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Abstract

In teaching, it is very important to identify, as early as possible, stu-
dents who may be at risk of failure. Traditionally, two natural criteria
are used for this identification: poor grades in previous classes, and poor
grades on the first assignments in the current class. Our empirical re-
sults show that these criteria do not always work: sometimes a students
deemed at-risk by one of these criteria consistently succeeds, and some-
times a student who is not considered at-risk frequently fails. In this
paper, we provide a theoretical explanation of our quantitative empirical
results, and we use these results to provide recommendations on how to
better detect at-risk students.

1 Formulation of the Problem

How do we identify students that need more attention? Instructors
and teaching assistants have a limited amount of time to attend to (often a
large number of) students. To spend this time wisely, it is important to identify
at-risk students, students who need additional attention to succeed. How can
we identify these students?

How do we identify at-risk students before class starts: a natural
idea. Before the class starts, the only information that we have to identify at-
risk students is their past performance. A good indication of the student’s past



performance is their average grade in previous classes (in the US, this average
grade is called Grade Point Average, GPA for short). If this GPA is low, close to
the failure level, it is reasonable to assume that the student is at risk of failure,
and additional efforts need to be taken to help these students.

Once the class started, what additional information can we use? Once
the course starts, we get the average grade from the first few assignments — and
again, these average grades can serve as another indicator of at-risk students:

e if a student has been doing well so far, probably he or she does not need
special attention;

e on the other hand, if the student’s grades so far on the course’s assign-
ments, quizzes, and tests were low, this seems like a good indication that
a student needs extra help.

But is this indeed a reasonable strategy? This may sound reasonable, but
it is a good idea to check if this strategy indeed works.

What we do in this paper. In our previous research [10], we provided
an empirical analysis of the above strategies. In this paper, we recall these
results, describe a possible theoretical justification for these empirical results,
and provide resulting pedagogical recommendations.

2 Empirical Results: Reminder

What we did. In [10], we studied student performance in several classes,
including their starting grade and their final grade in each class.

What we expected. We expected that in most of the cases, both GPA in the
previous classes and the average grade for first few assignments would be very
good predictors for student’s success.

This would mean that all our attention should be concentrated on students
with low GPA and/or low performance in the first assignment, and we should
not worry that much about other students.

What we found out: somewhat disappointing news. What we found out
is that, surprisingly, overall, neither of two usual criteria is a good predictor of
the student’s success:

e the correlation between the student’s success and GPA is low, and

e the correlation between the student’s success in a class and the student’s
average grade for the first few class assignment is also very low.

At first glance, this sounds pessimistic: no way that we can predict the
student’s success with good accuracy and so, we cannot simply dismiss students
who perform well so far as not needing our attention: they may be at risk as
well.



What we found out: interesting news. However, a deeper analysis revealed
an interesting phenomenon with respect to both correlations.

It turns out that for about a third of all students, their past GPA is a good
predictor of the grade in the class. In other words, such students show steady
performance, with a low standard deviation of grades from the average.

e Some of these students are straight-A students, maybe with a few B’s.
e Some are straight-B students, usually with a few As and Cs.
e Some are straight-C students, with a few Bs and Ds.
e Some are straight-D students, with most grades Ds and fails.
For such students, predicting their success is easy:

e if the student’s GPA was passing, we can be reasonably sure that the
students will pass this class;

e otherwise, if the student’s previous GPA was close to failing, then this
student is clearly at-risk, and an additional attention needs to be paid to
these students.

Thus is about the third of all students — students with steady performance.
For the remaining two thirds of the students, there is no correlation between
their GPA and grade in the class.

Similarly, with respect to relation between the preliminary grade in the class
and final grade for the same class, there is a similar division:

e For about a third of the students, their initial performance in a class is a
good predictor of the student’s final grade.

e However, for the remaining two thirds of the students, based on the initial
performance, we cannot meaningfully predict their final grade.

Based on two criteria, we have two classes of “predictable” students:

e students whose success in the class can be predicted based on their GPAs,
and

e students whose success in the class can be predicted based on their per-
formance in the first weeks of the class.

Each group contains about a third of all the students. These two groups inter-
sect: for some students, their performance in the class can be predicted both
based on GPA and on their initial performance in the class.

Overall about half of the students are, in this sense, predictable. For the
other half, we cannot predict the student’s success.



3 Theoretical Explanation of the Empirical Re-
sults

Why 1/3: analysis of the problem and the resulting justification. In
general, there is a low positive correlation between the final grade for the class
and the average grade on the first few assignments. What is a natural way to
describe this “low” in precise numerical terms?

Intuitively, the use the word “low” means that we consider two possible val-
ues of the positive correlation: low and high. We would like to assign numerical
values ¢ and h to these words. The only limitation is that 0 < £ < h < 1. Out
of many pairs (¢, h) that satisfy this inequality, which pair should we choose?

We have no reason to believe that some such pairs are more probable than
others. Thus, it is reasonable to assume that all these pairs are equally probable,
i.e., that we have a uniform distribution on the set of such pairs. If we want to
select a single pair, it is therefore reasonable to select the mean value of (¢, h)
under this distribution. It is known — see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9] — that
this mean corresponds to £ = 1/3 and h = 2/3. So, low correlation corresponds
to 1/3.

