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Abstract. Earthquakes can be devastating, thus it is important to gain a

good understanding of the corresponding geophysical processing. One of the

challenges in geophysics is that we cannot directly measure the corresponding

deep-earth quantities, we have to rely on expert knowledge, knowledge which

often comes in terms of imprecise (�fuzzy�) words from natural language. To

formalize this knowledge, it is reasonable to use techniques that were speci�-

cally designed for such a formalization � namely, fuzzy techniques, In this pa-

per, we formulate the problem of optimally representing such knowledge. By

solving the corresponding optimization problem, we conclude that the opti-

mal representation involves using piecewise-constant functions. For geophysics

applications, this means that we need to go beyond tectonic plates to explic-

itly consider parts of the plates that move during the earthquake. We argue

that such an analysis will lead to a better understanding of earthquake-related

geophysics.
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1. Speci�cs of Data Processing in Earthquake Analysis
(and in Geophysics in General)

Earthquake analysis is important. Earthquakes can be devastating. It is there-
fore important to gain as much understanding about the corresponding geophysical
processes as possible; see, e.g., [1, 7].

Usual approach to data processing. A good understanding means that we
know, for each location (x, y) and for each depth z, what is the density ρ at this
location and this depth, what are the mechanical properties of the material at this
3-D location u = (x, y, z), what are the stresses at this 3-D location. In other words,
we need to �nd the corresponding functions like ρ(u) = ρ(x, y, z).
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How can we describe a function in a computer? A usual way is to select a basis

of functions
e1(u), e2(u), . . . , (1)

so that each desired function f(u) can be represented as a linear combination of the
basis functions

f(u) = c1 · e1(u) + c2 · u2(u) + . . . ,

and then represent the desired function f(x) by the corresponding coe�cients

(c1, c2, . . .). (2)

In principle, we can consider di�erent bases, but it is usually convenient to
orthonormalize them, i.e., to consider linear combinations

eoni (x) =
i∑

j=1

cij · ej(u)

for which, for all i and j, we have∫
(eoni (u))2 du = 1

and ∫
eoni (u) · eonj (u) du = 0 when i 6= j.

In this case, the desired coe�cients ci can be obtained by using a simple formula

ci =

∫
f(u) · eoni (u) du. (3)

Thus, without losing generality, we can safely assume that the basis (1) is orthonor-
mal.

The most widely used examples of such bases are:

• sines and cosines, and

• wavelets; see, e.g., [2, 4, 6, 11].

For sines and cosines, the expansion into the corresponding basis is known as Fourier
transform. For wavelets, the transformation from the original function f(u) to the
coe�cients ci is known as the wavelet transform.

It is important to select an appropriate basis. It is known that selecting an
appropriate basis can drastically improve the quality of the data processing results.

For example, in many cases, wavelet analysis has led to interesting discoveries
that were not possible when Fourier analysis was used to process the corresponding
data.

It is therefore very important, in each practical situations, to select the most
appropriate basis.
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What we plan to do in this paper: main idea. In this paper, we provide
arguments for selecting the most appropriate basis for earthquake-related analysis.
In this analysis, we use the speci�c features of the geophysical data processing.

Speci�cs of geophysical data processing. In comparison with most other data
processing situations, geophysical analysis has two important speci�cs.

First, in most data processing situations, we have continuous functions. For
example, when we control a vehicle, its location continuously depends on time. In
contrast, in geophysics, there are clear discontinuities:

• as we go deeper,

• we have an abrupt transition between di�erent layers.

The second di�erence is that in most other data processing situations, we can
determine the ground truth, i.e., the actual values of the corresponding quantities.
In geophysics, our ability to get the ground truth is very limited: up to a certain
depth, we can drill a borehole and �nd out what are the actual properties, but at
larger depths, this is not practically possible.

Why soft computing. Since we cannot determine the actual values to check
di�erent models, we have to rely on expert knowledge to decide which model works
better.

Expert knowledge rarely comes in precise terms, it usually comes in terms of im-
precise (�fuzzy�) words. To describe the corresponding knowledge in precise terms, it
is therefore reasonable to use techniques speci�cally designed to handle such knowl-
edge � namely, the techniques of fuzzy logic; see, e.g., [3, 5, 8�10,12,13].

