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Abstract

When forces are applied to different parts of a construction, they cause
displacements. In practice, displacements are usually reasonably small. In
this case, we can safely ignore quadratic and higher order terms in the
corresponding dependence and assume that the forces linear depend on
displacements. The coefficients of this linear dependence determine the
mechanical properties of the construction and thus, need to be experi-
mentally determined. In the ideal case, when we measure the forces and
displacements at all possible locations, it is easy to find the correspond-
ing coefficients: it is sufficient to solve the corresponding system of linear
equations. In practice, however, we only measure displacements and forces
at some locations. We show that in this case, the problem of determining
the corresponding coefficients becomes, in general, NP-hard.

1 Formulation of the Problem

Linear elasticity: a brief reminder. A force applied to a rubber band
extends it or curves it. In general, a force applied to different parts of an elastic
body changes the mutual location of its points. Once we know the forces applied
at different locations, we can determine the deformations – and, vice versa, we
can determine the forces once we know all the deformations.

In general, the dependence on forces fα at different locations α on different
displacement εβ is non-linear. However, when displacements are small, we can
ignore terms quadratic or higher order in terms of εβ and thus safely assume
that the dependence of each force component fα on all the components εβ of
displacements at different locations β is linear.
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Taking into account that in the absence of forces, there is no displacement,
we conclude that fα =

∑
β

Kα,β ·εβ for some coefficients Kα,β . These coefficients

Kα,β describe the mechanical properties of the body.
It is therefore desirable to experimentally determine these coefficients.

Ideal case. In the ideal case, we measure displacements εβ and forces fα at all
possible locations.

Each such measurement results in an equation fα =
∑
β

Kα,β · εβ which is

linear in terms of the unknowns Kα,β . Thus, after performing sufficiently many
measurements, we get an easy-to-solve system of linear equations that enables
us to find the values Kα,β .

In practice, we only measure some values. In reality, we only measure
displacements and forces at some locations – i.e., we know only some values fα
and εβ .

In this case, since both Kα,β and some values εβ are unknown, the corre-
sponding system of equations becomes quadratic.

After sufficiently many measurements, we may still uniquely determineKα,β ,
but the reconstruction is more complex.

How complex: what we prove. How complex is the corresponding compu-
tational problem?

In this paper, we prove that the corresponding reconstruction problem is,
in general, NP-hard. This means that, if – as most computer scientists believe
– NP ̸= P, no feasible algorithm is possible that would always reconstruct the
mechanical properties Kα,β based on the experimental results; see, e.g., [1, 2].

We will prove NP-hardness even for the problem of checking whether a given
value of Kα0,β0 for some α0 and β0 is consistent with the observations.

2 Definitions and the Main Result

From the computational viewpoint, the above problem can be formulated as
follows.

Definition 1. Let K be a natural number. This number will be called the
number of experiments. By a problem of experimentally determining mechanical
properties, we mean the following problem.

• We know that for every k from 1 to K, we have f
(k)
α =

∑
β

Kα,β · ε(k)β for

some values f
(k)
α and ε

(k)
β .

• For each k, we know some of the values f
(k)
α and ε

(k)
β .

• We need to check if for given α0, β0, and K0, we can have Kα0,β0 = K0.
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Proposition. The problem of experimentally determining mechanical properties
is NP-hard.

Proof.

1◦. By definition, NP-hard means that all the problems from a certain class NP
can be reduced to this problem; see, e.g., [1, 2]. It is known that the following
subset sum problem is NP-hard:

• given m+ 1 natural numbers s1, . . . , sm, S,

• check whether it is possible to find the values xi ∈ {0, 1} for which

m∑
i=1

si · xi = S

(in other words, check whether it is possible to find a subset of the values
s1, . . . , sm whose sum is equal to the given value S).

The fact that the subset sum problem is NP-hard means that every problem
from the class NP can be reduced to this problem. So, if we reduce the subset
problem to our problem, that would mean, by transitivity of reduction, that
every problem from the class NP can be reduced to our problem as well – i.e.,
that our problem is indeed NP-hard.