This explains why in both cases, we get good predictability for 1/3 of the
students.

Why 1/2: analysis of the problem and the resulting justification.
In the previous subsection, we argued that it is reasonable to interpret low
correlation between, e.g., the GPA and the grade for a class as correlation of
1/3. Similarly, we can argue that since the correlation between the GPA and the
average of the first grades is also low, we should also describe it by a numerical
value of 1/3.

We now have two events:

e predictability by GPA (we will denote it by A) and

e predictability by the average of the first few grades in a class (we will
denote it by B).

We know that the probability P(A) of A is p = 1/3, the probability P(B) of B
is also 1/3, and the correlation r between A and B is also equal to 1/3. What
is then the probability P(A V B) that for a random selected student, his/her
final grade in the class can be predicted based either on the student’s GPA or
on the student’s average grade for the few class assignments?

By definition, the correlation r between two random variables x and y is
equal to

Elz-y| — Elz] - Ely]
olz] - oly]

where E[-] means the mean value and o] means standard deviation; see, e.g.,
[11].

In our case:

)



e 1 is a random variable which is equal to 1 if A holds and 0 otherwise, and
e y is a random variable which is equal to 1 if B holds, 0 otherwise.

Since each of the events A and B has probability p = 1/3, we can conclude that
E[z] = E[y] = p. Here, the product of 2 and y is different from 0 only if both
values x and y are different from 0, i.e., when both events A and B occurred,
so B[z -y] = P(A& B).

Here,

o’lz] =E[(x — Elz])’]=p-(1-p)?+(1—p)-p*=p-(1—p) =

W=
W N
©

Thus, o[z] = oly] = 1/2/9. Thus, the above formula for r takes the form

1 P(A&B)—1/9 P(A&B)—1/9

3T VRl 2

Thus,

P(A&B) =
By additivity, we always have
P(Av B)=P(A)+ P(B)— P(A& B),

thus
PAvE -2l 3 B85 1
3 2t 27 27 27
This is very close to the empirical value of 1/2. Thus, we have indeed provided
a theoretical justification for this empirical value.

4 Towards Resulting Recommendations

Before the class starts: analysis of the problem. Before the class starts,
we need to check, for each student, whether he/she belongs to the one-third of
predictable by GPA. To decide on this, we need to check, e.g., on the standard
deviation of all the student’s previous grades.

Usually, in the US, we use letter grades. Specifically, the original 0 to 100
numerical grade is transformed into one of the few letter grades: A for excellent,
B for good, C for satisfactory, D for probably passing, and F for failing. In
computing the GPA, these grades are assigned the following numerical values:
Ais4,Bis 3, Cis 2, Dis 1, and F is 0. Of course, if we only use these 0 to 4
grades, we lose a lot of information, so it is better to get and use the original
0-to-100 grades.

For each student, based on his/her previous class grades, we will find the
standard deviation.



e If this standard deviation is low, then we can safely predict the student’s
grade in the course based on his/her GPA.

e Otherwise, we cannot make this prediction.

What threshold should we use? Since about one third is predictable this way, a
natural idea is to sort all these standard deviations, and consider those in the
lower third predictable-by-GPA.

Thus, we arrive at the following recommendation.

Before the class starts: resulting recommendation. In the beginning,
when we do not know anything about the students, any of them can be at-risk.

Before the class starts, to decrease the number of potential at-risk students,
we collect, for each student, his/her 0-to-100 grade in all previous classes. Based
on these grades, we compute the mean grade and the standard deviation corre-
sponding to this student.

We then sort all the standard deviations, and consider students from the
lower third. Those of these lower-third students whose mean grade in previous
classes is C or better are clearly not at-risk, so they should be excluded from
the list of possible at-risk students.

After the first few grades: analysis of the problem. First, we need to
check, for each student from the class, whether this student belongs to the one-
third of predictable-by-first-grades To decide on this, we need to check, e.g.,
whether there is a correlation in the previous classes between the average grade
on the first several assignments in each class and the final grade for the same
class.

For this purpose, we need to know not only the student’s 0-to-100 final grades
in all previous classes, we also need to know, for each of these previous classes,
the student’s average of the first 0-to-100 grades in this class.

Based on this information, we can compute, for each student, the corre-
lation between the average of the first few grades and the final grade for the
corresponding class.

e If this standard correlation is high, then we can safely predict the student’s
final grade in the course based on his/her average grade from the first few
assignments.

e Otherwise, we cannot make this prediction.

What threshold should we use? Since about one third is predictable this way,
a natural idea is to sort all these correlations, and consider those in the upper
third predictable-by-first-grades.

Thus, we arrive at the following recommendation.

After the first few grades: resulting recommendation. Before the class
starts, for each student and for each class that this student attended, we collect,
in addition to the student’s 0-to-100 final grade for this class, an average of the
0-to-100 grades for the first several assignments. Based on this information,



we compute, for each student, the correlation between the final grade and the
average-of-first grades.

We then sort all the resulting correlations, and consider students from the
upper third. Those of these upper-third students whose average on the first
few grades in this class is C or better are clearly not at-risk, so they should be
excluded from the list of possible at-risk students.

The resulting list — consisting of slightly more than half students — contains
everyone who can potentially be at risk.
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