2. Analysis of the Problem

Main idea. Since the values f(u) comes from expert estimates, they come with a
fuzzy uncertainty. In other words, for every u, we have fuzzy information about the

di�erence ∆f(u)
def
= f̃(u)− f(u) between:

• the expert estimate f̃(u) and

• the actual (unknown) value f(u).

In precise terms, this means that:

• we do not know the probabilities of di�erent possible values of ∆f(u), but

• we have a membership function µ(∆f) that describes, for each possible value
∆f , the degree to which this value is possible.

Since we have no reason to assume that the estimation errors are positive or
negative, it is reasonable to assume that the degree of possibility of each value ∆f
does not depend on its sign: µ(−∆f) = µ(∆f).

Once we have selected the basis ei(u), we will then transform the estimate for
f(u) into the sequence of the corresponding coe�cients ci.
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• Since the values f(u) are known with uncertainty,

• as a result, we can only determine the coe�cients ci � and thus, the corre-
sponding term ci · ei(u) � with uncertainty.

A reasonable idea is to select the basis ei(u) for which this uncertainty in the
term ci · ei(u) is the smallest possible.

Let us describe this idea in precise terms. When we process the expert
estimates f̃(u), we get the following estimates c̃i for the coe�cients ci:

c̃i =

∫
f̃(u) · ei(u) du. (4)

The actual (unknown) value ci of the corresponding coe�cient can be obtained if
we apply the same procedure to the actual (unknown) function f(u):

ci =

∫
f(u) · ei(u) du. (5)

If we subtract (5) from (4) and take into account that the integral of the di�er-
ence is equal to the di�erence of the integrals, we get the following formula for the

inaccuracy ∆ci
def
= c̃i − ci:

∆ci =

∫
∆f(u) · ei(u) du. (6)

The inaccuracy in the product ci · ei(u) is equal to the product ∆ci · ei(u). This
value depends on the location u:

• for some locations u, the value |ei(u)| is larger, so the inaccuracy is larger;

• for other locations u, the value |ei(u)| is smaller, so the inaccuracy is smaller.

It is reasonable to minimize the worst-case inaccuracy

∆ci ·max
u
|ei(u)| = max

u
|ei(u)| ·

∫
∆f(u) · ei(u) du. (7)

Here, each value ∆f(u) is a fuzzy number, so ∆ci is also a fuzzy number. In
fuzzy logic, this fuzzy number is determined by the Zadeh's extension principle.

It is known that in general, computing the result Y = f(X1, . . . , Xn) of applying
a function f(x1, . . . , xn) to n fuzzy numbers X1, . . . , Xn can be described as follows:

for each α ∈ (0, 1], the α-cut Y (α)
def
= {y : µ(y) ≥ α} is equal to the range of

the function f(x1, . . . , xn) when each xi takes values from the corresponding α-cut

Xi(α)
def
= {xi : µi(xi) ≥ α}. In precise terms, we have

Y (α) = {f(x1, . . . , xn) : x1 ∈ X1(α), . . . , xn ∈ Xn(α)}.
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Let us apply this general result to our formula (7). Since the membership func-
tion µ(∆f) does not change if we change the sign of the di�erence ∆f , for each α,
the corresponding α-cut is a symmetric interval. Let us denote this interval by

[−∆(α),∆(α)].

The expression (7) is a linear combination of all the values ∆f(u):

• when ei(u) > 0, this function is increasing in ∆f(u);

• when ei(u) < 0, this function is decreasing in ∆f(u).

Thus, when each value ∆f(u) takes all possible values from the interval
[−∆(α),∆(α)], the largest possible value of the expression (6) is attained when:

• for those u for which ei(u) > 0, the value ∆f(u) is the largest possible, i.e.,
∆f(u) = ∆(α), and

• for those u for which ei(u) < 0, the value ∆f(u) is the smallest possible, i.e.,
∆f(u) = −∆(α).

In both cases, the largest possible value of the product ∆f(u) · ei(u) is equal to
∆(α) · |ei(u)|. Thus, the largest possible value of the integral (6) is equal to∫

∆(α) · |ei(u)| du = ∆(α) ·
∫
|ei(u)| du.

