Towards a More Efficient Representation of Functions in Quantum and Reversible Computing

Oscar Galindo
University of Texas at El Paso, ogalindomo@miners.utep.edu

Laxman Bokati
University of Texas at El Paso, lbokati@miners.utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://digitalcommons.utep.edu/cs_techrep

Part of the [Computer Sciences Commons](https://digitalcommons.utep.edu/cs_techrep)

Towards a More Efficient Representation of Functions in Quantum and Reversible Computing

Oscar Galindo1, Laxman Bokati2, and Vladik Kreinovich1,2

1Department of Computer Science
2Computational Science Program
University of Texas at El Paso, El Paso, TX 79968, USA
ogalindomo@miners.utep.edu, lbokati@miners.utep.edu, vladik@utep.edu

Abstract

Many practical problems necessitate faster computations. Simple physical estimates show that the only way to achieve a drastic computation speedup is to use quantum – or, more generally, reversible – computing. Thus, we need to be able to transform the existing algorithms into reversible form. Such transformation schemes exist. However, such schemes are not very efficient. Indeed, in general, when we write an algorithm, we composed it of several pre-existing modules. It would be nice to be able to similarly compose a reversible version of our algorithm from reversible version of these moduli – but the existing transformation schemes cannot do it, they require that we, in effect, program everything “from scratch”. It is therefore desirable to come up with alternative transformations, transformation that transform compositions into compositions and thus, transform a modular program in an efficient way – by utilizing transformed moduli. Such transformations are proposed in this paper.

1 Formulation of the Problem

Need for faster computing. While computers are very fast, in many practical problems, we need even faster computations. For example, we can, in principle, with high accuracy predict in which direction a deadly tornado will turn in the next 15 minutes, but this computation requires hours even on the most efficient high performance computers – too late for the resulting prediction to be of any use.

Faster computations means smaller processing units. One of the main limitations on physical processes is the fact that, according to modern physics, all processes cannot move faster than the speed of light. For a laptop of size ≈ 30 cm, this means that it takes at least 1 nanosecond (10^{-9} sec) for a signal to move from one side of the laptop to the other. During this time, even the
cheapest laptops perform several operations. Thus, to speed up computations, we need to further decrease the size of the computer – and thus, further decrease the size of its memory units and processing units.

Need for quantum computing. Already the size of a memory cell in a computer is compatible with the size of a molecule. If we decrease the computer cells even more, they will consist of a few dozen molecules. Thus, to describe the behavior of such cells, we will need to take into account the physical laws that describe such micro-objects – i.e., the laws of quantum physics.

Quantum computing means reversible computing. For macro-objects, we can observe irreversible processes: e.g., if we drop a china cup on a hard floor, it will break into pieces, and no physical process can combine these pieces back into the original whole cup. However, on the micro-level, all the equations are reversible. This is true for Newton’s equations that describe the non-quantum motion of particles and bodies, this is true for Schroedinger’s equation that takes into account quantum effects that describes this notion; see, e.g., [1, 3].

Thus, in quantum computing, all elementary operations must be reversible.

Reversible computing beyond quantum. Reversible computing is also needed for a different reasons. Even at the present level of micro-miniaturization, theoretically, we could place more memory cells and processing cells into the same small volume if, instead of the current 2-D stacking of these cells into a planar chip, we could stack them in 3-D.

For example, if we have a Terabyte of memory, i.e., 10^{12} cells in a 2-D arrangement, this means 10^6 \times 10^6. If we could get a third dimension, we would be able to place 10^6 \times 10^6 \times 10^6 = 10^{18} cells in the same volume – million times more than now.

The reason why we cannot do it is that already modern computers emit a large amount of heat. Even with an intensive inside-computer cooling, a working laptop warms up so much that it is possible to be burned if you keep it in your lap. If instead of a single 2-D layer, we have several 2-D layers forming a 3-D structure, the amount of heat will increase so much that the computer will simply melt.

What causes this heat? One of the reasons may be design flaws. Some part of this heat may be decreased by an appropriate engineering design. However, there is also a fundamental reason for this heat: Second Law of Thermodynamics, according to which, every time we have an irreversible process, heat is radiated, in the amount T \cdot S, where S is the entropy – i.e., in this case, the number of bits in information loss; see, e.g., [1, 3]. Basic logic operations (that underlie all computations) are irreversible. For example, when \(a \& b\) is false, it could be that both \(a\) and \(b\) were false, it could be that one of them was false. Thus, the usual “and”-operation \((a, b) \rightarrow a \& b\) is not reversible.

