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Abstract. One of the main problems in interval computations is solving
systems of equations under interval uncertainty. Usually, interval com-
putation packages consider united, tolerance, and control solutions. In
this paper, we explain the practical need for algebraic (equality-type)
solutions, when we look for solutions for which both sides are equal.
In situations when such a solution is not possible, we provide a justi-
fication for extended-zero solutions, in which we ignore intervals of the
type [−a, a].

1 Practical Need for Solving Interval Systems of
Equations: What Is Known

Need for data processing. In many practical situations, we are interested in
the values of quantities y1, . . . , ym which are difficult – or even impossible – to
measure directly. For example, we can be interested in a distance to a faraway
star or in tomorrow’s temperature at a certain location.

Since we cannot measure these quantities directly, to estimate these quanti-
ties we must:

– find easier-to-measure quantities x1, . . . , xn which are related to yi by known
formulas yi = fi(x1, . . . , xn),

– measure these quantities xj , and
– use the results x̃j of measuring the quantities xj to compute the estimates

for yi:
ỹi = f(x̃1, . . . , x̃n).

Computation of these estimates is called indirect measurement or data processing.

Need for data processing under uncertainty. Measurements are never 100%
accurate. Hence, the measurement result x̃j is, in general, different from the
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actual (unknown) value xj of the corresponding quantity; in other words, the

measurement errors ∆xj
def
= x̃j − xj are, in general, different from 0.

Because of the non-zero measurement errors, the estimates ỹi are, in general,
different from the desired values yi. It is therefore desirable to know how accurate
are the resulting estimates.

Need for interval uncertainty and interval computations. The manufac-
turer of the measuring instrument usually provides us with an upper bound ∆j

on the measurement error: |∆xj | ≤ ∆j ; see, e.g., [8]. If no such upper bound is
known, i.e., if the reading of the instrument can be as far away from the actual
value as possible, then this is not a measuring instrument, this is a wild-guess-
generator.

Sometimes, we also know the probabilities of different values ∆xj within this
interval; see, e.g., [8, 15]. However, in many practical situations, the upper bound
is the only information that we have [8]. In this case, after we know the result x̃j
of measuring xj , the only information that we have about the actual (unknown)

value xj is that this value belongs to the interval [xj , xj ], where xj
def
= x̃j −∆j

and xj
def
= x̃j +∆j .

In this case, the only thing that we can say about each value yi =
fi(x1, . . . , xn) is that this value belongs to the range

{fi(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

Computation of this range is one of the main problems of interval computations;
see, e.g., [3, 6].

Sometimes, we do not know the exact dependence. The above text de-
scribed an ideal case, when we know the exact dependence yi = fi(x1, . . . , xn)
between the desired quantities yi and the easier-to-measure quantities xj . In
practice, often, we do not know the exact dependence. Instead, we know that
the dependence belongs to a finite-parametric family of dependencies, i.e., that

yi = fi(x1, . . . , xn, a1, . . . , ak)

for some parameters a1, . . . , ak.
For example, we may know that yi is a linear function of the quantities xj ,

i.e., that yi = ci +
n∑

j=1

cij · xj for some coefficients ci and cij .

The presence of these parameters complicates the corresponding data pro-
cessing problem. Depending on what we know about the parameters, we have
different situations.

Simplest situation, when we know the exact values of all the parame-
ters. The simplest situation is when we know the exact values of these param-
eters. In this case, the dependence of yi on xj is known, and we have the same
problem of computing the range as before.

Specific case: control solution. Sometimes, not only we know the values a`
of these parameters, but we can also control these values, by setting them to any
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values within certain intervals [a`, a`]. By setting the appropriate values of the
parameters, we can change the values yi. This possibility naturally leads to the
following problem:

– we would like the values yi to be within some given ranges [y
i
, yi]; for exam-

ple, we would like the temperature to be within a comfort zone;
– in this case, it is desirable to find the range of possible values of xj for

which, by applying appropriate controls ai ∈ [a`, a`], we can place the values
yi within these intervals.

In the degenerate case, when all the intervals for yi and a` are just points, this

means solving the system of equations y = f(x, a), where we denoted y
def
=

(y1, . . . , ym), x
def
= (x1, . . . , xn), and a

def
= (a1, . . . , ak). From this viewpoint,

the above problem can be viewed as an interval generalization of the problem
of solving a system of equations, or, informally, as a problem of solving the
corresponding interval system of equations.

The set X of all appropriate values x = (x1, . . . , xn) can be formally de-
scribed as

X = {x : for some a` ∈ [a`, a`], fi(x1, . . . , xn, a1, . . . , ak) ∈ [y
i
, yi] for all i}.

This set is known as the control solution to the corresponding interval system of
equations [3, 14].