Hence, the largest possible value of the integral (7) is equal to

∆(α) ·max
u
|ei(u)| ·

∫
|ei(u)| du.

Similarly, we can show that the smallest possible value of the expression (7) is
equal to

−∆(α) ·max
u
|ei(u)| ·

∫
|ei(u)| du.

Thus, Y (α) = [−y(α), y(α)], where

y(α)
def
= ∆(α) ·max

u
|ei(u)| ·

∫
|ei(u)| du.

The estimate for ci is the most accurate when this interval is the narrowest
possible, i.e., when the value

∆(α) ·max
u
|ei(u)| ·

∫
|ei(u)| du

is the smallest possible.
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In this product, the factor ∆(α) is given. So, the smallest possible value of the
above product is attained when the product

max
u
|ei(u)| ·

∫
|ei(u)| du (9)

attains its smallest possible value. Hence, we arrive at the following optimization
problem.

Resulting optimization problem. Among all possible functions ei(u) for which∫
e2i (u) du = 1, we need to �nd the function with the smallest possible value of the

product (9).

Analysis of the resulting optimization problem. We always have e2i (u) =
|ei(u)|2. Thus,

∫
|ei(u)|2 du =

∫
e2i (u) du = 1.

Also, for every u, we have ei(u) ≤ maxv |ei(v)|. Hence,

|ei(u)|2 ≤
(

max
v
|ei(v)|

)
· |ei(u)|. (10)

Integrating both parts of this inequality, we conclude that

1 =

∫
|ei(u)|2 du ≤ max

v
|ei(v)| ·

∫
|ei(u)| du. (11)

Thus, the product (9) that we want to minimize cannot be smaller than 1. One can
easily check that when |ei(u)| = const for all u from the given region, we get exact
equality in the formula (1) and thus, in formula (11).

So, when the absolute value |ei(u)| is constant, we attain the smallest possible
value 1 of the desired product (9).

Vice versa, if at least for one value u, we have strict inequality in (10), we will
have strict inequality in (11) as well. So, to attain the smallest possible value of the
product (9), we must always have equality in the formula (1), i.e., we must always
have the following equality:

|ei(u)|2 =
(

max
v
|ei(v)|

)
· |ei(u)|. (12)

When ei(u) 6= 0, we can divide both sides of this equality by |ei(u)| and conclude
that |ei(u)| = maxv |ei(v)|. In other words, for every u:

• we either have ei(u) = 0

• or we have |ei(u)| equal to the largest possible value m
def
= max

v
|ei(v)|.

So, we arrive at the following conclusion:

Resulting solution. Each function ei(u) from the geophysically optimal basis take
only three values: 0, m, and −m, for some real number m > 0.

This means, in particular, that all the optimal basis functions are piecewise
constant.

Comment. Let us consider the geophysical meaning of this result.
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3. Geophysical Meaning of Our Result

What does our result means in terms of earthquake analysis. An earthquake
leads to a spatial shift at di�erent locations. For catastrophic earthquakes, this shift
can be in meters; for smaller earthquakes, we can have centimeters-size shift.

In general, we have a shift s(x, y) as a function of 2-D spatial coordinates. Our
optimization result shows that the optimal way to analyze the empirical data about
this shift is to represent it as a linear combination

∑
ci · ei(u) of piece-wise constant

functions ei(u). Such a linear combination is also piece-wise constant. Thus, what
we need to do is to divide the whole area into several zones, in each of which the
shift is �xed.

In geometric terms, this means that instead of considering each spatial location
(x, y) by itself, we divide the whole region into parts, each of which moves as a whole
(i.e., as a solid body).

How do we transform the observed shifts into this piece-wise constant

presentation: an algorithm. When a function is piece-wise constant, it means
that it attains �nitely many di�erent values. Let us sort these values into an in-
creasing order: s1 < s2 < . . . < sm.

Suppose at �rst that these values are given. In this case, we want to approximate
the original function f(u) by a piece-wise constant function a(u) that takes values si.
For each u, the value a(u) is equal to one of the values s1, . . . , sm. Thus, describing
the function a(u) is equivalent to describing, for each i from 1 to m, the set Si of
all the locations u for which a(u) = si. These m sets should form a partition of
the original domain S, i.e., we should have S1 ∪ . . . ∪ Sm = S and Si ∩ Sj = ∅ for
all i 6= j.

