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Abstract—In 1970, Richard Bellman and Lotfi Zadeh proposed
a method for finding the maximum of a function under fuzzy
constraints. The problem with this method is that it requires the
knowledge of the minimum and the maximum of the objective
function over the corresponding crisp set, and minor changes
in this crisp set can lead to a drastic change in the resulting
maximum. It is known that if we use a product “and”-operation
(t-norm), the dependence on the maximum disappears. Natural
questions are: what if we use other t-norms? Can we eliminate
the dependence on the minimum? What if we use a different
scaling in our derivation of the Bellman-Zadeh formula? In this
paper, we provide answers to all these questions. It turns out that
the product is the only t-norm for which there is no dependence
on maximum, that it is impossible to eliminate the dependence
on the minimum, and we also provide t-norms corresponding to
the use of general scaling functions.

I. FORMULATION OF THE PROBLEM

Need for optimization under constraints. In many practical
problems, we need to find an optimal alternative aopt, optimal
in the sense that for this alternative, the value of the corre-
sponding objective function f(x) is the largest possible:

f(aopt) = max
a∈P

f(a),

where P denotes the set of all possible alternatives.

Need for optimization under fuzzy constraints. The above
formulation works well if we know the set P . In practice,
however, for some alternatives a, we may not be absolute
sure that these alternatives are possible. For such alternatives,
an expert can describe to what extent these alternatives are
possible. This description is often made in terms of imprecise
(“fuzzy”) words from natural language.

To describe such knowledge, it is therefore reasonable to use
techniques that Zadeh invented specifically to translate such
imprecise knowledge into precise computer-understandable
form – namely, the technique of fuzzy logic; see, e.g., [2],
[3], [4], [5], [6], [7].

Crudely speaking, we ask each expert to estimate, on a scale,
say, from 0 to 10, to what extend each alternative is possible. If
an expert marks 7 on a scale of 0 to 10, we say that the expert’s
degree of confidence that a is possible is µ(a) = 7/10 = 0.7.

This way, for each alternative a, we assign a degree
µ(a) ∈ [0, 1] to which, according to the experts, this alternative

is possible. The corresponding function µ is known as a
membership function or, alternatively, as a fuzzy set.

How to optimize under fuzzy constraints. So how can we
optimize a function f(a) under fuzzy constraints – described
by a membership function µ(a)? This question was raised in
a joint paper that L. Zadeh wrote with Richard Bellman, a
famous specialist in control [1].

Their main idea is to look for an alternative which is, to the
largest extent, both possible and optimal. To be more precise:

• first, we need to describe the degree µopt(a) to which an
alternative is optimal,

• then, for each alternative a, we need to combine the
degree µ(a) to which this alternative is possible and the
degree µopt(a) to which this alternative is optimal into a
single degree to which a is possible and optimal;

• finally, we select an alternative aopt for which the com-
bined degree is the largest possible.

Let us start with the first step: finding out to what extent an
alternative a is optimal.

Of course, if some alternative has 0 degree of possibility,
this means that this alternative is not possible at all, so we
should not consider it. So, we should consider only alternatives
from the set

A
def
= {a : µ(a) > 0}

of all alternatives for which there is a non-zero degree of
possibility.

If two alternatives a and a′ have the same value of the
objective function f(a) = f(a′), then, intuitively, our degree
of confidence that the alternative a is optimal should be the
same as our degree of confidence that the alternative a′ is
possible. Thus, the degree µopt(a) should only depend on the
value f(a), i.e., we should have µopt(a) = F (f(a)) for some
function F (x).

When the value f(a) is the smallest possible, i.e., when

f(a) = f
def
= min

a∈A
f(a),

then we are absolutely sure that this alternative is not optimal,
i.e., that µopt(a) = 0. Thus, we should have F (f) = 0.



On the other hand, if for the alternative a, the value of the
objective function is the largest possible:

f(a) = f
def
= max

a∈A
f(a),

then we are absolutely sure that this alternative is optimal, i.e.,
that µopt(a) = 1. Thus, we should have F (f) = 1.

So, we need to select a function F (x) for which F (f) = 0

and F (f) = 1. It is also reasonable to require that the function
F (f) increases with f . The simplest such function is linear:

F (f(a)) = L(f(a))
def
=

f(a)− f

f − f
,

but non-linear functions are also possible. Alternatively, we
can have non-linear scaling functions

F (f(a)) = S(L(F (a)))

for some nonlinear function S(x) for which S(0) = 0 and
S(1) = 1.

To combine the degrees µ(a) and F (f(a)) of the statements
“a is possible” and “a is optimal” into a single degree
describing to what extent a is both possible and optimal,
we can use an “and”-operation (t-norm) f&(x, y). The most
widely used “and”-operations are min(x, y) and x · y.