So, to decrease the amount of heat, a natural idea is to use only reversible operations.

How operations are made reversible now? At present, in quantum (and
reversible) computing, a bit-valued function \(y = f(x_1, \ldots, x_n) \) is transformed into the following reversible operation:

\[
T_f : (x_1, \ldots, x_n, x_0) \rightarrow (x_1, \ldots, x_n, x_0 \oplus f(x_1, \ldots, x_n)),
\]

where \(x_0 \) is an auxiliary bit-valued variable, and \(\oplus \) denotes “exclusive or”, i.e., addition modulo 2; see, e.g., [2].

It is easy to see that the above operation is indeed reversible: indeed, if we apply it twice, we get the same input back:

\[
T_f(T_f(x_1, \ldots, x_n, x_0)) = T_f(x_1, \ldots, x_n, x_0 \oplus f(x_1, \ldots, x_n)) =
(x_1, \ldots, x_n, x_0 \oplus f(x_1, \ldots, x_n) \oplus f(x_1, \ldots, x_n)).
\]

For addition modulo 2, \(a \oplus a = 0 \) for all \(a \), so indeed

\[
x_0 \oplus f(x_1, \ldots, x_n) \oplus f(x_1, \ldots, x_n) = x_0 \oplus (f(x_1, \ldots, x_n) \oplus f(x_1, \ldots, x_n)) = x_0
\]

and thus,

\[
T_f(T_f(x_1, \ldots, x_n, x_0)) = (x_1, \ldots, x_n, x_0).
\]

Limitations of the current reversible representation of functions. The main limitation of the above representation is related to the fact that we rarely write algorithms “from scratch”, we usually use existing algorithms as building blocks.

For example, when we write a program for performing operations involving sines and cosines (e.g., a program for Fourier Transform), we do not write a new code for sines and cosines from scratch, we use standard algorithms for computing these trigonometric functions – algorithms contained in the corresponding compiler. Similarly, if in the process of solving a complex system of nonlinear equations, we need to solve an auxiliary system of linear equations, we usually do not write our own code for this task – we use existing efficient linear-system packages. In mathematical terms, we form the desired function as a composition of several existing functions.

From this viewpoint, if we want to make a complex algorithm – that consists of several moduli – reversible, it is desirable to be able to transform the reversible versions of these moduli into a reversible version of the whole algorithm. In other words, it is desirable to generate a reversible version of each function so that composition of functions would be transformed into composition. Unfortunately, this is not the case with with the existing scheme described above. Indeed, even in the simple case when we consider the composition \(f(f(x_1)) \) of the same function \(f(x_1) \) of one variable, by applying the above transformation twice, we get – as we have shown – the same input \(x_1 \) back, and not the desired value \(f(f(x_1)) \).

Thus, if we use the currently used methodology to design a reversible version of a modularized algorithm, we cannot use the modular stricture, we have, in effect, to rewrite the algorithm from scratch. This is not a very efficient idea.
Resulting challenge, and what we do in this paper. The above limitation shows that there is a need to come up with a different way of making a function reversible, a way that would transform composition into composition. This way, we will have a more efficient way of making computations reversible.

This is exactly what we do in this paper.

2 Analysis of the Problem and the Resulting Recommendation

Simplest case: description. Let us start with the simplest case of numerical algorithms, when we have a single real-valued input \(x \) and a single real-valued output \(y \). Let us denote the corresponding transformation by \(f(x) \).

In general, this transformation is not reversible. So, to make it reversible, we need to consider an auxiliary input variable \(u \) – and, correspondingly, an auxiliary output variable \(v \) which depends, in general, on \(x \) and \(u \): \(v = v_f(x, u) \). The resulting transformation \((x, u) \to (f(x), v_f(x, u)) \) should be reversible.

How to make sure that composition is transformed into composition. Let us fix some value of the auxiliary variable \(u \) that we will use, e.g., the value \(u = 0 \). We want to make sure that when \(x = 0 \), then in the resulting pair \((y, v) \), the second value \(v \) is also 0, i.e., that \(v_f(x, 0) = 0 \). This way, \((x, 0) \) is transformed into \((x', 0) = (f(x), 0) \). So, if after this, we apply the reversible analogue of \(g(x) \), we get \((g(x'), 0) = (g(f(x)), 0) \).

