, medical and many other applications (Fierro et al.,

2012). In order to facilitate our subsequent discussion, we will first provide an overview on

the derivation of this distribution by Birnbaum and Saunders (1969a).

1.1 The BS Distribution

Consider a specimen (be it a product, a machine or even a biological subject) that is ex-

erted with cyclical stress. The sources and types of stress may vary depending on the types

of experiments or processes. Fatigue or crack builds up in the specimen gradually, and the

specimen “breaks down” entirely once the internal crack breaches the breakdown threshold

of the specimen.

Let Wj be the crack extension during the jth unit time interval. Assume that these

crack extensions have contant mean µ and constant variance σ2, and they are indepen-

dent of one another. Then, by Central Limit Theorem (CLT), the total crack after time

1



T =
∑T

j=1Wj is approximately distributed by N (Tµ, Tσ2).

Denote the specimen’s breakdown threshold with ω. Then, the probability of the spec-

imen reaching its lifetime (T ≤ t) is equivalent to the probability of total crack exceeding

the specimen’s breakdown threshold:

P(T ≤ t) = P

[
t∑

j=1

Wj ≥ ω

]

≈ Φ

[
µ
√
t

σ
− ω

σ
√
t

]
= Φ

[
1

α

(√
t

β
−
√
β

t

)]
, (1.1)

where Φ{.} is the cdf (cumulative distribution function) of the standard normal distribution,

α =
σ
√
ωµ

> 0, and β =
ω

µ
> 0. Equation (1.1) is the cdf of the BS distribution with

parameters α and β, with its corresponding pdf (probability density function) fT (t) given

by

fT (t) =
t+ β

2
√

2πt3/2α
√
β

exp

{
− 1

2α2

[
t

β
+
β

t
− 2

]}
. (1.2)

From its cdf given in (1.1), it could be easily shown that the relationship between the

BS distribution T ∼ BS(α, β) and the standard normal distribution Z is given by the

following identity:

Z =
1

α

{√
T

β
−
√
β

t

}
∼ N (0, 1). (1.3)

In addition, α is a shape parameter and β is a scale parameter. In fact, β is also the median

of the BS distribution since FT (0) = Φ{0} = 0.5.

The identity given in Equation (1.3) also comes in handy for the purpose of random num-

ber generation and derivation of integer moments. The mean E(T ) and variance V ar(T )

2



of the BS distribution T are given by

E(T ) = β

(
1 +

α2

2

)
(1.4)

V ar(T ) = (αβ)2
(

1 +
5α2

4

)
. (1.5)

Another interesting fact is that, if T ∼ BS(α, β), then T−1 ∼ BS(α, β−1). Therefore, the

mean E(T−1) and variance V ar(T−1) of the BS distribution T−1 are given by

E(T−1) = β−1
(

1 +
α2

2

)
(1.6)

V ar(T−1) =

(
α

β

)2(
1 +

5α2

4

)
. (1.7)

1.2 The Generalized BS (GBS) Distribution

Owen (2006) extended the BS distribution by relaxing the independence assumption among

the crack extensions. He argued that the crack extension at the current time interval

depends on the existing cracks in the specimen, which were built up from previous crack

extensions. It is probable that the specimen wears out faster once there are existing internal

cracks that constitute the “weak point” in the body of the specimen. This may lead to the

phenomenon where crack extension tends to be smaller at the beginning of the experiment

and gradually becomes larger as the specimen is getting close to failure. In other words,

the old cracks may be influencing the formation of new crack extension. This validates the

idea of modeling the sequence of crack extensions W1, . . . ,WT as a stochastic process with

non-zero correlation

ρ(i, j) =
E[(Wi − µ)(Wj − µ)]

σ2
6= 0 for i 6= j.

By utilizing the statistical result proven by Beran (1994), if the sequence of crack

extensions is a stationary and self-similar stochastic process (meaning that the process is

3



invariant in distribution under a scaling of time), then we obtain the variance of the sample

mean of crack extensions as follows:

V ar(W̄ ) = σ2T 2κ−2, (1.8)

where 0 < κ < 1. Here, the additional parameter κ is the self-similarity parameter intro-

duced by Beran (1994), and can be viewed as the rate of decay of V ar(W̄ ). When κ = 0.5,

this corresponds to the classical CLT result of V ar(W̄ ) = σ2/T under the independence

assumption which gives us the original BS distribution. When κ > 0.5, this corresponds to

a long memory process whereby the rate of decay of variance is slower. When κ < 0.5, the

rate of decay of variance is faster and leads to short memory process.

We now explain the role of κ from a practical point of view. If the crack extensions

are a short memory process (i.e. κ < 0.5), the formation of new crack extension is more

influenced by recent cracks. As experiment continues, crack extensions tend to get larger,

and the formation of new crack extension is more influenced by more recent and larger

cracks, rather than being influenced by older, smaller cracks. This correlation with large

cracks may cause the new crack extension to be large as well, and in turn speed up the

instanteneous failure rate or hazard rate of the specimen as experiment carries on.

On the other hand, if the crack extensions are a long memory process (i.e. κ > 0.5), the

formation of new crack extension is also heavily influenced by older cracks. Even though

the size of crack extensions may still increase with time, the formation of new crack exten-

sion is also heavily correlated with older, smaller cracks. The new crack extension may not

be as large or as fast as its counterpart in a short memory process. Figure 1.1 adequately

captures the fact that, as experiment time increases, a short memory process (κ < 0.5)

always has a higher hazard rate, followed by the independent process (κ = 0.5) and finally

the long memory process (κ > 0.5), under different values of α and β.

4
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Figure 1.1: Hazard function of the Extended BS distribution under different values
of α, β and κ

Due to CLT, W̄ is still approximately distributed by N (µ, σ2T 2κ−2). By modeling these

crack extensions as a stationary and self-similar stochastic process, Owen (2006) derived

5



(and named) the generalized three-parameter BS distribution as follows:

P(T ≤ t) = P

[
T∑
j=1

Wj ≥ ω

]

≈ Φ

[
µT 1−κ

σ
− ω

σT κ

]
= Φ

[
1

α

(
T 1−κ
√
β
−
√
β

T κ

)]
,

where, again, α =
σ
√
ωµ

> 0, and β =
ω

µ
> 0. Therefore, when T ∼ GBS(α, β, κ), its cdf

FT (t) is given by

FT (t) = Φ

{
1

α

(
t1−κ√
β
−
√
β

tκ

)}
, (1.9)

with its corresponding pdf fT (t) given by:

fT (t) =
1− κ+ βκ

t√
2πα
√
βtκ

exp

{
−(t− β)2

2α2βt2κ

}
. (1.10)

Obviously, GBS(α, β, 1
2
) = BS(α, β). From the cdf given by (1.9), it is clear that the

relationship between the GBS distribution T ∼ GBS(α, β, κ) and the standard normal

distribution Z is given by the following identity::

Z =
1

α

{
T 1−κ
√
β
−
√
β

T κ

}
∼ N (0, 1). (1.11)

Furthermore, β is still the median of the GBS distribution but it is no longer a scale param-

eter. There are also no closed form expressions for the moments of T . In addition, the recip-

rocal property is preserved as follows: if T ∼ GBS(α, β, κ), then T−1 ∼ GBS(α, β−1, 1−κ).

In other words, if T is a long memory process, then T−1 is the short memory analog.

This thesis unfolds as follows: We will first provide an overview about the existing

research done on the BS distribution in Section 2, followed by a detailed explanation on

6



our methodology to estimate parameters for the BS and GBS distibutions in Section 3.

Subsequently, we will carry out simulation studies for the BS and GBS distributions in

Section 4. For illustrative purpose, real data sets will be analyzed in Section 5, followed by

some concluding remarks in Section 6.
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Chapter 2

Literature Review

Many authors have contributed extensively to the development of the BS distribution. For

instance, Desmond (1985) provided a more general and robust proof for the BS distribution

in a biological random environment context. Subsequently, Desmond (1986) proved that

the BS distribution is in fact a mixture of the inverse normal distribution and its reciprocal

with a mixing probability of 1
2
. Later, Rieck (1999) derived the moment generating function

of the sinh-normal distribution in order to obtain both integer and non-integer moments

of the BS distribution. Kundu et al. (2008) established that the hazard function of the BS

distribution is always concave for all values of its shape parameter α, and developed several

estimators for the maximum point of the hazard function.

Different generalizations and applications of the BS distributions have been introduced

by various authors over the years. The GBS distribution constructed by Owen (2006), as

discussed in previous chapter, is a form of generalization obtained by relaxing the inde-

pendence assumption of the crack extensions. Other generalizations are constructed by

introducing different kernels or additional parameters, or by using extreme value and non-

centrality arguments. See, for example, Diaz-Garcia and Leiva-Sanchez (2005), Leiva et al.

(2008), Sanhueza et al. (2008), Gomez et al. (2009), Fierro et al. (2012), and many others.

In the context of accelerated life testing, Rieck and Nedelman (1991) constructed a log-

linear model for the BS distribution. Owen and Padgett (2000) developed the BS inverse

power law accelerated life model.

In accordance with our research focus, we dedicate the next two subsections below for a

8



more in-depth overview of past researches on parameter estimation for the BS distribution

via the frequentist and bayesian approaches respectively.

2.1 Frequentist/Classical Parameter Estimation

In the context of fully-observed data, the maximum likelihood estimators (MLEs) were

originally obtained by Birnbaum and Saunders (1969b) with their asymptotic distributions

derived by Engelhardt et al. (1981). Dupuis and Mills (1998) utilized the OBRE (optimal

bias-robust estimator) to estimate the parameters and quantiles of the BS distribution.

Later, Ng et al. (2003) proposed modified moment estimators (MMEs) with two meth-

ods of bias correction, one via inspection of bias pattern based on extensive Monte-Carlo

simulation studies, and another by the Jackknife method. Subsequently, Wu and Wong

(2004) improved interval estimation of the parameters using the signed log-likelihood ratio

method introduced by Barndorff-Nielsen (1991). Lemonte et al. (2007) derived modified

MLEs (which are bias-free to second order), compared several interval estimation meth-

ods and obtained a Bartlett correction which improves finite-sample performance of the

likelihood ratio test (LRT). The expression for the Fisher information matrix provided by

Lemonte et al. (2007) only involves numerical evaluation of the standard normal distribution

function, which is an improvement from the expression given by Engelhardt et al. (1981)

that requires numerical integration. Recently, Balakrishnan and Zhu (2014) obtained an-

other form of estimator (with three methods of interval estimations, namely Jacknifing,

Bootstrap and Asymptotic) which has the same mean squared error (MSE) but smaller

bias compared to the MLE and MME proposed by Ng et al. (2003).

Where Type-II censored samples are present, Ng et al. (2006) discussed MLE point and

interval estimation and proposed a simple bias correction method which originated from

Hirose (1999). Meanwhile, Steven and Li (2006) introduced four families of estimators

based on fully observed data, and two of them can be extended to the case of right-censored
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samples. Under random censoring, Wang et al. (2006) constructed the modified censored

moment estimators together with their asymtotic distributions and bias-reduced versions

based on counting process theory and martingale techniques.

