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Abstract. For systems of equations and/or inequalities under interval
uncertainty, interval computations usually provide us with a box whose
all points satisfy this system. Reverse mathematics means finding nec-
essary and sufficient conditions, i.e., in this case, describing the set of
all the points that satisfy the given system. In this paper, we show that
while we cannot always exactly describe this set, it is possible to have a
general algorithm that, given ε > 0, provides an ε-approximation to the
desired solution set.

1 Formulation of the Problem

What is reverse mathematics. In mathematics, whenever a new theorem is
proven, often, it later turns out that this same conclusion can be proven under
weaker conditions.

For example, first, it was proven that if for a continuous function f(x) from
real numbers to real numbers, we have f(a + b) = f(a) + f(b) for all a and
b, then this function f(x) is linear , i.e., f(a) = k · a for some k, Later on, it
turned out that the same is true not only for continuous functions, but also for
all measurable functions.

Because of this phenomenon, every time a new result is proven, researchers
start analyzing whether this result can be proven under weaker conditions. I the
past, usually, weaker and weaker conditions were found. Lately, however, in some
problems, it has become possible to find the weakest possible conditions under
which the given conclusion is true.

From the logical viewpoint, the fact that the condition A in the implication
A ⇒ B cannot be weakened means that A is equivalent to B, i.e., that also
B ⇒ A – in other words, that we can reverse the implication. Because of this, the
search for such weakest possible condition is known as the reverse mathematics;
see, e.g., [6].

What does reverse mathematics means for interval computations? The
main problem of interval computations (see, e.g., [3–5]) is, given an algorithm
f(x1, . . . , xn) and ranges [xi, xi], to find the range [y, y] of possible values of
y = f(x1, . . . , xn) when xi ∈ [xi, xi] for all i.
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In practice, this can be used, e.g., to check that under all possible values of
the parameters xi from the corresponding intervals, the system is stable, when
stability is described by an inequality f(x1, . . . , xn) ≤ y0 for some value y0. Once
we know the range, this checking is equivalent to simply checking whether y ≤ y0.

Similarly, if f(x1, . . . , xn) is the amount of potentially polluting chemical
released by a plant under conditions xi, checking whether the level of this chem-
ical never exceeds the desired threshold y0 is also equivalent to simply checking
whether y ≤ y0.

In addition to knowing that xi ∈ [xi, xi], we often have additional constraints
on the values xi, which make the problem more complex.

We may also need to check more complex conditions. For example, in solving
system of equations under interval uncertainty, we are often interested in finding
all the values x = (x1, . . . , xn) for which, for all possible values a1, . . . , am from
the corresponding intervals, there exist appropriate controls c1, . . . , cp from the
given intervals for which a desired inequality f(x, a, c) ≤ y0 holds. Since all
physical quantities are bounded, we can safely assume that all variables in the
quantifiers are bounded.

In general, we have a property P (x1, . . . , xn) which can be either a simple
inequality like f(x1, . . . , xn) ≤ y0, or it can be a complex formula obtained from
simply inequalities by using logical connectives “and” (&) “or” (∨), and “not”
(¬), and quantifiers ∀x and ∃x over real numbers. By using interval methods,
we find a box B = [x1, x1] × . . . × [xn, xn] for which the desired property P (x)
holds for all points x ∈ B. In this context, reverse mathematics means trying to
find not just this box, but also the whole set of all the tuples x for which the
property P (x) holds.

What we do in this paper. In this paper, we show that such a set can be
indeed computed – maybe not exactly, but at least with any possible accuracy.

2 Definitions and the Main Result

Computable numbers, sets, etc.: reminder. According to computable
mathematics (see, e.g., [1, 7]), a real number x is computable if there exists an
algorithm that, given a natural number n, generates a rational number rn for
which |rn − x| ≤ 2−n. A tuple of computable number is called a computable
tuple.

A bounded set S is called computable if there exists an algorithm, that given
a natural number n, generates a finite list Sn of computable tuples for which
dH(S, Sn) ≤ 2−n, where dH(A,B) is the Hausdorff distance: the smallest ε > 0
for which:

– every element a ∈ A is ε-close to some element b ∈ B, and
– every element b ∈ B is ε-close to some element a ∈ A.