What does “reversible” mean here? In the computer, real numbers are represented with some accuracy \(\varepsilon \). Because of this, there are finitely many possible computer representations of real numbers.

Reversibility means that inputs and outputs are in 1-1 correspondence, and thus, for each 2-D region \(r \), its image after the transformation \((x, u) \to (y, v) \) should contain exactly as many pairs as the original region \(r \).

Each pair \((x, u) \) of computer-representable real numbers takes the area of \(\varepsilon^2 \) in the \((x, u)\)-plane. In each region of this plane, the number of possible computer-representable numbers is therefore proportional of the area of this region. Thus, reversibility means that the transformation \((x, u) \to (f(x), v(x, u)) \) should preserve the area.

From calculus, it is known that, in general, under a transformation

\[
(x_1, \ldots, x_n) \to (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)),
\]

the \(n \)-dimensional volume is multiplied by the determinant of the matrix with elements \(\frac{\partial f_i}{\partial x_j} \). Thus, reversibility means that this determinant should be equal to 1.

Let us go back to our simple case. For the transformation \((x, u) \to \)

\[
(x_1, \ldots, x_n) \to (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)),
\]

the \(n \)-dimensional volume is multiplied by the determinant of the matrix with elements \(\frac{\partial f_i}{\partial x_j} \). Thus, reversibility means that this determinant should be equal to 1.
\((f(x), v_f(x, u))\), the matrix of the partial derivatives has the form

\[
\begin{pmatrix}
 f'(x) & 0 \\
 \frac{\partial v_f}{\partial x} & \frac{\partial v_f}{\partial u}
\end{pmatrix},
\]

where, as usual, \(f'(x)\) denoted the derivative. Thus, equating the determinant of this matrix to 1 leads to the following formula

\[
f'(x) \cdot \frac{\partial v_f}{\partial u} = 1,
\]

from which we conclude that

\[
\frac{\partial v_f}{\partial u} = \frac{1}{f'(x)}.
\]

Thus,

\[
v_f(x, U) = v_f(x, 0) + \int_0^U \frac{\partial v_f}{\partial u} \, du = v_f(x, 0) + \int_0^U \frac{1}{f'(x)} \, du = v_f(x, 0) + \frac{U}{f'(x)}.
\]

We know that \(v_f(x, 0) = 0\), thus we have

\[
v_f(x, u) = \frac{u}{f'(x)},
\]

and the transformation takes the form

\[
(x, u) \rightarrow \left(f(x), \frac{u}{f'(x)} \right).
\]

Examples.

- For \(f(x) = \exp(x)\), we have \(f'(x) = \exp(x)\) and thus, the reversible analogue is \((x, u) \rightarrow (\exp(x), u \cdot \exp(-x))\).

- For \(f(x) = \ln(x)\), we have \(f'(x) = 1/x\) and thus, the reversible analogue is \((x, u) \rightarrow (x, u \cdot x)\).

Comment. The above formula cannot be directly applied when \(f'(x) = 0\). In this case, since anyway, we consider all the numbers modulo the “machine zero” \(\varepsilon\) – the smallest positive number representable in a computer – we can replace \(f'(x)\) with the machine zero.

General case. Similarly, if we have a general transformation

\[
(x_1, \ldots, x_n) \rightarrow f(x_1, \ldots, x_n) \overset{\text{def}}{=} (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)),
\]
we want to add an auxiliary variable u and consider a transformation

$$(x_1, \ldots, x_n, u) \to (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n), v_f(x_1, \ldots, x_n, u)).$$

To make sure that composition is preserved, we should take $v_f(x_1, \ldots, x_n, 0) = 0$. Thus, from the requirement that the volume is preserved, we conclude that

$$v_f(x_1, \ldots, x_n, u) = \frac{u}{\det \left| \frac{\partial f_i}{\partial x_j} \right|}.$$

Resulting recommendation. To make the transformation

$$(x_1, \ldots, x_n) \to (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))$$

reversible, we should consider the the following mapping:

$$(x_1, \ldots, x_n, u) \to \left(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n), \frac{u}{\det \left| \frac{\partial f_i}{\partial x_j} \right|} \right).$$

3 Discussion

Need to consider floating-point numbers. In the previous text, we considered only fixed-point real numbers, for which the approximation accuracy ε – the upper bound on the difference between the actual number and its computer representation – is the same for all possible values x_i.