2.2 Bayesian Parameter Estimation

Bayesian parameter estimation for the BS distribution is a relatively novel approach in

the literature. In the context of fully observed data, Achcar (1993) first provided the ex-

pressions for marginal posterior distribution of the parameters based on the Jeffrey’s prior

and the reference prior, which was first introduced by Bernardo (1979). More specifically,

Achcar (1993) used Laplace method for integral approximation in his derivations. Xu and

Tang (2010) obtained posterior estimation using Lindley’s approximation (Lindley, 1980)

as well as Gibbs sampling based on the reference priors.

However, Xu and Tang (2011) proved that those reference priors lead to improper

posterior distributions, and improvised their Bayesian inference using the reference priors

with partial information, which was first introduced by Sun and Berger (1998). To simplify

sampling issue in the presence of Type-II right censored data, they adopted a slice sampler

by introducing an independent auxiliary variable. In addition, Achcar and Moala (2010)

obtained a Bayesian inference based on independent inverse gamma priors for the case

of censored data and covariates using WinBugs software. Recently, Wang et al. (2015)

critiqued the slice sampler used by Xu and Tang (2011) and proposed a sampling algorithm

in the context of fully observed data by using the generalized ratio of uniforms method.

2.3 Motivation for our Research

Owen (2006) provides a compelling and practical argument to relax the independence as-

sumption among crack extensions. However, thus far, no other research was done to further
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investigate parameter estimation for this GBS distribution, other than the classical Maxi-

mum Likelihood (ML) estimation obtained by Owen (2006) for the case of fully-observed

data. This motivates us to extend the MLE results to the case where right-censored data

is involved. On top of that, our primary research focus in this paper would be the use

of Bayesian methods to estimate the parameters due to the following reasons. Firstly,

the Bayesian approach allows researchers’ prior knowledge to be incorporated in obtaining

inferences. Secondly, no closed form expressions are available for the MLE and numeri-

cal optimization to obtain the MLE may be unstable due to the data-dependent nature

of the MLE. The arduous MLE expressions with respect to censored data could also be

circumvented with the use of the Bayesian methods (which will be explained in detail in

subsequent chapters), thus rendering the Bayesian approach to be relatively more appeal-

ing. In addition, large sample size is needed to construct asymptotic confidence interval for

the estimators, whereas using the Bayesian methods, credible intervals for the parameters

can still be obtained even with small sample size.

Under our Bayesian approach, we will consider a new set of priors as well as the data

augmentation technique proposed by Tanner and Wong (1987) to handle the presence of

right-censored data in estimating the parameters for the BS and GBS distributions.
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Chapter 3

Methodology

We will split our discussion about parameter estimation into two main sections, the first

for the BS distribution, and the second for the GBS distribution.

Suppose we have n observed samples and m censored samples from an experiment.

In accordance to statistical convention, denote the random variables representing the n

observed data by T1, . . . , Tn, and the random variables representing the m right censored

data by Tn+1, . . . , Tn+m. In addition, the values of the observed samples are denoted by

tn+1, . . . , tn+m, whereas the values of the censored samples are denoted by c1, . . . , cm re-

spectively, with Tn+j > cj for j = 1, . . . ,m. Note that the subscripts here do not refer to

order statistics, but only serve the purpose of simplifying notation.

Throughout our discussion, we assume independent censoring of the observations, which

means that the censoring mechanism is independent of the event process (Lawless, 2003).

Thus, censoring would not affect parameter estimation, so we do not consider the distri-

bution of censoring when we construct the likelihood functions for parameter estimation.

More specifically, we consider random right censoring in our simulation study. It can be

easily shown that our inferences on parameter estimation can be readily applied to the case

of Type-II right censored data under the independent censoring assumption. Whilst we

would not consider Type-II right censoring in our simulation, we would illustrate the use of

our algorithms to estimate the parameters under Type-II right censoring with a real data

set in Chapter 5.
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3.1 The BS Distribution

3.1.1 Likelihood Principle

We explain briefly about the classical maximum likelihood estimation for the BS distribu-

tion. To simplify notation, define the following functions:

z(t) =
1

α

(√
t

β
−
√
β

t

)
(3.1)

S(t) = 1− Φ{z(t)}, (3.2)

where Φ{.} denotes the cdf of a standard normal distribution.

Let θ = (α, β)T be the parameter vector, and let D be the collected data which consists

of the observed samples and the censored samples. Then the likelihood function L(θ|D)

and the loglikelihood function l(θ|D) for the BS distribution are given by the following:

L(θ|D) ∝
n∏
i=1

[
ti + β

α
√
β

exp

{
−z

2(ti)

2

}]
×

m∏
j=1

S(cj), (3.3)

l(θ|D) =
n∑
i=1

[
log

(
ti + β

α
√
β

)
− z2(ti)

2

]
+

m∑
j=1

logS(cj) + C, (3.4)

for some constant C. The inferential procedures to obtain ML estimates and asymptotic

confidence intervals are explained in the Appendix section.

3.1.2 Augmented Likelihood

Now we dedicate our focus towards Bayesian parameter estimation for the BS distribution

using the Markov Chain Monte Carlo (MCMC) methods, such as the Gibbs Sampling algo-

rithm (see, for example, Casella and George (1992)) and the Metropolis-Hastings algorithm

(see, for example, Chib and Greenberg (1995)).
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Before we begin discussion on our Bayesian approach, first note that the likelihood

function in Equation (3.3) could be simplified into

L(θ|D) ∝ (α
√
β)−n exp

{
− 1

2α2

n∑
i=1

(
ti
β

+
β

ti
− 2

)} n∏
i=1

(ti + β)

in the absence of censored data. This allows the parameter α2 to have an inverse gamma

conjugate prior. Furthermore, as we have shown in the Appendix section, closed form ex-

pressions for the Fisher information of the parameters are also available without censored

data. This allows us to properly specify the variance-covariance of our proposal distribu-

tions in our MCMC procedures.

Therefore, in our Bayesian approach, we adopt the data augmentation technique which

was first popularized by Tanner and Wong (1987). Under this method, we consider the cen-

sored data as latent variables which are to be sampled together with the parameters in our

MCMC procedures. These sampled latent variable values are denoted by (tn+1, . . . , tn+m).

Together with the values of observed data (t1, . . . , tn), they constitute the augmented data,

denoted by t. By sampling these latent variables, we continue our inference procedures as

if we finally manage to “observe” all data. In other words, by working with the augmented

likelihood instead of the original likelihood function, we manage to overcome the limitations

brought about by the likelihood expressions involving the censored data.

To simplify notations, we define the following functions:

ϕ1(t) =
n∑
i=1

ti +
m∑
j=1

tn+j, (3.5)

ϕ2(t) =
n∑
i=1

t−1i +
m∑
j=1

t−1n+j, (3.6)

ϕ3(t) =
ϕ1(t)

β
+ βϕ2(t)− 2(n+m). (3.7)
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Then the augmented likelihood is given by:

L(θ|t) ∝ (α2β)−
n+m

2 exp

{
−ϕ3(t)

2α2

} n∏
i=1

(ti + β)
m∏
j=1

(tn+j + β). (3.8)

The augmented loglikelihood becomes:

l(θ|t) = −n+m

2
log(α2β)− ϕ3(t)

2α2
+

n∑
i=1

log(ti + β) +
m∑
j=1

log(tn+j + β) + C (3.9)

for some constant C. We refrain from lumping together the notations into t1, . . . , tn+m

in order to distinguish between the latent variable values tn+1, . . . , tn+m (which are to be

sampled), and the observed samples t1, . . . , tn (which are fixed). Again, the subscripts here

do not refer to order statistics.

Note that the augmented likelihood L(θ|t) has the same functional form as the original

likelihood function L(θ|D) when D does not contain censored data. This shows that, even

if we have censored samples in our data, the augmented likelihood allows us to maintain an

inverse gamma conjugate prior for α2. We could also utilize the closed form expressions for

the Fisher information of the augmented data in specifying the variance-covariance of the

proposal distributions in our MCMC procedures, as we will show in subsequent subsections.

3.1.3 Prior Specification

We first revisit the original assumption made by Birnbaum and Saunders (1969a) in the

derivation of the BS distribution, whereby β = ω
µ

, and α = σ√
ωµ

. Consequently,

α2 =
σ2

ωµ
=
σ2

ω2
× ω

µ
=
σ2

ω2
β ∝ β.

From above, we obtain the idea of constructing a joint prior π(α2, β) = π(α2|β) × π(β),

such that the conditional prior mean E(α2|β) ∝ β.
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Again, from (3.8), it is easily discernible that the inverse gamma distribution is a con-

jugate prior for conditional distribution (α2|β). Therefore, we specify the conditional prior

distribution of α2 given β to be

α2|β ∼ IG
(
a0
2
,
a0β

2a1

)
, (3.10)

with a1 > 0 and a0 > 4 to ensure existence of V ar(α2|β). It follows that the conditional

prior density of α2 given β is given by

π
(
α2|β

)
∝
(
α2
)−(a02 +1) × exp

{
− a0

2a1

(
β

α2

)}
× β

a0
2 . (3.11)

From (3.8), it is clear that no standard distribution works as the conjugate prior for β.

However, the conditional augmented likelihood for (β|α, t) is given by

L(β|α, t) ∝ β−
n+m

2 exp

{
−ϕ3(t)

2α2

} n∏
i=1

(ti + β)
m∏
j=1

(tn+j + β). (3.12)

Hence, we may consider a prior distribution for β which has a similar functional form

as its conditional augmented likelihood function. In this case, we pick the marginal prior

of β to be

β ∼ IG
(
b0
2
,
b0
2b1

)
, (3.13)

with b1 > 0 and b0 > 4 to ensure existence of V ar(β). Then the prior density of β can be

written as

π(β) ∝ β−( b02 +1)e
− b0

2b1
( 1
β ). (3.14)

To specify the hyperparameters a0, a1, b0 and b1, first note that the prior mean and prior

variance of β are given by:

E[β] =
b0

b1(b0 − 2)
(3.15)

V ar[β] =
2b20

b21(b0 − 2)2(b0 − 4)
, (3.16)
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whereas the the conditional prior mean and conditional prior variance of α2 given β are

given by:

E[α2|β] =
a0β

a1(a0 − 2)
(3.17)

V ar[α2|β] =
2a20β

2

a21(a0 − 2)2(a0 − 4)
. (3.18)

Then, we may consider the following factors:

• β is the median of the BS distribution. We can refer to the sample median when we

attempt to specify b0 and b1.

• The shape parameter α determines the shape of the hazard function. Hence, we can

incorporate prior knowledge or cross-industry expertise about the hazard function in

order to specify a0 and a1.

3.1.4 Posterior Inference

To simplify notations, let ν0 = a0+n+m
2

, τ0 = b0−a0+n+m
2

, and

ϕ4(t) = − 1

2α2

[
ϕ3(t) +

a0β

a1

]
− b0

2b1β
.