A computable function is a function f(x1, . . . , xn) for which two algorithms
exist:
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– the main algorithm that, given rational values r1, . . . , rn, returns a com-
putable number f(r1, . . . , rn), and

– an auxiliary algorithm that, given a rational number ε > 0, returns a rational
number δ > 0 for which d(x, x′) ≤ δ implies d(f(x), f(x′)) ≤ ε.

Most arithmetic and elementary functions are everywhere computable. (The only
exceptions are discontinuous functions like sign or tangent.)

It is known (and it can be easily proven):

– that min and max are computable,
– that composition of two computable functions is computable, and
– that the maximum and minimum of a computable function over a com-

putable set are also computable.

It is also known that for every computable function f on a computable set
S, and for every two values y− < y+ for which min

x∈S
f(x) < y−, there exists a

value y0 ∈ [y−, y+] for which the set {x : f(x) ≤ y0} is computable [1].
There are also known negative results: e.g.,

– that it is not possible, given two computable numbers x and x′, to check
whether x ≤ x′, and,

– as a consequence, that it is, in general, not possible, given a computable
function f and a number y, to produce a computable set {x : f(x) ≤ y0} –
otherwise, for a constant f(x) = c, we would get an algorithm for checking
whether c ≤ y0.

Definition 1. Let v1, . . . be real-valued variables. For each of these variables, we
have bounds V i ≤ vi ≤ V i.

– By a term, we mean an expression of the type f(vi1 , . . . , vim), where f is a
computable function and vi are given variables.

– By an elementary formula, we means an expression of one of the types
t1 < t2, t1 ≤ t2, or t1 = t2, where t1 and t2 are terms.

– By a property P (x1, . . . , xn), we mean any formula with free variables
x1, . . . , xn which is obtained from elementary formulas by using logical con-
nectives &, ∨, ¬, and quantifiers ∀vi∈[V i,V i]

and ∃vi∈[V i,V i]
.

Comment. To simplify the further description, let us represent each equality
t1 = t2 and two inequalities t1 ≤ t1 and t2 ≤ t1.

Definition 2. Let ε > 0 be a real number.

– We say that elementary formulas t1 ≤ t2 (or t1 < t2) and t1 ≤ t2 + ε′ (or
t1 < t2 + ε′) are ε-close if |ε′| ≤ ε.

– We say that the formulas P (x1, . . . , xn) and P (x′
1, . . . , x

′
n) are ε-close if P ′

is the result of replacing, in the formula P , each elementary formula with an
ε-close one.
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Comment. In practice, all the values are measured with some accuracy. Thus,
if ε is sufficiently small, the two ε-close elementary formulas are practically in-
distinguishable – and thus, in general, ε-close properties are indistinguishable as
well.

Proposition 1. Let P (x1, . . . , xn) be a property which is satisfied for all the
tuples x from a given box. Then, based on the property and the box, we can
compute the set {x : P ′(x)} for some property P ′ which is ε-close to P .

Comment. This result can be further strengthened.

Proposition 2. Let P (x1, . . . , xn) be a property which is satisfied for all the
tuples x from a given box. Then, based on the property and the box, we can
compute the set S = {x : P ′(x)} for some property P ′ which is ε-close to P and

for which S′′ def
= {x : P ′′(x)} ⊆ S for all properties P ′′ which are (ε/2)-close

to P .

3 Proof

Proof of Proposition 1. First, let us transform the original property P (x) into
a prenex normal form, i.e., into the form (see, e.g., [2]) in which we first have
quantities, and then the quantifier-free part. Indeed, if we have a logical connec-
tive outside quantifires, we can move the quantifier out by using the equivalent
transformations ¬∀xP → ∃x¬P , ∀xP ∨Q → ∀x(P ∨Q), ∀xP &Q → ∀x(P &Q),
¬∃xP → ∀x¬P , ∃xP ∨Q → ∃x(P ∨Q), and ∃xP &Q → ∃x(P &Q).