Situation when we need to find the parameters from the data. Some-
times, we know that the values ai are the same for all the cases, but we do
not know these values. These values must then be determined based on mea-
surements: we measure xj and yi several times, and we find the values of the
parameters a` that match all the measurement results.

Let us number all membership cycles by values c = 1, . . . , C. After each cycle
of measurements, we conclude that:

– the actual (unknown) value of x
(c)
j is in the interval [x

(c)
j , x

(c)
j ] and

– the actual value of y
(c)
i is in the interval [y(c)

i
, y

(c)
i ].

We want to find the set A of all the values a for which y(c) = f(x(c), a) for some
x(c) and y(c):

A = {a : ∀c∃x(c)j ∈ [x
(c)
j , x

(c)
j ]∃y(c)i ∈ [y(c)

i
, y

(c)
i ] (f(x(c), a) = y(c))}.

This set A is known as the united solution to the interval system of equations [3,
14].

Comment. To avoid confusion, it is worth mentioning that our notations are
somewhat different from the notations used in [3, 14].

The main reason for this difference is that the main focus of this paper is
on the motivations for different types of solutions. As a result, we use the no-
tations related to the meaning of the corresponding variables. In general, in
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our description, y denotes the desired (difficult-to-measure) quantities, x de-
note easier-to-measure quantities, and a denote parameters of the dependence
between these quantities.

Within this general situation, we can have different problems.

– In some cases, we have some information about the parameters a, and we
need to know the values x – this is the case of the control solution.

– In other practical situations, we have some information about the quantities
x, and we need to know the values a – this is the case, e.g., for the united
solution.

As a result, when we use our meaning-of-variables notations, sometimes x’s are
the unknowns, and sometimes a’s are the unknowns.

Alternatively, if we were interested in actually solving the corresponding
problems, it would be more appropriate to use different notations, in which,
e.g., the unknown is always denoted by x and the known values are denoted by
a – irrespective of the physical meaning of the corresponding variables. In these
notations, the united solution would take a different form

X = {x : ∀c∃a(c)j ∈ [a
(c)
j , a

(c)
j ]∃y(c)i ∈ [y(c)

i
, y

(c)
i ] (f(x, a(c)) = y(c))}.

What can we do once we have found the range of possible values of a.
Once we have found the set A of possible values of a, we can first find the range
of possible values of yi based on the measurement results, i.e., find the range

{fi(x1, . . . , xn, a) : xj ∈ [xj , xj ] and a ∈ A}.

This is a particular case of the main problem of interval computations.
If we want to make sure that each value yi lies within the given bounds

[y
i
, yi], then we must find the set X of possible values of x for which fi(x, a) is

within these bounds for all possible values a ∈ A, i.e., the set

X = {x : ∀a ∈ A ∀i (fi(x, a) ∈ [y
i
, yi])}.

This set is known as the tolerance solution to the interval system of equations [3,
14].

Sometimes, we know that the values a may change. In the previous text,
we consider the situations when the values a` are either fixed forever, or can be
changed by us. In practice, these values may change in an unpredictable way –
e.g., if these parameters represent some physical processes that influence yi’s.
We therefore do not know the exact values of these parameters, but what we do
know is some a priori bounds on these values.

We may know bounds [a`, a`] on each parameter, in which case the set A of
all possible combinations a = (a1, . . . , ak) is simply a box:

A = [a1, a1]× . . .× [ak, ak].
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We may also have more general sets A – e.g., ellipsoids.
In this case, we can still solve the same two problems whose solutions we

described above; namely:

– we can solve the main problem of interval computations – the problem of
computing the range – and find the set Y of possible values of y;

– we can also solve the corresponding tolerance problem and find the set of
values x that guarantee that each yi is within the desired interval.

Is this all there is? There are also more complex problems (see, e.g., [14]),
but, in a nutshell, most practical problems are either range estimation, or finding
control, united, or tolerance solution. These are the problems solved by most
interval computation packages [3, 6].

Is there anything else? In this paper, we show that there is an important
class of practical problems that does not fit into one of the above categories. To
solve these practical problems, we need to use a different notion of a solution to
interval systems of equations: the notion of an algebraic (equality-type) solution,
the notion that has been previously proposed and theoretically analyzed [1, 2, 5,
7, 9, 12–14] but is not usually included in interval computations packages.

2 Remaining Problem of How to Find the Set A
Naturally Leads to Algebraic (Equality-Type) Solutions
to Interval System of Equations

Finding the set A: formulation of the problem. In the previous text, we
assumed that when the values of the parameter a can change, we know the set
A of possible values of the corresponding parameter vector. But how do we find
this set?

What information we can use to find the set A. All the information about
the real world comes from measurements – either directly from measurements,
or by processing measurement results. The only relation between the parameters
a and measurable quantities is the formula y = f(x, a). Thus, to find the set A
of possible values of a, we need to use measurements of x and y.