From (3.8), (3.11) and (3.14), the joint posterior distribution of the parameters is given

by

π(θ|t) ∝
(
α2
)−(ν0+1)

β−(τ0+1)eϕ4(t)

n∏
i=1

(ti + β)
m∏
j=1

(tn+j + β). (3.19)

It follows that the conditional posterior of (α2|β, t) has an inverse gamma distribution

as follows (
α2|β, t

)
∼ IG

(
ν0,

1

2

[
ϕ3(t) +

a0β

a1

])
. (3.20)

In other words, the conditional posterior density of (α2|β, t) can be written as

π(α2|β, t) ∝
(
α2
)−(ν0+1) × exp

{
− 1

2α2

[
ϕ3(t) +

a0β

a1

]}
. (3.21)
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The conditional posterior of (β|α2, t) is not a standard distribution, which is given by

the following:

π(β|α2, t) ∝ β−(τ0+1)eϕ4(t)

n∏
i=1

(ti + β)
m∏
j=1

(tn+j + β). (3.22)

3.1.5 Sampling Algorithm

We will implement two slightly different Gibbs sampling procedures for our Bayesian pa-

rameter estimation. The first algorithm involves sampling the parameters individually

(henceforth known as conditional sampling), and the second involves sampling the param-

eters jointly (henceforth known as joint sampling).

Sampling Scheme 1 - Conditional Sampling

First, set initial values for the parameters α and β. Then at iteration step t+ 1,

1. Sample the latent variables Tn+1, . . . , Tn+m to obtain the updated augmented data t.

2. Draw βt+1 from π(β|α2
t , t) via a Metropolis-Hastings procedure, where t is the aug-

mented data updated in Step 1, and α2
t represents the value of α2 drawn from the

previous step t.

3. Draw
(
α2
t+1|βt+1, t

)
∼ IG

(
ν0,

1
2

[
ϕ3(t) + a0

a1
βt+1

])
using the updated augmented data

t and βt+1 from Steps 1 and 2.

After sampling from the conditional posteriors, we can obtain point estimates and credible

intervals of the parameters α and β.

We will now discuss Steps 1 and 2 in detail. In Step 1, we update the latent variables

based on the values of the parameters drawn from the previous step (denoted by θt) before

we proceed to sample the parameters in Steps 2 and 3. Since we assume an underlying
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BS distribution for the data, sampling these latent variables is equivalent to drawing trun-

cated Birnbaum-Saunders random variates (Tn+j|Tn+j > cj,θt) for j = 1, . . . ,m at every

iteration step t+ 1.

From the relationship between the BS distribution T and the standard normal distribu-

tion Z given in (1.3), it can be easily verified that one variable is an increasing function of

another. This provides us a convenient way to sample the truncated BS random variates.

At step t + 1, we could first draw truncated normal random variates (Zn+j|Zn+j > dj),

where

dj =
1

αt

[√
cj
βt
−

√
βt
cj

]
. (3.23)

Then for j = 1, . . . ,m, we could convert the sampled Zn+j to Tn+j using the following

relationship:

Tn+j = βt

1 +
α2
tZ

2
n+j

2
+ αtZn+j

√
1 +

α2
tZ

2
n+j

4

 . (3.24)

Subsequently in Step 2, we propose β from a lognormal distribution using a Metropolis-

Hastings step. In other words, propose log βp ∼ N
(
log βt, γ

2
βσ

2
t

)
. The subscript p denotes

proposal, γβ > 0 is a tuning parameter for the proposal distribution of β, and

σ2
t =

(
−E

{
∂2 (log π(β|α2

t , t) + log |J |)
∂(log β)2

}
θ=θt

)−1
=

(
(n+m)[αt(2π)−1/2h(αt) + 1]

α2
t

+
b0

2b1βt
+

a0βt
2a1α2

t

)−1
, (3.25)

where h(αt) = αt
√

(π/2)− πe2/α2
t [1− Φ(2/αt)], and the Jacobian term here is J = β. For

each data set, the tuning parameter γβ is calibrated such that the acceptance rate of the

Metropolis-Hastings step lies within the preferable range of around 40% (Gelman et al.,

2004). Via our simulation study, we find that the rule of thumb γβ = 2.4 as suggested by

Gelman et al. (2004) is adequate in ensuring the acceptance rates to hover around 41% -
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47%.

For the purpose of sampling efficiency, we intend to specify a proposal distribution

which closely resembles the conditional posterior distribution (Gelman et al., 2004). This

consideration prompts us to specify the variance term of our normal proposal distribution

based on the posterior likelihood, which is essentially the conditional posterior distribution

of log β. This explains why we take the second derivative of (log π(β|α2
t , t) + log |J |) with

respect to log β. The Jacobian term J is needed here as we make a log transformation on β.

We also highlight the fact that the existing closed-form expression of the Fisher infor-

mation can be easily modified and implemented to obtain the first term of (3.25) because

we are now working with the augmented data which “removes” the cumbersome censored

variables. The second and third term of (3.25) are the resultant derivative terms from the

prior component in the conditional posterior distribution.

After obtaining log βp, exponentiate it to get βp. Next, denote the lognormal proposal

density of β with qβ(.), and take

βt+1 =

βp with probability λβ

βt with probability 1− λβ
,

where

λβ = min

{
1,
π(βp|α2

t , t)× qβ(βt|βp)
π(βt|α2

t , t)× qβ(βp|βt)

}
, (3.26)

with

qβ(βt|βp)
qβ(βp|βt)

=
(σpβt)

−1 exp
{
− (log βt−log βp)2

2γ2βσ
2
p

}
(σtβp)−1 exp

{
− (log βp−log βt)2

2γ2βσ
2
t

} , (3.27)

and

σ2
p =

(
(n+m)[αt(2π)−1/2h(αt) + 1]

α2
t

+
b0

2b1βp
+

a0βp
2a1α2

t

)−1
.
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A possible modification of Step 2 would be to first integrate out α from the joint pos-

terior distribution π(θ|t) to obtain the marginal posterior distribution of β. Then, employ

a Metropolis-Hastings step to sample β from its marginal posterior distribution. This ex-

plains why we chose to first sample β before α2. This method works well too, but, by

drawing from the conditional posterior of β given α, we could easily modify the existing

formula for the Fisher information (which involves α) to specify the variance term of the

proposal distribution of β, as we have shown earlier.

Sampling Scheme 2 - Joint Sampling

To sample the parameters jointly, first set initial values for the parameters α and β.

Then at iteration step t+ 1,

1. Sample the latent variables Tn+1, . . . , Tn+m to update the augmented data t using the

method explained in Step 1 of Sampling Scheme 1.

2. Draw the two parameters θ = (α, β)T from the joint posterior density of the pa-

rameters π(θ|t), where t includes the set of observed data (t1, . . . , tn) and the latent

variable values (tn+1, . . . , tn+m) sampled from Step 1. This step requires a Metropolis-

Hastings procedure as explained below.

After sampling from the joint posterior, we can obtain point estimates and credible inter-

vals of the parameters α and β.

We will propose the two parameters jointly from a bivariate lognormal distribution. In

other words, denote log θ = (logα, log β)T and propose

log θp ∼ N2

(
log θt, γ

2
θΣt

)
, (3.28)

for some tuning parameter γθ > 0. Here, the subscript p refers to proposal, and log θt
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denotes (logαt, log βt)
T . By defining

h(αt) = αt
√

(π/2)− πe2/α2
t [1− Φ(2/αt)],

g(αt) =
(n+m)[αt(2π)−

1
2h(αt) + 1]

α2
t

,

we have

Σt =

[
−E

{
∂2 (log π(θ|t) + log |J |)
∂(log θ)∂(log θ)T

}
θ=θt

]−1

=

2(n+m) +
2a0βt
a1α2

t

− a0βt
a1α2

t

− a0βt
a1α2

t

g(αt) +
b0

2b1βt
+

a0βt
2a1α2

t


−1

, (3.29)

where the Jacobian term above is J = αβ. For each data set, the tuning parameter γθ

is calibrated such that the acceptance rate of the Metropolis-Hastings step lies within the

preferable range of around 30% (Gelman et al., 2004). Via our simulation study, we find

that the rule of thumb γθ = 2.4√
2

as suggested by Gelman et al. (2004) is adequate in ensuring

the acceptance rate to hover around 31% - 36%.

Again, the covariance term in our normal proposal distribution is specified based on

posterior likelihood for the purpose of efficient sampling as discussed previously in Sam-

pling Scheme 1. Note that, even though α and β are asymptotically independent in the

absence of censored data, the non-diagonal terms in the covariance matrix of the proposal

distribution are non-zero because they are the resultant derivative terms from the condi-

tional priors π(α2, β) = π(α2|β) × π(β) that we specified earlier. Again, by working with

the augmented data, the existing closed-form expressions of the Fisher information can be

easily modified and implemented to obtain the covariance term above.

Next, exponentiate log θp to obtain θp. Denote qθ(.) as the bivariate lognormal proposal
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distribution of θ, and define

h(αp) = αp
√

(π/2)− πe2/α2
p [1− Φ(2/αp)],

g(αp) =
(n+m)[αp(2π)−

1
2h(αp) + 1]

α2
p

.

Then, take

θt+1 =

θp with probability λθ

θt with probability 1− λθ
,

where

λθ = min

{
1,
π(θp|t)× qθ(θt|θp)
π(θt|t)× qθ(θp|θt)

}
, (3.30)

with

qθ(θt|θp)
qθ(θp|θt)

=
(αtβt)

−1|Σp|−
1
2 exp{−1

2
(log θt − log θp)

T (γ2θΣp)
−1(log θt − log θp)}

(αpβp)−1|Σt|−
1
2 exp{−1

2
(log θp − log θt)T (γ2θΣt)−1(log θp − log θt)}

, (3.31)

and

Σp =

2(n+m) +
2a0βp
a1α2

p

−a0βp
a1α2

p

−a0βp
a1α2

p

g(αp) +
b0

2b1βp
+

a0βp
2a1α2

p


−1

.

3.2 The GBS Distribution

We will now discuss our methodology for estimating the three parameters α, β and κ in the

GBS distribution.
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3.2.1 Likelihood Principle

We explain briefly about the classical maximum likelihood estimation for the GBS distri-

bution. To simplify notation, define the following functions:

z(t) =
1

α

(
t1−κ√
β
−
√
β

tκ

)
, (3.32)

S(t) = 1− Φ{z(t)}, (3.33)

η(t) = t(1− κ) + βκ, (3.34)

where Φ{.} denotes the cdf of a standard normal distribution.

Let θ = (α, β, κ)T be the parameter vector, and, again, let D be the collected data

which consists of the observed samples and the censored samples. Then the likelihood

function L(θ|D) and the loglikelihood function l(θ|D) for the GBS distribution are given

by the following:

L(θ|D) ∝
n∏
i=1

[
t
−(κ+1)
i η(ti)

α
√
β

exp

{
−z

2(ti)

2

}]
×

m∏
j=1

S(cj), (3.35)

l(θ|D) =
n∑
i=1

[
log

(
t
−(κ+1)
i η(ti)

α
√
β

)
− z2(ti)

2

]
+

m∑
j=1

logS(cj) + C, (3.36)

for some constant C. The inferential procedures to obtain ML estimates and asymptotic

confidence intervals are explained in the Appendix section.