Thus, we find the alternative a for which the value

d(a) = f&(µ(a), F (f(a)))

is the largest possible. In particular, if we use a linear scaling
function F (x), then we select an alternative a for which the
value

d(a) = f&

(
µ(a),

f(a)− f

f − f

)
is the largest possible.

When f&(x, y) = min(x, y), then we get

d(a) = min

(
µ(a),

f(a)− f

f − f

)
.

When f&(x, y) = x · y, then we get

d(a) = µ(a) ·
f(a)− f

f − f
.

Problem. The problem with this definition is that it depends
on the values f and f and thus, on the exact shape of the set
A = {µ(a) > 0}.

In practice, experts have only approximate idea of the
corresponding degrees µ(a), so when µ(a) is very small, it
could be 0, or vice versa. These seemingly minor changes in
the membership function can lead to huge changes in the set
A and thus, to huge changes in the values f and f .

There is one case when this problem is not so crucial.
There is one case when the problem stops being dependent on
f : namely, the case of the product t-norm. Indeed, in this case,

maximizing the function d(a) is equivalent to maximizing the
function

D(a)
def
= (f − f) · d(a)

which is equal to

D(a) = µ(a) · (f(a)− f),

and thus, does not depend on f at all.

Natural questions and what we do in this paper. Natural
questions are:

• What if we use other t-norms?
• Can we eliminate the dependence on the minimum?
• What if we use a different scaling in our derivation of

the Bellman-Zadeh formula?
In this paper, we provide answers to all these questions. It
turns out:

• that the product is the only t-norm for which there is no
dependence on maximum,

• that it is impossible to eliminate the dependence on the
minimum, and

• we also provide t-norms corresponding to the use of
general scaling functions.

II. FIRST RESULT: PRODUCT IS THE ONLY T-NORM FOR
WHICH OPTIMIZATION UNDER FUZZY CONSTRAINTS

DOES NOT DEPEND ON f

Analysis of the problem. Independence on f means, in
particular, that two alternatives a and a′ have the same value
of d(a), i.e., that d(a) = d(a′), then the same equality holds
if we change the value f . In other words, we want to make
sure that if

f&

(
µ(a),

f(a)− f

f − f

)
= f&

(
µ(a′),

f(a′)− f

f − f

)
,

then for a new value f
′
, we will also have

f&

(
µ(a),

f(a)− f

f
′ − f

)
= f&

(
µ(a′),

f(a′)− f

f
′ − f

)
.

This implication must be true for any membership function
µ(a), for any objective function f(a), and for any values f

and f
′
. Let us denote A

def
= µ(a), A′ def

= µ(a′),

b
def
=

f(a)− f

f − f
, b′

def
=

f(a′)− f

f − f
,

and

k
def
=

f − f

f
′ − f

.

In these terms, the desired implication takes the following
form:

• if f&(A, b) = f&(A
′, b′),

• then for every k > 0, we have

f&(A, k · b) = f&(A
′, k · b′).



Let us analyze which “and”-operations f&(x, y) satisfy this
property.

Main result of this section: the product f&(x, y) = x · y
is the only “and”-operation that satisfies the desired
implication. We want to prove that the algebraic product
f&(x, y) is the only “and”-operation that satisfies the desired
implication.

Indeed, by the general properties of the “and”-operation, we
have

f&(x, 1) = f&(1, x) = x

for all x. Thus, the condition f&(A, b) = f&(A
′, b′) is satisfied

for A = x, b = 1, A′ = 1, and b′ = x. So, if the desired
implication holds, then, for k = y, we get

f&(x, y · 1) = f&(1, y · x),

i.e., that f&(x, y) = f&(1, y · x). Since f&(z) = z for all z,
we thus conclude that f&(x, y) = x · y for all x and y. The
statement is proven.

III. SECOND RESULT: WHAT IF WE USE A NON-LINEAR
SCALING FUNCTION S(x)?

Analysis of the problem. What if, instead of a linear scaling
function, we use a non-linear function S(x)?

In this case, we have

d(a) = f&

(
µ(a),

(
f(a)− f

f − f

))
.

Thus, the desired property takes the following form: if

f&

(
µ(a), S

(
f(a)− f

f − f

))
=

f&

(
µ(a′), S

(
f(a′)− f

f − f

))
,

then for a new value f
′
, we will also have

f&

(
µ(a), S

(
f(a)− f

f
′ − f

))
=

f&

(
µ(a′), S

(
f(a′)− f

f
′ − f

))
.

If we use the above notations A, a′, b, b′, and k, then the
desired implication takes the following form:

• if f&(A,S(b)) = f&(A
′, S(b′)),

• then for every k > 0, we have

f&(A,S(k · b)) = f&(A
′, S(k · b′)).