We can measure both x and y many times. As a result, we get:

– the set X of possible values of the vector x and
– the set Y of possible values of the vector y.

Both sets can be boxes, or they can be more general sets.
Based on these two sets X and Y , we need to find the set A.
In this problem, it is reasonable to assume that x and a are independent in

some reasonable sense. Let us formulate this requirement in precise terms.

Independence: towards a formal definition. The notion of independence is
well known in the probabilistic case, where it means that probability of getting
a value x ∈ X does not depend on the value a ∈ A: P (x | a) = P (x | a′) for all
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a, a′ ∈ A. An interesting corollary of this definition is that, in spite of being
formulated in a way that is asymmetric with respect to x and a, this definition
is actually symmetric: one can prove that a is independent of x if and only if x
is independent of a.

In the interval case, we do not know the probabilities, we only know which
pairs (x, a) are possible and which are not. In other words, we have a set S ⊆
X × A of possible pairs (x, a). It is natural to say that the values x and a are
independent if the set of possible values of x does not depend on a. Thus, we
arrive at the following definition.

Definition 1. Let S ⊆ X ×A be a set.

– We say that a pair (x, a) is possible if (x, a) ∈ S.
– Let x ∈ X and a ∈ A. We say that a value x is possible under a if (x, a) ∈ S.

The set of possible-under-a values will be denoted by Sa.
– We say that the variables x and a are independent if Sa = Sa′ for all a, a′

from the set A.

Proposition 1. Variable x and a are independent if and only if S is a Cartesian
product, i.e., S = sx × sa for some sx ⊆ X and sa ⊆ A.

Proof. If S = sx × sa, then Sa = sx for each a and thus, Sa = Sa′ for all
a, a′ ∈ A.

Vice versa, let us assume that x and a are independent. Let us denote the
common set Sa = Sa′ by sx. Let us denote by sa, the set of all possible values
a ∈ A, i.e., the set of all a ∈ A for which (x, a) ∈ S for some x ∈ X. Let us prove
that in this case, S = sx × sa.

Indeed, if (x, a) ∈ S, then, by definition of the set sx, we have x ∈ Sa = sx,
and, by definition of the set sa, we have a ∈ sa. Thus, by the definition of the
Cartesian product B × C as the set of all pairs (b, c) of all pairs of elements
b ∈ B and c ∈ C, we have (x, a) ∈ sx × sa.

Vice versa, let (x, a) ∈ sx × sa, i.e., let x ∈ sx and a ∈ sa. By definition of
the set sx, we have Sa = sx, thus x ∈ Sa. By definition of the set Sa, this means
that (x, a) ∈ S. The proposition is proven.

As a corollary, we can conclude that the independence relation is symmetric –
similarly to the probabilistic case.

Corollary. Variables x and a are independent if and only if a and x are inde-
pendent.

Proof: indeed, both case are equivalent to the condition that the set S is a
Cartesian product.

What can we now conclude about the dependence between A, X,
and Y . Since we assumed that a and x are independent, we can conclude that
the set of possible values of the pair (x, a) is the Cartesian product X ×A. For
each such pair, the value of y is equal to y = f(x, a). Thus, the set Y is equal to
the range of f(x, a) when x ∈ X and a ∈ A.
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The resulting solutions to interval systems of equations. So, we look for
sets A for which

Y = f(X,A)
def
= {f(x, a) : x ∈ X and a ∈ A}.

It is reasonable call the set A satisfying this property an equality-type solution
to the interval system of equations.

Such solutions for the interval system of equations y = f(x, a), in which
we want the interval versions Y and f(X,A) of both sides of the equation to
be exactly equal, are known as algebraic or, alternatively, formal solutions; see,
e.g., [1, 2, 5, 7, 9, 12–14].

3 What If the Interval System of Equations Does
Not Have an Algebraic (Equality-Type) Solution:
A Justification for Enhanced-Zero Solutions

But what if an equality-type solution is impossible: analysis of the
problem. The description in the previous section seems to make sense, but
sometimes, the corresponding problem has no solutions. For example, in the
simplest case when m = n = k = 1 and f(x, a) = x + a, if we have Y = [−1, 1]
and X = [−2, 2], then clearly the corresponding equation Y = X + A does not
have a solution: no matter what set A we take the width of the resulting interval
X + A is always larger than or equal to the width w(X) = 4 of the interval X
and thus, cannot be equal to w(Y ) = 2. What shall we do in this case? How can
we then find the desired set A?

Of course, this would not happen if we had the actual ranges X and Y , but
in reality, we only have estimates for these ranges. So, the fact that we cannot
find A means something is wrong with these estimates.