3.2.2 Augmented Likelihood

Again, we will utilize the same strategy to circumvent the arduous expressions of the

likelihood function involving the censored data (as shown in the Appendix section) by

sampling these latent variables and working with augmented data t instead (Tanner and
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Wong, 1987). To simplify expressions, we will first introduce the following notations:

ϕ1(t) =
n∑
i=1

t2−2κi +
m∑
j=1

t2−2κn+j (3.37)

ϕ2(t) =
n∑
i=1

t−2κi +
m∑
j=1

t−2κn+j (3.38)

ϕ3(t) =
n∑
i=1

t1−2κi +
m∑
j=1

t1−2κn+j (3.39)

ϕ4(t) =
ϕ1(t)

β
+ βϕ2(t)− 2ϕ3(t), (3.40)

ϕ5(t) = t−(κ+1)η(t). (3.41)

Then, the augmented likelihood is given by:

L(θ|t) ∝ (α2β)−
n+m

2 exp

{
−ϕ4(t)

2α2

} n∏
i=1

ϕ5(ti)
m∏
j=1

ϕ5(tn+j). (3.42)

For some constant C, the augmented loglikelihood becomes:

l(θ|t) = −n+m

2
log(α2β)− ϕ4(t)

2α2
+

n∑
i=1

log[ϕ5(ti)] +
m∑
j=1

log[ϕ5(tn+j)] + C. (3.43)

3.2.3 Prior Specification

From the augmented likelihood in (3.42), (α2|β) maintains an inverse gamma conjugate

prior. In addition, based on the model assumption of the GBS distribution by Owen

(2006), we propose a joint prior π(α2, β, κ) = π(α2|β)× π(β)× π(κ), whereby

α2|β ∼ IG
(
a0
2
,
a0β

2a1

)
, (3.44)

with a1 > 0 and a0 > 4 to ensure existence of V ar(α2|β), and

β ∼ IG
(
b0
2
,
b0
2b1

)
, (3.45)

with b1 > 0 and b0 > 4 to ensure existence of V ar(β). The conditional prior density of

(α2|β) as wells as the marginal prior density of β are given by (3.11) and (3.14) respectively.
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Since 0 < κ < 1, we specify the Beta prior distribution for κ:

κ ∼ Beta(d0, d1), (3.46)

such that

π(κ) ∝ κd0−1(1− κ)d1−1. (3.47)

If no prior information or idea is available about κ, then pick d0 = d1 = 1, which is

equivalent to picking a standard uniform prior for κ.

3.2.4 Posterior Inference

Let ν0 = a0+n+m
2

, τ0 = b0−a0+n+m
2

, and

ϕ6(t) = −

[
ϕ4(t) + a0β

a1

]
2α2

− b0
2b1β

. (3.48)

From (3.42), (3.11), (3.14), and (3.47), the joint posterior distribution of the parameters

is given by

π(θ|t) ∝
(
α2
)−(ν0+1)

β−(τ0+1)eϕ6(t)κd0−1(1− κ)d1−1
n∏
i=1

ϕ5(ti)
m∏
j=1

ϕ5(tn+j). (3.49)

It follows that the conditional posterior of (α2|β, κ, t) has an inverse gamma distribution

with parameters (
α2|β, κ, t

)
∼ IG

(
ν0,

1

2

[
ϕ4(t) +

a0β

a1

])
. (3.50)

In other words,

π(α2|β, κ, t) ∝
(
α2
)−(ν0+1) × exp

{
− 1

2α2

[
ϕ4(t) +

a0β

a1

]}
. (3.51)

The conditional posterior of (β|α2, κ, t) is then given by

π(β|α2, κ, t) ∝ β−(τ0+1)eϕ6(t)

n∏
i=1

η(ti)
m∏
j=1

η(tn+j) (3.52)

and the conditional posterior of (κ|α2, β, t) becomes

π(κ|α2, β, t) ∝ κd0−1(1− κ)d1−1e

{
−ϕ4(t)

2α2

} n∏
i=1

ϕ5(ti)
m∏
j=1

ϕ5(tn+j). (3.53)
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3.2.5 Sampling Algorithm

We will implement a Gibbs sampling algorithm to sample the parameters individually/conditionally.

Again, at every iteration step, we will first draw the latent variables to update our aug-

mented data before we proceed to sample our parameters.

Sampling Scheme - Conditional Sampling

First, set initial values for the parameters α, β and κ. Then at iteration step t+ 1,

1. Sample the latent variables Tn+1, . . . , Tn+m.

2. Draw κ from π(κ|α2
t , βt, t) using a Metropolis-Hastings procedure, where augmented

data t includes the set of observed data (t1, . . . , tn) and the latent variable values

tn+1, . . . , tn+m sampled from Step 1, while α2
t and βt represent the values of α2 and β

sampled from the previous step t.

3. Draw β from π(β|α2
t , κt+1, t) using a Random Walk (RW) Metropolis procedure,

where κt+1 represents the updated value of κ from Step 2, and t represents the

updated augmented data from Step 1.

4. Draw α2 ∼ IG
(
ν0,

1
2

[
ϕ4(t) + a0

a1
βt+1

])
using the updated augmented data t from

Step 1 and the updated values of β and κ from Steps 2 and 3.

After sampling from their respective conditional posterior distributions, we can obtain point

estimates and credible intervals of the parameters α, β and κ.

We will now explain Steps 1-3 in detail. For Step 1, the attempt to sample the latent

variables is equivalent to drawing truncated GBS random variates (Tn+j|Tn+j > cj,θt) for

j = 1, . . . ,m. Recall that the relationship between the standard normal random variable

Z and the GBS distribution T is given by Z = 1
α

[
T 1−κ
√
β
−
√
β

Tκ

]
. It can be easily verified

that one variable is an increasing function of another. This provides us a convenient way
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to sample the truncated GBS random variates. At step t+1, we could first draw truncated

standard normal random variates (Zn+j|Zn+j > dj), where

dj =
1

αt

[
c1−κtj√
βt
−
√
βt
cκtj

]
. (3.54)

Then for j = 1, . . . ,m, we could convert the sampled Zn+j to Tn+j by solving the following

non-linear equation for Tn+j:

αt
√
βtZn+jT

κt
n+j − Tn+j + βt = 0. (3.55)

Since T is an increasing function of Z (and vice versa), there is only one root for the non-

linear equation above.

In Step 2, propose κp ∼ Beta (γκκt , γκ(1− κt)), where the subscript p denotes proposal

and γκ > 0 is a tuning parameter to be calibrated for each data set to achieve reasonable

acceptance rates for this Metropolis-Hastings procedure in Step 2.

Denote the Beta proposal density of κ with qκ(.), and take

κt+1 =

κp with probability λκ

κt with probability 1− λκ
,

where

λκ = min

{
1,
π(κp|α2

t , βt, t)× qκ(κt|κp)
π(κt|α2

t , βt, t)× qκ(κp|κt)

}
, (3.56)

and

qκ(κt|κp)
qκ(κp|κt)

=
Γ(γκκt)Γ[γκ(1− κt)]
Γ(γκκp)Γ[γκ(1− κp)]

× κ
γκκp−1
t (1− κt)γκ(1−κp)−1

κγκκt−1p (1− κp)γκ(1−κt)−1
. (3.57)
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In Step 3, draw β from a lognormal proposal density with a Random Walk (RW)

Metropolis step. In other words, propose log βp ∼ N (log βt, γ
2
βσ̂

2), where the subscript p

denotes proposal, γβ > 0 is a tuning parameter to be calibrated for each data set to achieve

reasonable acceptance rates, and

σ̂2 =

(
−β2∂

2l(θ|D)

∂β2
+

b0
2b1β

+
a0β

2a1α2

)−1
θ=θ̂

. (3.58)

From our simulation study, the rule of thumb γβ = 2.4 as suggested by Gelman et al.

(2004) provides adequate tuning to achieve reasonable acceptance rate for this RW Metropo-

lis step. Exponentiate log βp to obtain βp. Denote the proposal density of β with qβ(.), and

take

βt+1 =

βp with probability λβ

βt with probability 1− λβ
,

where

λβ = min

{
1,
π(βp|α2

t , κt+1, t)× qβ(βt|βp)
π(βt|α2

t , κt+1, t)× qβ(βp|βt)

}
, (3.59)

with

qβ(βt|βp)
qβ(βp|βt)

=
βp
βt
. (3.60)

We will now explain the reason behind the use of a RW Metropolis procedure instead

of a Metropolis-Hastings procedure in Step 3. Again, the variance term above is specified

based on the posterior likelihood[
−Ê

{
∂2 (log π(β|α2

t , t) + log |J |)
∂(log β)2

}]−1
=

[
−β2∂

2l(θ|t)
∂β2

+
b0

2b1β
+

a0β

2a1α2

]−1
, (3.61)

where the Jacobian term is J = β.

Note that, under the case of GBS distribution, there is no closed form expression for

the Fisher information −E
{
∂2l(θ|t)
∂β2

}
, so instead, we have to rely on the observed Fisher

information

−Ê
{
∂2l(θ|t)
∂β2

}
= −∂

2l(θ|t)
∂β2
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in specifying the variance term for our normal proposal density, as shown in (3.61). How-

ever, by using the observed Fisher information (which is dependent on data), this “ap-

proximate” variance term may not be positive-definite for the entire parameter space

{α ∈ (0,∞), β ∈ (0,∞), κ ∈ (0, 1)}. A Metropolis-Hastings algorithm will produce er-

ror when the the parameters assume values which belong to the subset of parameter space

where the “approximate” variance term is not positive-definite.

To overcome this problem, we will replace the Metropolis-Hastings step with a RW

Metropolis step by fixing the variance term for each iteration step. Therefore, we estimate

the observed Fisher information −∂
2l(θ|t)
∂β2

for the augmented data (which is updated in

every iteration step) with the observed MLE Fisher information
∂2l(θ|D)

∂β2

∣∣∣
θ=θ̂

which is a

fixed value. All parameters in the “approximate” variance term would also assume their

corresponding ML estimates, and we obtain the fixed variance term σ̂2 as given by (3.58)

for our normal proposal density.
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Chapter 4

Simulation Study

4.1 The BS Distribution

We perform several simulation examples to assess performance of the ML and Bayesian

estimators. Rieck and Nedelman (1991) pointed out that, in practice, if the fatigue lifetime

of a metal specimen subjected to cyclical stress loading has a BS distribution, then the

shape parameter α would usually not exceed one. Therefore, in our simulation examples,

we take the shape parameter α = 0.5, 1 and 2. Without loss of generaliy, the scale param-

eter β is fixed at 1. In addition, we apply 4 random right censoring percentages (CEP) at

10%, 20%, 30% and 40% for two sample sizes, n = 20 and 50.

For each of these 24 parameter settings, we generate 10,000 data sets, and apply the

MLE, conditional sampling and joint sampling algorithms, as explained in Chapter 3, to

obtain the point estimates and interval estimates of the parameters α and β for these simu-

lated data sets. Then, we compute the average point estimates, average length (AL) of the

95% credible intervals (for conditional sampling and joint sampling) and average length

(AL) of the 95% confidence intervals (for MLE), coverage probability (CP), and square

root of mean squared error (SRMSE) of the parameters.