A natural idea is to use the Least Squares approach, i.e., to �nd such a function
a(u) for which the integral

∫
(f(u) − a(u))2 du attains the smallest possible value.

One can easily check that the integral attains the smallest possible value if and
only if for each u, we select the value a(u) ∈ {s1, . . . , , sm} for which the value
(f(u)− a(u))2 is the smallest possible. In other words, for each location u, as a(u),
we take the value si which is the closest to the original value f(u). In other words:

• we select a(u) = s1 if f(u) ≤ s1 + s1
2

;

• we select a(u) = s2 if
s1 + s2

2
≤ f(u) ≤ s2 + s3

2
;

• . . .

• for each i = 2, . . . ,m− 1, we select a(u) = si if
si−1 + si

2
≤ f(u) ≤ si + si+1

2
;

• . . .

• �nally, we select a(u) = sm if
sm−1 + sm

2
≤ f(u).
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We can repeat this procedure for di�erent tuples s = (s1, . . . , sm). For each such
tuple, we �nd the resulting mean square error∫

min
i

(f(u)− si)2 du.

We then select a tuple s for which this mean square error attains the smallest possible
value.

This immediately brings to mind tectonic plates. The above piece-wise de-
scription bring to mind the geophysical idea that the earth's surface consists of
tectonic plates, solid bodies that move in relation to each other.

So, in the �rst approximation, our mathematical result leads to the very well-
known plate tectonics idea.

Our result goes beyond plate tectonics. In the �rst approximation, our result
simply leads to a well-known idea of plate tectonics. In this �rst approximation, the
whole plate moves as a whole, the shift is exactly the same on all locations from this
plate.

In practice, the shift is somewhat di�erent in di�erent locations on the same tec-
tonic plate. To capture this di�erence and thus, provide a more accurate description
of the corresponding geophysics, we therefore need to divide each a�ected plate into
two (or more) di�erent parts, with di�erent shifts in each part.

This idea has geophysical sense. It is known that the major earthquakes are
caused by the interaction of tectonic plates � that move relative to each other. As
a result, all major earthquakes � and the vast majority of smaller earthquakes �
happen at the boundaries between tectonic plates. Speci�cally, they happen at the
convergent boundaries, where the plates move towards each other, accumulating a
stress. This stress is released by an earthquake.

The above description is a �rst crude approximation to the corresponding geo-
physics, in which we can consider the whole plate as a solid body, in which all parts
move the same way. In reality, di�erent parts of the plate may accumulate the stress
di�erently and move di�erently. As a result, some earthquakes only involve a part
of the boundary between the plates. Depending on the size of this part, we can get
earthquakes of di�erent magnitudes.

Beyond piece-wise constant functions: geophysics-motivated idea. Solid
bodies do not just shift, they can also rotate. So, a natural idea is to consider not
only shifts, but also rotations of the parts of the plate.

In this case:

• instead of approximating the measured values f(u) by a piece-wise constant
function,

• we approximate it by a piece-wise linear functions corresponding to shifts and
rotations of di�erent parts of each tectonic plate.

This can help in earthquake studies. In view of the above, to get a better
understanding of the earthquake geophysics, it is important to analyze which parts
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of the plate are involved in di�erent earthquakes, which parts have accumulated
more stress and in which part, the stress has been released.

This idea is challenging. From the computational viewpoint, our idea is very
challenging:

• while we can relatively easily identify the boundary between the plates, where
the big motion occurs,

• it is much more challenging to identify the parts of the plate that are involved
in an earthquake.

The reason why this identi�cation is not easy is because we are interested in geophys-
ical processes far away from the boundaries, where the earthquake-related motion
is much smaller in amplitude and thus, much more di�cult to detect.

We all need to work together to overcome these challenges. As of now,
what we have is ideas and models.

Our preliminary results show that these ideas are promising, and we will continue
working on them.

However, we think that it will be bene�cial to publicize these ideas so that others
can implement them, use them, improve them if needed � and thus, help to get a
better understanding of earthquake-related geophysics.
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