In some computations, however, we need to use floating-point numbers, in which instead of directly representing each number as a binary fraction, we, crudely speaking, represent its logarithm: e.g., in the decimal case, $1\,000\,000\,000$ is represented as 10^9, where 9 is the decimal logarithm of the original number. In this case, we represent all these logarithms with the same accuracy ε. In this case, the volume should be preserved for the transformation of logarithms $\ln(x_i)$ into logarithms $\ln(f_j)$, for which

$$\frac{\partial \ln(f_j)}{\partial \ln(x_j)} = \frac{x_j}{f_j} \cdot \frac{\partial f_i}{\partial x_j}.$$

In this case, formulas similar to the 1-D case imply that the resulting reversible version has the form

$$(x_1, \ldots, x_n, u) \to \left(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n), \frac{u}{\det \left| \frac{x_j}{f_i} \cdot \frac{\partial f_i}{\partial x_j} \right|} \right).$$
In some cases, the input is a fixed-point number while the output is a floating-point number; this happens, e.g., for \(f(x) = \exp(x) \) when the input \(x \) is sufficiently large. In this case, we need to consider the dependence of \(\ln(f) \) of \(x \).

Case of functions of two variables. If we are interested in a single function of two variables \(f(x_1, x_2) \), then it makes sense not to add an extra input, only an extra output, i.e., to consider a mapping \((x_1, x_2) \rightarrow (f(x_1, x_2), g(x_1, x_2)) \), for an appropriate function \(g(x_1, x_2) \).

The condition that the volume is preserved under this transformation means that
\[
\frac{\partial f}{\partial x_1} \cdot \frac{\partial g}{\partial x_2} - \frac{\partial f}{\partial x_2} \cdot \frac{\partial g}{\partial x_1} = 1.
\]

For example, for \(f(x_1, x_2) = x_1 + x_2 \), we get the condition
\[
\frac{\partial g}{\partial x_2} - \frac{\partial g}{\partial x_1} = 1.
\]

This expression can be simplified if, instead of the original variables \(x_1 \) and \(x_2 \), we use new variables \(u_1 = x_1 - x_2 \) and \(u_2 = x_1 + x_2 \) for which \(x_1 = \frac{u_1 + u_2}{2} \) and \(x_2 = \frac{u_2 - u_1}{2} \). In terms of the new variables, the original function \(g(x_1, x_2) \) has the form
\[
G(u_1, u_2) = f \left(\frac{u_1 + u_2}{2}, \frac{u_2 - u_1}{2} \right).
\]

For this new function,
\[
\frac{\partial G}{\partial u_1} = \frac{1}{2} \cdot \frac{\partial g}{\partial x_1} - \frac{1}{2} \cdot \frac{\partial g}{\partial x_2} = -\frac{1}{2}.
\]

Thus,
\[
G(u_1, u_2) = \frac{1}{2} \cdot u_1 + C(u_2)
\]
for some function \(C(u_2) \), i.e., substituting the expressions for \(u_i \),
\[
g(x_1, x_2) = \frac{x_2 - x_1}{2} + C(x_1 + x_2).
\]

So, to make addition reversible, we may want to have subtraction – the operation inverse to addition; this make intuitive sense.

Similarly, for \(f(x_1, x_2) = x_1 \cdot x_2 \), we get the condition
\[
x_2 \cdot \frac{\partial g}{\partial x_2} - x_1 \cdot \frac{\partial g}{\partial x_1} = 1.
\]

This expression can be simplified if we realize that \(x_1 \cdot \frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial X_1} \), where we denoted \(X_i \overset{\text{def}}{=} \ln(x_i) \). In these terms, we have
\[
\frac{\partial g}{\partial X_2} - \frac{\partial g}{\partial X_1} = 1,
\]
and thus, as in the sum example, we get

\[g(X_1, X_2) = \frac{X_2 - X_1}{2} + C(X_1 + X_2). \]

Thus, we get

\[g(x_1, x_2) = \frac{\ln(x_2) - \ln(x_1)}{2} + C(\ln(x_1) + \ln(x_2)), \]

i.e.,

\[f(x_1, x_2) = \frac{1}{2} \ln \left(\frac{x_2}{x_1} \right) + C(x_1 \cdot x_2). \]

So, to make multiplication reversible, we need to add a (function of) division – the operation inverse to multiplication. This also makes common sense.

Acknowledgments

This work was partially supported by the US National Science Foundation via grant HRD-1242122 (Cyber-ShARE Center of Excellence).

References