Where Gibbs sampling is concerned, we adopt the priors as explained in Chapter 3 and

pick these hyperparameters a0 = a1 = b0 = b1 = 5, such that the prior distributions are

rather “flat” or “less informative”, in order to illustrate the case where we have little prior

knowledge about the parameters. For conditional sampling, the Gibbs sampler has 8,000
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iterations with a burn-in period of 2,000. The tuning parameter γβ for the proposal of

β is fixed at 2.4, as suggested by Gelman et al. (2004), to ensure acceptance rates of the

Metropolis-Hastings step to remain at 40% to 47%. For joint sampling, the Gibbs sampler

has 6,000 iterations with a burn-in period of 1,500. The tuning parameter γθ for the joint

proposal is fixed at 2.4/
√

2 as suggested by Gelman et al. (2004), to ensure acceptance

rates of the Metropolis-Hastings step to remain at 30% to 37%.

We separate the simulation results into three tables, namely Table 4.1 for parameter

setting α = 0.5, Table 4.2 for parameter setting α = 1, and Table 4.3 for parameter setting

α = 2. Each table contains results for different CEP and sample sizes. To aid visualization,

we also plot the average estimates, AL of 95% CI and SRMSE for both α and β under

different CEP and sample sizes for each of the α parameter settings.

From these tables and plots, some features can be summarized as follows:

1. Bias, SRMSE and average length (AL) of 95% CI decrease with sample size n but

increase with censoring percentage (CEP).

2. Compared to conditional sampling, joint sampling obtains slightly smaller bias for α

but much higher bias and wider 95% CI for β. Overall, conditional sampling appears

to outperform joint sampling. We do not consider joint sampling for the case of GBS

distribution.

3. With larger sample size, the performances of the three algorithms (in terms of bias,

SRMSE and 95% CI width) are similar to one another.

4. The effect of priors in posterior inference is more prevalent with smaller sample size.

Due to the choice of relatively “flat” or “uninformative” priors, conditional sampling

and joint sampling produce smaller bias and SRMSE as compared to MLE, but

slightly wider 95% credible intervals than the 95% confidence intervals.
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Table 4.1: Simulation Results for Parameter Setting 1 (α = 0.5, β = 1)

Parameter α β

n Method CEP(%) Mean AL CP(%) SRMSE Mean AL CP(%) SRMSE

20

MLE

10 0.4888 0.3127 90.87 0.0838 1.0466 0.4374 93.20 0.1243

20 0.4992 0.3345 91.79 0.0893 1.0955 0.4739 90.25 0.1556

30 0.5111 0.3650 93.14 0.0974 1.1544 0.5215 84.18 0.2028

40 0.5251 0.4069 93.92 0.1102 1.2293 0.5858 73.44 0.2701

*Cond

10 0.5111 0.3181 97.02 0.0710 1.0353 0.4679 95.18 0.1166

20 0.5237 0.3446 97.09 0.0779 1.0849 0.5223 92.62 0.1461

30 0.5383 0.3778 96.66 0.0875 1.1450 0.5952 86.58 0.1932

40 0.5558 0.4205 95.68 0.1015 1.2220 0.7002 75.11 0.2619

Joint

10 0.5010 0.3064 96.97 0.0693 1.0605 0.4746 93.30 0.1297

20 0.5134 0.3329 97.07 0.0747 1.1134 0.5343 88.09 0.1677

30 0.5284 0.3677 96.90 0.0836 1.1784 0.6178 79.06 0.2229

40 0.5469 0.4148 96.09 0.0978 1.2634 0.7452 63.84 0.3020

50

MLE

10 0.5048 0.2030 93.65 0.0540 1.0462 0.2844 92.10 0.0859

20 0.5193 0.2181 93.73 0.0613 1.0996 0.3106 79.75 0.1259

30 0.5361 0.2395 93.01 0.0732 1.1656 0.3456 55.95 0.1853

40 0.5572 0.2703 91.12 0.0918 1.2497 0.3937 25.00 0.2656

*Cond

10 0.5133 0.2081 95.29 0.0520 1.0417 0.2959 93.14 0.0826

20 0.5285 0.2274 93.66 0.0610 1.0953 0.3317 80.90 0.1220

30 0.5461 0.2517 90.26 0.0746 1.1618 0.3803 57.62 0.1814

40 0.5682 0.2842 85.25 0.0944 1.2466 0.4520 26.55 0.2625

Joint

10 0.5085 0.2041 95.32 0.0506 1.0519 0.2967 90.72 0.0889

20 0.5236 0.2233 94.16 0.0586 1.1070 0.3336 75.72 0.1319

30 0.5412 0.2476 91.13 0.0715 1.1754 0.3845 50.48 0.1944

40 0.5635 0.2805 86.25 0.0912 1.2633 0.4605 21.14 0.2790

*Cond = Conditional Sampling
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Figure 4.1: Average Estimates, SRMSE and Average Length of 95% CI of α for
Parameter Setting 1 (α = 0.5, β = 1)
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Figure 4.2: Average Estimates, SRMSE and Average Length of 95% CI of β for
Parameter Setting 1 (α = 0.5, β = 1)
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Table 4.2: Simulation Results for Parameter Setting 2 (α = 1, β = 1)

Parameter α β

n Method CEP(%) Mean AL CP(%) SRMSE Mean AL CP(%) SRMSE

20

MLE

10 0.9762 0.6245 90.42 0.1701 1.0942 0.8191 93.73 0.2441

20 0.9975 0.6680 91.56 0.1806 1.1860 0.9060 92.28 0.3099

30 1.0248 0.7291 92.47 0.1999 1.3051 1.0288 87.55 0.4115

40 1.0609 0.8185 93.35 0.2323 1.4634 1.2081 78.99 0.5594

*Cond

10 0.9464 0.5925 91.82 0.1632 1.1059 0.8420 91.91 0.2437

20 0.9638 0.6403 93.12 0.1674 1.1945 0.9674 87.94 0.3096

30 0.9854 0.7025 94.23 0.1769 1.3077 1.1451 80.11 0.4075

40 1.0126 0.7854 94.23 0.1944 1.4552 1.4080 68.14 0.5460

Joint

10 0.9329 0.5829 90.07 0.1681 1.1850 0.9155 86.47 0.3012

20 0.9535 0.6401 92.05 0.1718 1.2897 1.0823 78.56 0.3922

30 0.9806 0.7216 93.33 0.1833 1.4292 1.3431 66.98 0.5236

40 1.0190 0.8497 93.67 0.2092 1.6273 1.8238 51.22 0.7418

50

MLE

10 1.0077 0.4052 93.84 0.1075 1.0892 0.5276 93.07 0.1646

20 1.0373 0.4352 94.34 0.1211 1.1912 0.5900 81.78 0.2446

30 1.0751 0.4792 92.94 0.1487 1.3233 0.6793 57.64 0.3656

40 1.1234 0.5430 89.57 0.1909 1.5038 0.8119 26.25 0.5415

*Cond

10 0.9939 0.4044 94.36 0.1037 1.0953 0.5485 90.60 0.1670

20 1.0214 0.4425 94.83 0.1127 1.1961 0.6395 77.67 0.2475

30 1.0559 0.4935 93.16 0.1347 1.3258 0.7711 53.50 0.3670

40 1.0991 0.5641 89.45 0.1694 1.5010 0.9739 25.13 0.5378

Joint

10 0.9863 0.3989 93.81 0.1041 1.1293 0.5643 85.85 0.1918

20 1.0150 0.4393 94.75 0.1118 1.2372 0.6653 68.31 0.2843

30 1.0518 0.4945 93.26 0.1342 1.3783 0.8161 41.73 0.4175

40 1.0995 0.5747 89.49 0.1723 1.5727 1.0570 15.77 0.6090

*Cond = Conditional Sampling
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Figure 4.3: Average Estimates, SRMSE and Average Length of 95% CI of α for
Parameter Setting 2 (α = 1, β = 1)
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Parameter Setting 2 (α = 1, β = 1)

38



Table 4.3: Simulation Results for Parameter Setting 3 (α = 2, β = 1)

Parameter α β

n Method CEP(%) Mean AL CP(%) SRMSE Mean AL CP(%) SRMSE

20

MLE

10 1.9464 1.2440 90.19 0.3410 1.1570 1.2808 93.44 0.4041

20 1.9909 1.3266 91.10 0.3646 1.2979 1.4457 93.43 0.5208

30 2.0519 1.4480 92.07 0.4071 1.4859 1.6895 91.51 0.6976

40 2.1294 1.6212 92.38 0.4771 1.7664 2.0803 85.65 0.9846

*Cond

10 1.8488 1.1678 89.35 0.3487 1.2176 1.3525 89.80 0.4313

20 1.8801 1.2654 90.64 0.3573 1.3553 1.6059 85.82 0.5520

30 1.9205 1.3919 91.85 0.3753 1.5331 1.9608 78.57 0.7226

40 1.9652 1.5580 92.29 0.4058 1.7867 2.5154 67.96 0.9827

Joint

10 1.8393 1.1915 88.95 0.3559 1.4126 1.6506 80.50 0.5978

20 1.8860 1.3387 91.08 0.3648 1.6058 2.0774 71.45 0.7865

30 1.9529 1.5689 92.40 0.3930 1.8808 2.8299 59.95 1.0713

40 2.0467 1.9856 93.33 0.4695 2.3726 4.9964 44.87 2.6583

50

MLE

10 2.0156 0.8095 93.78 0.2147 1.1331 0.8028 93.95 0.2547

20 2.0785 0.8685 94.12 0.2457 1.2830 0.9147 85.33 0.3786

30 2.1569 0.9537 91.85 0.3029 1.4885 1.0854 64.78 0.5721

40 2.2651 1.0803 87.35 0.3982 1.7875 1.3556 34.92 0.8705

*Cond

10 1.9734 0.8073 93.91 0.2100 1.1613 0.8597 90.04 0.2712

20 2.0300 0.8879 94.58 0.2277 1.3110 1.0394 77.86 0.3999

30 2.0984 0.9954 93.22 0.2685 1.5131 1.3074 57.24 0.5922

40 2.1900 1.1535 89.98 0.3405 1.8023 1.7446 30.77 0.8814

Joint

10 1.9632 0.8044 93.51 0.2116 1.2419 0.9262 82.38 0.3360

20 2.0259 0.8961 94.48 0.2287 1.4136 1.1423 64.48 0.4945

30 2.1049 1.0250 93.07 0.2754 1.6527 1.4854 40.09 0.7284

40 2.2166 1.2351 89.37 0.3667 2.0102 2.1022 16.80 1.0901

*Cond = Conditional Sampling
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Figure 4.5: Average Estimates, SRMSE and Average Length of 95% CI of α for
Parameter Setting 3 (α = 2, β = 1)
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Figure 4.6: Average Estimates, SRMSE and Average Length of 95% CI of β for
Parameter Setting 3 (α = 2, β = 1)
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4.2 The Generalized BS Distribution

We perform several simulation examples to assess performance of the ML and Bayesian

estimators. Recall that for the GBS distribution, β is no longer a scale parameter. In these

simulation examples, we use the following three parameter settings:

(α, β, κ) = {(0.5, 1, 0.5), (1, 5, 0.8), (2, 5, 0.2)},

under 4 random right censoring percentages (CEP) at 10%, 20%, 30% and 40% for two

sample sizes, n = 20 and 50.