This is exactly how we will construct this proof – by showing that the subset
sum problem can be reduced to our problem.

2◦. Let s1, . . . , sm, S be the values that describe an instance of the subset sum
problem. Let us reduce it to the following instance of our problem. In this
instance, we have 2m + 1 variables ε0, ε1, . . . , εm, εm+1, . . . , ε2m. We also have
m+ 1 different values fα, α = 0, 1, . . . ,m.

3◦. In the first series of experiments k = 1, . . . ,m, for each i = 1, . . . ,m, we

have ε
(i)
i = 1, ε

(i)
m+i = −1, and ε

(i)
j = 0 for all j ̸= i. The only value of fα that

we measure in each of these experiments is the value f
(i)
0 = 0.

From the corresponding equation

0 = f
(i)
0 =

∑
β

K0,β · ε(i)β = K0,i −K0,m+i,

we conclude that
K0,m+i = K0,i. (1)

4◦. In the second series of experiments k = m + 1, . . . ,m + i, . . . , 2m, where

i = 1, . . . ,m, for each k = m+ i, we measure the values ε
(m+i)
j = 0 for all j ̸= k,

and we measure the values f
(m+i)
0 = f

(m+i)
i = 1.

From the corresponding equations, we conclude that 1 = K0,m+i ·ε(m+i)
m+i and

1 = Ki,m+i · ε(m+i)
m+i . We do not know the value ε

(m+i)
m+i , but we can find it from
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the first equation and substitute into the second one. As a result, we conclude
that

K0,m+i = Ki,m+i. (2)

Combining equalities (1) and (2), we conclude that

K0,i = Ki,m+i. (3)

5◦. In the third series of experiments k = 2m + i, i = 1, . . . ,m, for each i, we

measure ε
(2m+i)
i = 1, ε

(2m+i)
j = 0 for all other j, and we measure f

(2m+i)
i = 1.

The corresponding equation implies that

Ki,i = 1. (4)

6◦. In the fourth series of experiments k = 3m + i, i = 1, . . . ,m, we measure

the values ε
(3m+i)
m+i = −1 and ε

(3m+i)
j = 0 for all j which are different from i and

from m+ i. We also measure the values f
(3m+i)
0 = f

(3m+i)
i = 0.

In this case, the corresponding equations lead to

K0,i · ε(3m+i)
i −K0,m+i = 0 (5)

and
Ki,i · ε(3m+i)

i −Ki,m+i = 0. (6)

Since, due to (4), we haveKi,i = 1, the equation (6) simply means that ε
(3m+i)
i =

Ki,m+i. Due to formula (3), this implies that ε
(3m+i)
i = K0,i. Substituting this

expression for ε
(3m+i)
i into the equation (5) and taking into account that, due

to (1), we have K0,m+i = K0,i, we conclude that K2
0,i −K0,i = 0.

From K0,i · (K0,i − 1) = 0, we conclude that either K0,i = 0 or K0,i = 1.
Thus, for each i from 1 to m, we have K0,i ∈ {0, 1}.

7◦. The final, fifth series of experiments consists of only one experiment k =

4m+ 1. In this experiment, we measure the values ε
(4m+1)
0 = −S,

ε
(4m+1)
1 = s1, . . . , ε

(4m+1)
m = sm,

and ε
(4m+1)
m+i = 0 for all i = 1, . . . ,m. We also measure f

(4m+1)
0 = 0.

We want to check whether it is possible that K0,0 = 1.
For K0,0 = 1, the corresponding equation takes the form

−S +K0,1 · s1 + . . .+K0,m · sm = 0,

i.e., the form
K0,1 · s1 + . . .+K0,m · sm = S (7)

for some values K0,i ∈ {0, 1}.
One can easily see that:
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• If the original instance of the subset sum problem has a solution
xi ∈ {0, 1}, then the above equality holds for K0,i = xi.

• Vice versa, if there exist values K0,i that satisfy the formula (5), then the
values xi = K0,i solve the original subset sum problem.

Thus, we indeed have a reduction – and hence, our problem is indeed NP-hard.
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