Then, we can use de Morgan rules

¬(A&B) → (¬A) ∨ (¬B) and ¬(A ∨B) → (¬A)& (¬B)

to move all negations inside. When applied to an elementary formulas t1 ≤ t2
or t1 < t2, negation simply means a change in the inequality sign: ¬(t1 ≤ t2) →
t2 < t1 and ¬(t1 < t2) → t2 ≤ t1.

In the resulting formula, let us replace all < with ≤ – this will not change
ε-closeness. Let us now describe the resulting property P0 in the equivalent form
F (x1, . . . , xn) ≤ 0, for some computable function F .

– Each elementary formula t1 ≤ t2 can be equivalently reformulated as

t1 − t2 ≤ 0.

– Each formula (F1 ≤ 0) ∨ (F2 ≤ 0) can be equivalently reformulated as

min(F1, F2) ≤ 0.

– Each formula (F1 ≤ 0)& (F2 ≤ 0) can be equivalently reformulated as

max(F1, F2) ≤ 0.
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– Each formula ∃vi∈[V i,V i]
F (vi, . . .) ≤ 0 can be equivalently reformulated as

min
vi∈[V i,V i]

F (vi, . . .) ≤ 0.

– Each formula ∀vi∈[V i,V i]
F (vi, . . .) ≤ 0 can be equivalently reformulated as

max
vi∈[V i,V i]

F (vi, . . .) ≤ 0.

For the resulting function F (x1, . . . , xn), for y
− = 0 and y+ = ε, there exists a

number ε0 ∈ (0, ε) for which the set S0
def
= {x : F (x) ≤ ε0} is computable.

The corresponding inequality F (x) ≤ ε0 is equivalent to F ′(x) ≤ 0, where

F ′(x)
def
= F (x)−ε0. This inequality can be obtained if we replace, in the formula

P0, each elementary formula t1 ≤ t2 with a formula t1 ≤ t2+ε0. Since ε0 < ε, this
transformation keeps all elementary formulas ε-close to the original ones. So, the
resulting formula P ′

0 is ε-close to the formula P0 and we have S0 = {x : P ′
0(x)}.

When we went from P to P0, all we did was changed the sign of some inequal-
ities. This, in turn, can be obtained by appropriately changing the elementary
formulas from the original property P to ε-close ones. Thus, indeed, the set S0

can be represented as S0 = {x : P ′(x)} for the resulting formula P ′ which is
ε-close to P .

Proof of Proposition 2 is similar, except that instead of y− = 0 we take
y− = ε/2. Then, for every property P ′′ which is (ε/2)-close to P , on each level
of designing a function F (x1, . . . , xn), we will have F ≤ F ′′+ε/2 for the function
F ′′ corresponding to the property P ′′. Thus, at the end, we conclude that F ≤
F ′′ + ε/2 and, since now ε/2 < ε0, we conclude that F (x) ≤ F ′′(x) + ε0 and
F ′(x) = F (x)−ε0 ≤ F ′′(x). Thus. F ′′(x) ≤ 0 implies that F ′(x) ≤ 0. So, indeed,
P ′′ ⊆ S′. The proposition is proven.

Acknowledgments

This work was supported in part by the US National Science Foundation grant
HRD-1242122.

References

1. E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
2. P. Hinman, Fundamentals of Mathematical Logic, A. K. Peters, Natick, Mas-

sachusetts, 2005.
3. L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Ex-

amples in Parameter and State Estimation, Robust Control, and Robotics, Springer,
London, 2001.

4. G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter, Berlin,
2017.



6 M. Ceberio, O. Kosheleva, and V. Kreinovich

5. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis,
SIAM, Philadelphia, 2009.

6. J. Stillwell, Reverse Mathematics: Proofs from the Inside Out, Princeton University
Press, Princeton, New Jersey, 2018.

7. K. Weihrauch, Computable Analysis, Springer Verlag, Berlin, 2000.


	University of Texas at El Paso
	DigitalCommons@UTEP
	2-2018

	Reverse Mathematics Is Computable for Interval Computations
	Martine Ceberio
	Olga Kosheleva
	Vladik Kreinovich
	Recommended Citation


	tmp.1520886973.pdf.eucJk