For each of these 24 parameter settings, we generate 10,000 data sets, and apply the

MLE and conditional sampling algorithms, as explained in Chapter 3, to obtain the point

estimates and interval estimates of the parameters α, β and κ for these simulated data sets.

Then, we compute the average point estimates, average length (AL) of the 95% credible

intervals (for conditional sampling) and average length (AL) of the 95% confidence intervals

(for MLE), coverage probability (CP), and square root of mean squared error (SRMSE) of

the parameters.

Here, we only consider conditional sampling as our Bayesian method. We adopt the

same hyperparameters a0 = a1 = b0 = b1 = 5, as well as d0 = d1 = 1, which corresponds to

a standard uniform prior for κ, under the assumption that we have little prior knowledge

about the parameters. The Gibbs sampler has 8,000 iterations with a burn-in period of

2,000. The tuning parameters γβ and γκ for the proposal distributions are calibrated to

ensure acceptance rates of the Metropolis-Hastings steps to be around 40% to 47%, as

suggested by Gelman et al. (2004).

We separate the simulation results into three tables, namely Table 4.1 for parameter

setting (α = 0.5, β = 1, κ = 0.5), Table 4.2 for parameter setting (α = 1, β = 5, κ = 0.8),

and Table 4.3 for parameter setting (α = 2, β = 5, κ = 0.2). Each table contains results for
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different CEP and sample sizes. To aid visualization, we also plot the average estimates,

AL of 95% CI and SRMSE for α, β and κ under different CEP and sample sizes for each

of the 3 parameter settings.

From these tables and plots, some features can be summarized as follows:

1. Bias, SRMSE and average length (AL) of 95% CI decrease with sample size n but

increase with censoring percentage (CEP).

2. Note that 95% asymptotic confidence interval is obtained from the formula: point

estimate ±1.96×
√

asymptotic variance. This may result in confidence interval cov-

ering values outside parameter space. For example, some 95% confidence intervals

for κ may have covered values outside the range (0, 1), thus explaining the fact that

some reported average length of 95% confidence intervals of κ are longer than 1. The

95% credible intervals obtained from the Bayesian method will be inside parameter

space due to the choice of priors and proposals.

3. Under the parameter setting (α = 1, β = 5, κ = 0.8), MLE tends to overestimate

both α and β while underestimating κ. More simulations could be done to ascertain

if MLE consistently produces such biases when κ is relatively larger. Our Bayesian

approach obtains less bias for all three parameters.

4. Overall, even with relatively “less” informative priors, our Bayesian approach outper-

forms MLE for all parameter settings in terms of bias, SRMSE and 95% CI width,

especially when sample size is small.
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Table 4.4: Simulation Results for Parameter Setting 1 (α = 0.5, β = 1, κ = 0.5)

Method MLE Bayesian

n *Pm CEP(%) 10 20 30 40 10 20 30 40

20

α

Mean 0.4741 0.4836 0.4953 0.5104 0.5056 0.5182 0.5333 0.5521

AL 0.3205 0.3498 0.3898 0.4474 0.3227 0.3502 0.3851 0.4323

CP(%) 88.64 90.49 91.86 93.69 97.67 97.92 97.37 96.85

SRMSE 0.0882 0.0919 0.0993 0.1124 0.0699 0.0756 0.0849 0.0988

β

Mean 1.0483 1.0971 1.1552 1.2284 1.0362 1.0855 1.1465 1.2232

AL 0.4856 0.5322 0.5914 0.6739 0.4850 0.5360 0.6053 0.7064

CP(%) 92.94 91.40 86.92 79.54 95.24 93.40 87.79 77.04

SRMSE 0.1361 0.1659 0.2123 0.2769 0.1212 0.1491 0.1967 0.2649

κ

Mean 0.4911 0.4861 0.4856 0.4880 0.4916 0.4893 0.4820 0.4823

AL 0.9563 1.0308 1.1256 1.2469 0.7163 0.7375 0.7515 0.7733

CP(%) 96.13 97.16 97.34 97.59 99.04 99.30 99.44 99.64

SRMSE 0.2155 0.2251 0.2422 0.2570 0.1331 0.1299 0.1260 0.1204

50

α

Mean 0.4978 0.5115 0.5275 0.5482 0.5093 0.5244 0.5421 0.5648

AL 0.2087 0.2293 0.2563 0.2952 0.2097 0.2302 0.2572 0.2949

CP(%) 93.68 95.17 95.73 95.90 95.77 94.85 92.31 87.71

SRMSE 0.0536 0.0594 0.0701 0.0877 0.0507 0.0591 0.0724 0.0924

β

Mean 1.0487 1.1025 1.1682 1.2515 1.0428 1.0964 1.1624 1.2468

AL 0.3217 0.3562 0.4009 0.4631 0.3196 0.3548 0.4018 0.4696

CP(%) 92.82 83.76 66.53 42.73 93.31 83.47 63.49 34.19

SRMSE 0.0947 0.1339 0.1922 0.2711 0.0887 0.1267 0.1848 0.2648

κ

Mean 0.4939 0.4909 0.4904 0.4901 0.5002 0.4990 0.5004 0.5011

AL 0.5595 0.5995 0.6487 0.7096 0.5286 0.5564 0.5868 0.6189

CP(%) 95.69 96.19 96.29 96.10 96.58 97.27 97.48 97.76

SRMSE 0.1330 0.1412 0.1510 0.1650 0.1206 0.1245 0.1277 0.1316

*Pm = Parameter
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Figure 4.7: Average Estimates, SRMSE and Average Length of 95% CI of α for
Parameter Setting 1 (α = 0.5, β = 1, κ = 0.5)
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Figure 4.8: Average Estimates, SRMSE and Average Length of 95% CI of β for
Parameter Setting 1 (α = 0.5, β = 1, κ = 0.5)
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Figure 4.9: Average Estimates, SRMSE and Average Length of 95% CI of κ for
Parameter Setting 1 (α = 0.5, β = 1, κ = 0.5)
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Table 4.5: Simulation Results for Parameter Setting 2 (α = 1, β = 5, κ = 0.8)

Method MLE Bayesian

n *Pm CEP(%) 10 20 30 40 10 20 30 40

20

α

Mean 1.1646 1.3004 1.4830 1.7343 1.1032 1.1794 1.2661 1.3703

AL 1.6427 2.0356 2.6115 3.4710 1.2077 1.3738 1.5763 1.8308

CP(%) 95.37 97.16 98.18 98.92 98.93 98.47 97.58 95.90

SRMSE 0.4575 0.6013 0.8153 1.1246 0.2540 0.3097 0.3827 0.4778

β

Mean 7.1976 8.9611 11.7815 16.7003 5.6410 6.4548 7.5050 8.9949

AL 14.5686 21.1321 32.7303 54.9316 9.5989 12.1196 15.6025 20.8502

CP(%) 95.75 98.18 99.27 99.65 97.24 98.28 97.50 94.91

SRMSE 4.8881 7.4574 12.0429 20.1768 2.1679 2.8873 3.9751 5.6452

κ

Mean 0.7544 0.7349 0.7131 0.6871 0.7837 0.7753 0.7682 0.7607

AL 0.3405 0.3856 0.4418 0.5103 0.2624 0.2853 0.3103 0.3381

CP(%) 95.33 94.72 93.59 91.36 97.73 97.99 97.97 97.99

SRMSE 0.0972 0.1149 0.1369 0.1644 0.0632 0.0692 0.0753 0.0838

50

α

Mean 1.1207 1.2515 1.4388 1.7126 1.0988 1.1998 1.3308 1.4971

AL 0.9492 1.1887 1.5623 2.1702 0.8386 1.0018 1.2303 1.5431

CP(%) 97.68 98.62 98.68 98.18 96.50 92.83 84.99 71.68

SRMSE 0.2668 0.3839 0.5743 0.8700 0.2095 0.2915 0.4143 0.5795

β

Mean 6.3284 7.7865 10.1616 14.4751 5.8219 6.9071 8.4887 10.9294

AL 7.4256 10.7689 16.9587 29.7127 6.4988 8.8249 12.6252 19.0087

CP(%) 98.22 99.64 99.91 99.85 95.79 90.70 76.90 53.55

SRMSE 2.3597 3.9109 6.6676 11.8703 1.7187 2.7319 4.3779 7.0172

κ

Mean 0.7757 0.7586 0.7364 0.7081 0.7890 0.7780 0.7653 0.7515

AL 0.1938 0.2207 0.2560 0.3014 0.1726 0.1914 0.2150 0.2422

CP(%) 95.36 93.49 89.71 84.45 96.62 95.86 94.21 92.22

SRMSE 0.0541 0.0682 0.0885 0.1162 0.0419 0.0493 0.0596 0.0729

*Pm = Parameter
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Figure 4.10: Average Estimates, SRMSE and Average Length of 95% CI of α for
Parameter Setting 2 (α = 1, β = 5, κ = 0.8)
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Figure 4.11: Average Estimates, SRMSE and Average Length of 95% CI of β for
Parameter Setting 2 (α = 1, β = 5, κ = 0.8)
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Figure 4.12: Average Estimates, SRMSE and Average Length of 95% CI of κ for
Parameter Setting 2 (α = 1, β = 5, κ = 0.8)
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Table 4.6: Simulation Results for Parameter Setting 3 (α = 2, β = 5, κ = 0.2)

Method MLE Bayesian

n *Pm CEP(%) 10 20 30 40 10 20 30 40

20

α

Mean 1.8482 1.8521 1.8553 1.8653 1.8101 1.8142 1.8184 1.8303

AL 1.3058 1.3766 1.4674 1.5957 1.2160 1.2748 1.3495 1.4516

CP(%) 86.48 86.80 87.12 87.84 86.77 86.51 87.13 88.07

SRMSE 0.4061 0.4259 0.4509 0.4836 0.4070 0.4199 0.4343 0.4495

β

Mean 5.4049 5.9894 6.6844 7.5644 4.9604 5.4408 6.0163 6.7359

AL 5.8884 6.4589 7.1767 8.1791 5.4311 6.0066 6.7627 7.8288

CP(%) 92.62 91.39 87.29 80.84 95.11 95.83 93.86 89.97

SRMSE 1.5724 1.8921 2.4005 3.1405 1.3320 1.4870 1.8287 2.3796

κ

Mean 0.2293 0.2244 0.2215 0.2195 0.2681 0.2679 0.2700 0.2736

AL 0.3519 0.3698 0.3933 0.4256 0.3452 0.3633 0.3855 0.4137

CP(%) 95.65 95.47 94.73 94.42 90.65 91.45 91.39 92.37

SRMSE 0.0957 0.0991 0.1060 0.1156 0.1204 0.1250 0.1333 0.1423

50

α

Mean 1.9544 1.9724 1.9935 2.0218 1.9425 1.9605 1.9817 2.0102

AL 0.8382 0.8847 0.9442 1.0242 0.8193 0.8633 0.9198 0.9953

CP(%) 91.84 92.78 93.20 94.03 92.16 93.09 92.85 93.46

SRMSE 0.2297 0.2382 0.2543 0.2757 0.2307 0.2377 0.2514 0.2695

β

Mean 5.4927 6.1477 6.9505 7.9653 5.3207 5.9322 6.6838 7.6331

AL 3.8895 4.2911 4.7939 5.4800 3.7713 4.1841 4.7070 5.4342

CP(%) 93.11 85.08 66.83 42.48 94.71 88.30 72.01 46.25

SRMSE 1.0921 1.5411 2.2372 3.1877 0.9846 1.3559 1.9869 2.8669

κ

Mean 0.2058 0.1987 0.1916 0.1843 0.2186 0.2130 0.2074 0.2020

AL 0.1956 0.2019 0.2095 0.2191 0.1951 0.2020 0.2100 0.2202

CP(%) 95.15 94.36 93.01 90.87 93.76 94.20 93.80 93.24

SRMSE 0.0507 0.0513 0.0547 0.0588 0.0569 0.0569 0.0596 0.0629

*Pm = Parameter
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Figure 4.13: Average Estimates, SRMSE and Average Length of 95% CI of α for
Parameter Setting 3 (α = 2, β = 5, κ = 0.2)
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Figure 4.14: Average Estimates, SRMSE and Average Length of 95% CI of β for
Parameter Setting 3 (α = 2, β = 5, κ = 0.2)
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Figure 4.15: Average Estimates, SRMSE and Average Length of 95% CI of κ for
Parameter Setting 3 (α = 2, β = 5, κ = 0.2)
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Chapter 5

Real Data Analyses

In this chapter, we will analyze two real data sets.