Let us analyze which “and”-operations f&(x, y) satisfy this
property.

Let us denote X
def
= S−1(A) and X ′ def

= S−1(A′). Then
A = S(X), A′ = S(X ′), and the above implication takes the
following form:

• if f&(S(X), S(b)) = f&(S(X
′), S(b′)),

• then for every k > 0, we have

f&(S(X), S(k · b)) = f&(S(X
′), S(k · b′)).

It is known that for every 1-1 continuous monotonic function
S(x) : [0, 1] → [0, 1] and for every “and”-operation f&(x, y),
the re-scaled function

f ′
&(x, y)

def
= S−1(f&(S(x), S(y))

is also an “and”-operation. In terms of this new “and”-
operation,

f&(S(x), S(y)) = S(f ′
&(x, y)).

Thus, the desired implication takes the form:
• if S(f ′

&(x, b)) = S(f ′
&(x

′, b′)),
• then for every k > 0, we have

S(f ′
&(x, k · b)) = S(f ′

&(x
′, k · b′)).

Since the scaling function S(x) is increasing, S(x) = S(y) is
equivalent to x = y. Thus, the desired condition can be further
simplified into the following form:

• if f ′
&(x, b) = f ′

&(x
′, b′),

• then for every k > 0, we have

f ′
&(x, k · b) = f ′

&(x
′, k · b′).

In the previous section, we have proven that the only “and”-
operation satisfying this condition is f ′

&(x, y) = x · y. By
definition of the re-scaled function f ′

&, this means that

S−1(f&(S(x), S(y)) = x · y.

Applying S(x) to both sides, we conclude that

f&(S(x), S(y)) = S(x · y).

Thus, for any X
def
= S−1(x) and Y

def
= S−1(y), we have

S(X) = x, S(y) = y and thus,

f&(X,Y ) = S(x · y) = S(S−1(X) · S−1(Y )).

Thus, we arrive at the following conclusion.

Main result of this section: for which “and”-operation is
the optimization independent on f . For each scaling function
S(x), the only “and”-operation for which the optimization
does not depend on f is the operation

f&(x, y) = S(S−1(x) · S−1(y)).

IV. THIRD RESULT: IT IS NOT POSSIBLE TO AVOID THE
DEPENDENCE ON f

Analysis of the problem. Independence on f means, in
particular, that two alternatives a and a′ have the same value
of d(a), i.e., that d(a) = d(a′), then the same equality holds
if we change the value f . In other words, we want to make
sure that if

f&

(
µ(a),

f(a)− f

f − f

)
= f&

(
µ(a′),

f(a′)− f

f − f

)
,



then for a new value f ′, we will also have

f&

(
µ(a),

f(a)− f ′

f − f ′

)
= f&

(
µ(a′),

f(a′)− f ′

f − f ′

)
.

This implication must be true for any membership function
µ(a), for any objective function f(a), and for any values f

and f ′. Let us take f = 1 and f = 0, in this case the desired
condition takes the following form: if

f&(µ(a), f(a)) = f&(µ(a
′), f(a′)),

then for a new value f ′, we will also have

f&

(
µ(a),

f(a)− f ′

1− f ′

)
= f&

(
µ(a′),

f(a′)− f ′

1− f ′

)
.

Let us denote A
def
= µ(a), A′ def

= µ(a′), b def
= f(a), b′

def
= f(a′),

and f0
def
= f ′. In these terms, the desired implication takes the

following form:

• if f&(A, b) = f&(A
′, b′),

• then for every f0 ∈ (0, 1), we have

f&

(
A,

b− f0
1− f0

)
= f&

(
A′,

b′ − f0
1− f0

)
.

Let us take any A and any b < 1. Then, for A′ = f&(A.b)
and for b′ = 1, we have

f&(A
′, b′) = f&(A

′, 1) = A′ = f&(A, b).

Thus, due to the desired property, for f0 = b, we have

f&

(
A,

b− b

1− b

)
= f&

(
A′,

1− b

1− b

)
,

i.e.,

f&(A, 0) = f&(A
′, 1).

By the properties of the “and”-operation, we have f&(A, 0) =
0 and f&(A

′, 1) = A′, thus we conclude that A′ = 0. But A′

is equal to f&(A.b), so we get f&(A, b) = 0 for all A and
b < 1 – which is impossible for a continuous “and”-operation.
So, we arrive at the following conclusion.

Main result of this section: for fuzzy optimization, it is
not possible to get rid of the dependence on f . No matter
what “and”-operation we use, it is not possible to avoid the
dependence of the optimization result on the value f .
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