How are ranges X and Y estimated in the first place? To find out what
can be wrong, let us recall how the ranges can be obtained from the experiments.
For example, in the 1-D case, we perform several measurements of the quantity

x1 in different situations. Based on the corresponding measurement results x
(c)
1 ,

we conclude that the interval of possible values must include the set [x≈1 , x
≈
1 ],

where x≈1
def
= min

c
x
(c)
1 and x≈1

def
= max

c
x
(c)
1 . Of course, we can also have some

values outside this interval – e.g., for a uniform distribution on an interval [0, 1],
the interval formed by the smallest and the largest of the C random numbers is
slightly narrower than [0, 1]; the fewer measurement we take, the narrower this
interval.

So, to estimate the actual range, we inflate the interval [x≈1 , x
≈
1 ]. In these

terms, the fact that we have a mismatch between X and Y means that one of
these intervals was not inflated enough.

The values x correspond to easier-to-measure quantities, for which we can
make a large number of measurements and thus, even without inflation, get
pretty accurate estimates of the actual range X. On the other hand, the values
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y are difficult to measure; for these values, we do not have as many measurement
results and thus, there is a need for inflation.

From this viewpoint, we can safely assume that the range for X is reasonably
accurate, but the range of Y needs inflation.

So how do we find A? In view of the above analysis, if there is no set A for
which Y = f(X,A), the proper solution is to inflate each components of the set
Y so that the system becomes solvable.

To make this idea precise, let us formalize what is an inflation.

What is an inflation: analysis of the problem. We want to define a mapping
I that transforms each non-degenerate interval x = [x, x] into a wider interval

I(x) ⊃ x.

What are the natural properties of this transformation? The numerical value
x of the corresponding quantity depends on the choice of the measuring unit, on
the choice of the starting point, and – sometimes – on the choice of direction.

– For example, we can measure temperature tC in Celsius, but we can also use
a different measuring unit and a different starting point and get temperatures
in Fahrenheit tF = 1.8 · tC + 32.

– We can use the usual convention and consider the usual signs of the electric
charge, but we could also use the opposite signs – then an electron would be
a positive electric charge.

It is reasonable to require that the result of the inflation transformation does
not change if we simply change the measuring units or change the starting point
or change the sign:

– Changing the starting point leads to a new interval [x, x]+x0 = [x+x0, x+x0]
for some x0.

– Changing the measuring unit leads to λ · [x, x] = [λ · x, x] for some λ > 0.
– Changing the sign leads to −[x, x] = [−x,−x].

Thus, we arrive at the following definition.

Definition 2. By an inflation operation (or just inflation, for short) we mean a
mapping that maps each non-degenerate interval x = [x, x] into a wider interval
I(x) ⊃ x so that:

– for every x0, we have I(x + x0) = I(x) + x0;
– for every λ > 0, we have I(λ · x) = λ · I(x); and
– we have I(−x) = −I(x).

Proposition 2. Every inflation operation has the form

[x̃−∆, x̃+∆]→ [x̃− α ·∆, x̃+ α ·∆]

for some α > 1.
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Comment. A similar result was proven in [4].

Proof. It is easy to see that the above operation satisfies all the properties of
an inflation. Let us prove that, vice versa, every inflation has this form.

Indeed, for intervals x of type [−∆,∆], we have −x = x, thus I(x) = I(−x).
On the other hand, due to the third property of an inflation, we should have

I(−x) = −I(x). Thus, for the interval [v, v]
def
= I(x), we should have −[v, v] =

[−v,−v] = [v, v] and thus, v = −v. So, we have I([−∆,∆]) = [−∆′(∆), ∆′(∆)]
for some ∆′ depending on ∆. Since we should have [−∆,∆] ⊂ I([−∆,∆]), we
must have

∆′(∆) > ∆.

Let us denote ∆′(1) by α. Then, α > 1 and I([−1, 1]) = [−α, α]. By applying
the second property of the inflation, with λ = ∆, we can then conclude that
I([−∆,∆]) = [−α · ∆,α · ∆]. By applying the first property of the inflation
operation, with x0 = x̃, we get the desired equality

I([x̃−∆, x̃+∆]) = [x̃− α ·∆, x̃+ α ·∆].

The proposition is proven.

So how do we find A? We want to make sure that f(X,A) is equal to the
result of a proper inflation of Y .

How can we tell that an interval Y ′ is the result of a proper inflation of Y ?
One can check that this is equivalent to the fact that the difference Y ′ − Y is a
symmetric interval containing 0; such intervals are known as extended zeros [10,
11].

Thus, if we cannot find the set A for which Y = f(X,A), we should look for
the set A for which the difference f(X,A)− Y is an extended zero.

Historical comment. This idea was first described in [10, 11]; in this paper, we
provide a new theoretical justification of this idea.

Multi-D case. What if we have several variables, i.e., m > 1? In this case,
we may have different inflations for different components Yi of the set Y , so
we should look for the set A for which, for all i, the corresponding difference
fi(X,A)− Yi is an extended zero.
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