5.1 Data Set 1

Table 5.1: Lifetimes (in months) of 20 cancer patients receiving a new treatment

3 5 6 7 8

9 10 10+ 12 15

15+ 18 19 20 22

25 28 30 40 45

We first analyze the lifetimes (in months) of 20 cancer patients receiving a new treat-

ment, where the symbol + denotes a right-censored observation. This data can be found

in Achcar and Moala (2010), and is presented in Table 5.1. Assuming an underlying GBS

distribution for the data, we adopt the same prior distributions as discussed in Chapter 3

with the following hyperparameters:

a0 = 10

a1 = 19

b0 = 10

b1 = 0.083

d0 = d1 = 1.
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Here, we explain the reasons behind the choices for our hyperparameters. The standard

uniform prior is adopted for κ as we assume we do not have much prior information on κ.

Since β is the median of the GBS distribution, the hyperparameters b0 and b1 are chosen

such that the prior mean of β is close to the sample median of the data. Assuming we also

do not have much prior knowledge on α, we choose a0 and a1 such that the conditional

prior mean of (α2|β = 15) equals to 1, which is close to α̂2
MLE. Since the coefficient of

variation (CV) for a standard uniform distribution is 1√
3
, we specify the hyperparameters

such that the inverse gamma priors also have CVs close to 1√
3
.

Maximum likelihood and conditional sampling algorithms, as explained in Chapter 3,

are employed to estimate the parameters of interest for this data. The Gibbs sampler has an

iteration size of 20,000 with a burn-in period of 5,000. To minimize the possible correlation

between consecutive random numbers generated by the (pseudo) random number generator

in the software, every 5th sample of the remaining 15,000 samples are chosen to estimate

the posterior mean and 95% credible interval of the parameters. Convergence of the al-

gorithm is monitored by trace plots of the simulated samples. The tuning parameters are

fixed at γβ = 2.4 and γκ = 15, such that the acceptance rates for the Metropolis-Hastings

steps hover around 40%, as recommended by Gelman et al. (2004).

The results are tabulated in Table 5.2. The point estimates obtained by both methods

are very close to one another. The 95% credible intervals produced by the Bayesian method

are slightly narrower than the corresponding 95% confidence intervals obtained from ML

estimation, due to the relatively small sample size in this data set. Our results are also

pretty close to the posterior estimates obtained by Achcar and Moala (2010), who fitted a

BS distribution for this data. Recall that BS(α, β) = GBS(α, β, 1
2
), and our 95% credible

interval for κ includes 1
2
. The posterior estimates α̂Gibbs = 0.8854 and β̂Gibbs = 16.03 ob-

tained by Achcar and Moala (2010) also lie within our corresponding 95% credible interval

for α and β. Our 95% credible interval for α is slightly wider than the one obtained by
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Achcar and Moala (2010), as we adopt a “flatter” prior for α2. On the other hand, our

95% credible interval for β is narrower than the one obtained by Achcar and Moala (2010),

since they specified a flat prior U(0, 500) for β.

Using the ML estimates and posterior estimates, the fitted reliability curves are com-

pared to the Kaplan-Meier estimates. These reliability curves, as well as the histograms for

the simulated samples of the parameters from Gibbs sampling, are shown in Figure 5.1. It

is worth noting that the two fitted reliability curves are very similar to the Kaplan-Meier

plot. The posterior distributions for β and κ are relatively symmetric at their respective

posterior mean, while the posterior distribution for α is slightly positively-skewed.

Table 5.2: Point and Interval Estimates for Data Set 1

Parameter α β κ

Method MLE Bayesian MLE Bayesian MLE Bayesian

Mean 0.9740 0.9619 15.6289 15.4105 0.4195 0.4558

95% CI lower bound 0.1273 0.6035 9.6137 10.4887 0.0833 0.2472

95% CI upper bound 1.8207 1.5103 21.6441 21.6960 0.7558 0.6736

Length of 95% CI 1.6934 0.9068 12.0304 11.2073 0.6726 0.4264
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Figure 5.1: Histograms of the simulated samples for the parameters and the relia-
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5.2 Data Set 2

Table 5.3: Fatigue life of 6061-T6 aluminium coupons exerted with maximum
stress per cycle of 21,000 psi

370 706 716 746 785 797 844 855

858 886 886 930 960 988 990 1000

1010 1016 1018 1020 1055 1085 1102 1102

1108 1115 1120 1134 1140 1199 1200 1200

1203 1222 1235 1238 1252 1258 1262 1269

1270 1290 1293 1300 1310 1313 1315 1330

1355 1390 1416 1419 1420 1420 1450 1452

1475 1478 1481 1485 1502 1505 1513 1522

1522 1530 1540 1560 1567 1578 1594 1602

1604 1608 1630 1642 1674 1730 1750 1750

1763 1768 1781 1782 1792 1820 1868 1881

1890 1893 1895 1910 1923 1940 1945 2023

2100 2130 2215 2268 2440

This data set is given by Birnbaum and Saunders (1969b) about the fatigue life of 6061-

T6 aluminium coupons cut parallel to the direction of rolling and oscillated at 18 cycles per

second. The data set, as presented in Table 5.3, consists of 101 observations with maximum

stress per cycle of 21,000 psi.

This is a complete data set. For the purpose of illustration, we artificially applied Type-

II right censoring to the data with 4 different censoring thresholds n = 90, 80, 70 and 60.

For instance, when n = 90, the first 90 samples are treated as fully observed data, and the

remaining 11 observations are right censored at the value of the 90th sample.
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Again, assuming an underlying GBS distribution for the data, we adopt the same prior

distributions for the parameters, with the following hyperparameter values:

a0 = 10

a1 = 55

b0 = 10

b1 = 0.00088

d0 = d1 = 1.

Here, we explain the reasons behind the choices for our hyperparameters. Assuming

little prior information about κ, the standard uniform prior is adopted for κ. Since β is

the median of the GBS distribution, the hyperparameters b0 and b1 are chosen such that

the prior mean of β is close to 1420, which is the sample median of the fully observed data

(when n = 101). Assuming little prior knowledge about α, we choose a0 and a1 such that

the conditional prior mean of (α2|β = 1420) is close to α̂2
MLE ≈ 5.72 when n = 101. Since

the coefficient of variation (CV) for a standard uniform distribution is 1√
3
, we specify the

hyperparameters such that the inverse gamma priors also have CVs close to 1√
3
.

Maximum likelihood as well as conditional sampling algorithms, as explained in Chapter

3, are employed to estimate the parameters of interest for this data under different cen-

soring thresholds. Again, the Gibbs sampler has an iteration size of 20,000 with a burn-in

period of 5,000. To minimize the possible correlation between consecutive random numbers

generated by the (pseudo) random number generator in the software, every 5th sample of

the remaining 15,000 samples are chosen to estimate the posterior mean and 95% credible

interval of the parameters. Convergence of the algorithm is monitored by trace plots of the

simulated samples. The tuning parameters are fixed at γβ = 2.4 and γκ = 200, such that

the acceptance rates for the Metropolis-Hastings steps hover around 40%, as recommended

by Gelman et al. (2004).
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The results are tabulated in Table 5.4. The point estimates for β and κ obtained by both

methods are very close to one another. Note that the asymptotic 95% confidence interval

for MLE is calculated using the formula: point estimate ±1.96 ×
√

asymptotic variance.

Using this formula, some of the calculated asymptotic confidence intervals may cover val-

ues beyond the parameter space. For instance, some confidence intervals for α may have

covered negative values, and some of the confidence intervals for κ may have covered values

outside the parameter space (0, 1). The 95% credible intervals produced by the Bayesian

method are within the corresponding parameter space, and are narrower than the corre-

sponding 95% confidence intervals obtained from ML estimation.

We also compare our findings under the case of fully observed data (when n = 101)

with the results obtained by Owen (2006), whose ML point estimates α̂MLE = 6.605,

β̂MLE = 1393.42 and κ̂MLE = 0.064 are very close to ours. In fact, our numerical solu-

tions for the normal equations (as shown in the Appendix section) are more accurate, since

the values of the normal equations are much closer to zero by plugging in our ML estimates

instead of his ML estimates. Owen (2006) did not proceed with interval estimation, nor

did he consider the case where data is right-censored.

For each censoring threshold, the fitted reliability curves based on the ML estimates

and posterior estimates are compared to the Kaplan-Meier plot. These reliability curves,

as well as the histograms for the simulated samples of the parameters from Gibbs sampling,

are shown. It is worth noting that, under each censoring threshold, the two fitted reliability

curves are very similar to the Kaplan-Meier plot. The posterior distribution of α is slightly

positively-skewed; the posterior distribution of β is rather symmetric at its posterior mean;

and the posterior distribution of κ is slightly negatively-skewed.

62



Table 5.4: Point and Interval Estimates for Data Set 2

Parameter Method n Mean 95% CI CI Length

α

MLE

101 5.7112 (-4.0904 , 15.5127) 19.6031

90 4.7668 (-4.3600 , 13.8937) 18.2537

80 3.7136 (-3.9684 , 11.3956) 15.3640

70 6.0901 (-7.6038 , 19.7841) 27.3879

60 5.1077 (-7.3191 , 17.5344) 24.8535

Bayesian

101 5.2754 (3.5531 , 8.0930) 4.5399

90 5.3465 (3.4941 , 8.3382) 4.8441

80 5.3613 (3.5583 , 8.5863) 5.0280

70 5.2940 (3.5319 , 7.8951) 4.3632

60 5.1435 (3.4069 , 8.0708) 4.6639

β

MLE

101 1391.1037 (1309.5219 , 1472.6856) 163.1637

90 1391.0140 (1307.8489 , 1474.1791) 166.3302

80 1392.3865 (1306.5400 , 1478.2330) 171.6930

70 1384.8141 (1303.6873 , 1465.9408) 162.2535

60 1389.0569 (1301.8535 , 1476.2604) 174.4069

Bayesian

101 1387.7813 (1309.7578 , 1467.5915) 157.8337

90 1390.9510 (1311.9698 , 1475.2519) 163.2821

80 1393.6893 (1315.4993 , 1481.9475) 166.4482

70 1383.2160 (1303.5612 , 1465.4094) 161.8481

60 1391.5434 (1304.2480 , 1484.3510) 180.1030

κ

MLE

101 0.0844 (-0.1569 , 0.3257) 0.4826

90 0.1119 (-0.1615 , 0.3853) 0.5468

80 0.1504 (-0.1488 , 0.4495) 0.5983

70 0.0727 (-0.2570 , 0.4023) 0.6593

60 0.1007 (-0.2608 , 0.4622) 0.7230

Bayesian

101 0.1005 (0.0347 , 0.1563) 0.1215

90 0.1006 (0.0295 , 0.1619) 0.1324

80 0.1032 (0.0295 , 0.1623) 0.1328

70 0.0991 (0.0336 , 0.1610) 0.1275

60 0.1069 (0.0333 , 0.1728) 0.1395
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Figure 5.2: Histograms of the simulated samples for the parameters and the relia-
bility plots for n = 101
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Figure 5.3: Histograms of the simulated samples for the parameters and the relia-
bility plots for n = 90
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Figure 5.4: Histograms of the simulated samples for the parameters and the relia-
bility plots for n = 80
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Figure 5.5: Histograms of the simulated samples for the parameters and the relia-
bility plots for n = 70
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Figure 5.6: Histograms of the simulated samples for the parameters and the relia-
bility plots for n = 60
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Chapter 6

Concluding Remarks

Using the classical MLE and (mainly) the Bayesian approach, we obtain point and inter-

val estimation for the parameters of the Birnbaum-Saunders (BS) distribution devised by

Birnbaum and Saunders (1969a), as well as the Generalized Birnbaum-Saunders (GBS)

distribution obtained by Owen (2006), in the presence of random right censored data.

For the classical MLE method, we derive the expressions for the observed Information of

the GBS distribution. Where Bayesian approach is concerned, new sets of priors, which are

mentioned in Subsections 3.1.3 and 3.2.3, are considered based on the model assumptions

adopted by Birnbaum and Saunders (1969a) and Owen (2006). To handle the presence of

random right censored observations, we utilize the data augmentation technique introduced

by Tanner and Wong (1987), where the right-censored data is treated as latent/unobserved

variables which are sampled together with the parameters. This method enables us to

circumvent the arduous expressions involving the censored data in obtaining posterior in-

ferences.

From our simulation study, we find that, accuracy of parameter estimation improves

with larger sample size but deteriorates in the presence of more censored observations.

Overall, conditional sampling outperforms joint sampling in terms of bias and credible

interval width in the BS distribution parameter estimation. Conditional sampling also

consistently outperforms MLE in terms of bias, square-root of mean squared error (SRMSE)

and interval width in the GBS distribution parameter estimation, especially when sample

size is small. We have also illustrated, with a real data set, that our posterior inference
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can be readily applied to the case of Type-II right censored data under the independent

censoring assumption (Lawless, 2003).
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Appendix

First, we will explain the classical MLE inferential procedures for the case of the GBS

distribution. To obtain the maximum likelihood estimates of α, β and κ (denoted by α̂, β̂

and κ̂ respectively), we solve the following normal equations numerically:

∂l(θ|D)

∂α
=

1

α

n∑
i=1

[
z2(ti)− 1

]
+

m∑
j=1

∂ logS(cj)

∂α
,

∂l(θ|D)

∂β
= − n

2β
+

n∑
i=1

[
κ

η(ti)
+
t2−2κi − β2t−2κi

2α2β2

]
+

m∑
j=1

∂ logS(cj)

∂β
,

∂l(θ|D)

∂κ
=

n∑
i=1

{
β − ti
η(ti)

+
[
z2(ti)− 1

]
log ti

}
+

m∑
j=1

∂ logS(cj)

∂κ
.

Let θ̂ = (α̂, β̂, κ̂)T be the MLE vector. From the asymptotic normality of the MLE, it

follows that

θ̂ ∼ N3

(
θ, Î−1

)
,

where Î−1 denotes the inverse of the observed information matrix

Î =


Î11 Î12 Î13

Î12 Î22 Î23

Î13 Î23 Î33


given by the following expressions:

Î11 =
2n

α2
−

m∑
j=1

∂2 logS(cj)

∂α2
,

Î12 = − 1

α3

n∑
i=1

t−2κi +
1

α3β2

n∑
i=1

t2−2κi −
m∑
j=1

∂2 logS(cj)

∂α∂β
,

Î13 =
2

α

n∑
i=1

[
z2(ti) log ti

]
−

m∑
j=1

∂2 logS(cj)

∂α∂κ
,
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Î22 = − n

2β2
+

n∑
i=1

[(
κ

η(ti)

)2

+
t2−2κi

α2β3

]
−

m∑
j=1

∂2 logS(cj)

∂β2
,

Î23 = −
n∑
i=1

{
ti

[η(ti)]
2 +

(β2 − t2i ) log ti
α2β2t2κi

}
−

m∑
j=1

∂2 logS(cj)

∂β∂κ
,

Î33 =
n∑
i=1

{[
β − ti
η(ti)

]2
+ 2[z(ti) log ti]

2

}
−

m∑
j=1

∂2 logS(cj)

∂κ2
.

No closed form expressions are available for the Fisher information, so it could only be

estimated by using the observed Fisher information.

We will now derive the first and second derivatives of
∑m

j=1 logS(cj) with respect to

the parameters. Let Φ{.} and φ[.] be the cdf and pdf for the standard normal distibution.

Recall that the functions z(t) and S(t) are given by the following:

z(t) =
1

α

(
t1−κ√
β
−
√
β

tκ

)
,

S(t) = 1− Φ{z(t)},

and here, we also define:

ζ(t) =
1

α

(
t1−κ√
β

+

√
β

tκ

)
.

To further simplify expressions for the first derivatives of
∑m

j=1 logS(cj), we introduce

the following functions:

S1(t)
def
==

∂

∂α
S(t) =

z(t)× φ[z(t)]

α
,

S2(t)
def
==

∂

∂β
S(t) =

ζ(t)× φ[z(t)]

2β
,

S3(t)
def
==

∂

∂κ
S(t) = (log t)× z(t)× φ[z(t)].

Then, we obtain the first derivatives of
∑m

j=1 logS(cj) as follows:
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∂

∂α

m∑
j=1

logS(cj) =
m∑
j=1

S1(cj)

S(cj)
,

∂

∂β

m∑
j=1

logS(cj) =
m∑
j=1

S2(cj)

S(cj)
,

∂

∂κ

m∑
j=1

logS(cj) =
m∑
j=1

S3(cj)

S(cj)
.

Again, to simplify the expressions for the second derivatives of
∑m

j=1 logS(cj), we in-

troduce the following functions:

S11(t)
def
==

∂2S(t)

∂α2
=
z(t)× φ[z(t)]× [z2(t)− 2]

α2
,

S12(t)
def
==

∂2S(t)

∂α∂β
=
ζ(t)× φ[z(t)]× [z2(t)− 1]

2αβ
,

S13(t)
def
==

∂2S(t)

∂α∂κ
=
z(t)× (log t)× φ[z(t)]× [z2(t)− 1]

α
,

S22(t)
def
==

∂2S(t)

∂β2
=
φ[z(t)]× {z(t)× ζ2(t)− 2ζ(t)− z(t)}

4β2
,

S23(t)
def
==

∂2S(t)

∂β∂κ
=
ζ(t)× (log t)× φ[z(t)]× [z2(t)− 1]

2β
,

S33(t)
def
==

∂2S(t)

∂κ2
= z(t)× (log t)2 × φ[z(t)]×

[
z2(t)− 1

]
.

Therefore, we obtain the second derivatives of
∑m

j=1 logS(cj) as follows:

∂2

∂α2

m∑
j=1

logS(cj) =
m∑
j=1

S(cj)× S11(cj)− S2
1(cj)

S2(cj)
,

∂2

∂α∂β

m∑
j=1

logS(cj) =
m∑
j=1

S(cj)× S12(cj)− S1(cj)× S2(cj)

S2(cj)
,

∂2

∂α∂κ

m∑
j=1

logS(cj) =
m∑
j=1

S(cj)× S13(cj)− S1(cj)× S3(cj)

S2(cj)
,
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∂2

∂β2

m∑
j=1

logS(cj) =
m∑
j=1

S(cj)× S22(cj)− S2
2(cj)

S2(cj)
,

∂2

∂β∂κ

m∑
j=1

logS(cj) =
m∑
j=1

S(cj)× S23(cj)− S2(cj)× S3(cj)

S2(cj)
,

∂2

∂κ2

m∑
j=1

logS(cj) =
m∑
j=1

S(cj)× S33(cj)− S2
3(cj)

S2(cj)
.

For the BS distribution, to obtain the maximum likelihood estimates of α and β (denoted

by α̂ and β̂ respectively), we solve the following normal equations numerically:

∂l(θ|D)

∂α
=

1

α

n∑
i=1

[
z2(ti)− 1

]
+

m∑
j=1

∂ logS(cj)

∂α
,

∂l(θ|D)

∂β
= − n

2β
+

n∑
i=1

[
1

ti + β
+

ti
2α2β2

− 1

2α2ti

]
+

m∑
j=1

∂ logS(cj)

∂β
.

Let θ̂ = (α̂, β̂)T be the MLE vector. From the asymptotic normality of the MLE, it

follows that

θ̂ ∼ N2

(
θ, Î−1

)
,

where Î−1 denotes the inverse of the observed information matrix

Î =

Î11 Î12

Î12 Î22


given by the following expressions:

Î11 =
2n

α2
−

m∑
j=1

∂2 logS(cj)

∂α2
,

Î12 = −
m∑
j=1

∂2 logS(cj)

∂α∂β
,

Î22 =
n[α(2π)−1/2h(α) + 1]

α2β2
−

m∑
j=1

∂2 logS(cj)

∂β2
,
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where h(α) = α
√

(π/2) − πe2/α
2
[1 − Φ(2/α)]. Recall that GBS(α, β, 1

2
) = BS(α, β).

Hence, for the case of the BS distribution, substitute κ = 1
2

into the expressions for
∂

∂α

∑m
j=1 logS(cj) and

∂

∂β

∑m
j=1 logS(cj) from above in order to obtain the first deriva-

tives of the censored loglikelihood
∑m

j=1 logS(cj).

Similarly, to obtain the second derivatives of the censored loglikelihood
∑m

j=1 logS(cj),

substitute κ = 1
2

into the expressions for
∂2

∂α2

∑m
j=1 logS(cj),

∂2

∂αβ

∑m
j=1 logS(cj) and

∂2

∂β2

∑m
j=1 logS(cj) from above, and we are done.

Notice that the Fisher information for the observed data has closed form expressions

which were derived by Lemonte et al. (2007), whereas the Fisher information for the cen-

sored data does not have closed form expression, and could only be estimated by using the

observed Fisher information (Ng et al., 2003).
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