
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Computer Science

6-2019

Nonlinear Mechanical Properties of Road
Pavements: Geometric Symmetries Explain the
Empirical Difference between Roads Built on Clay
vs. Granular Soils
Afshin Gholamy
University of Texas at El Paso, afshingholamy@gmail.com

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://digitalcommons.utep.edu/cs_techrep

Part of the Applied Mathematics Commons, and the Construction Engineering and Management
Commons
Comments:
Technical Report: UTEP-CS-19-56

This Article is brought to you for free and open access by the Computer Science at DigitalCommons@UTEP. It has been accepted for inclusion in
Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Gholamy, Afshin and Kreinovich, Vladik, "Nonlinear Mechanical Properties of Road Pavements: Geometric Symmetries Explain the
Empirical Difference between Roads Built on Clay vs. Granular Soils" (2019). Departmental Technical Reports (CS). 1346.
https://digitalcommons.utep.edu/cs_techrep/1346

https://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/253?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/253?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/cs_techrep/1346?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Nonlinear Mechanical Properties of Road

Pavements: Geometric Symmetries Explain the

Empirical Difference between Roads Built on

Clay vs. Granular Soils

Afshin Gholamy1, and Vladik Kreinovich2

1Department of Geological Sciences
2Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
afshingholamy@gmail.com, vladik@utep.edu

Abstract

It is empirically known that roads built on clay soils have different
nonlinear mechanical properties than roads built on granular soils (such
as gravel or sand). In this paper, we show that this difficult-to-explain
empirical fact can be naturally explained if we analyze the corresponding
geometric symmetries.

1 Formulation of the Problem

Mechanical properties of road pavements are non-linear. In the tra-
ditional elasticity theory (see, e.g., [6]), it is usually assumed that the elastic
materials satisfy Hooke’s law, i.e., that the strain (= relative change in the dis-
tances) is a linear function of stress (= force per unit area), and vice versa. The
corresponding coefficient of stress/strain is called the modulus E.

In reality, the Hooke’s law is approximate. In most cases – e.g., for buildings
– this approximation works very well, since the forces are reasonably small and
thus, we can safely ignore terms which are quadratic or of higher order with
respect to the corresponding stresses. The only cases when we need to take
possible nonlinearity into account are the extreme situations, such as a strong
earthquake or a hurricane.

In contrast, on the roads, stresses are high and dynamic: e.g., each passing
heavy trucks leads to a huge stress concentrated in a small area. As a result,
when describing mechanical properties of road pavements, we need to take non-
linear terms into account.
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How this nonlinearity is described. Several formulas have been proposed to
describe these properties. At present, the empirical comparison between differ-
ent models seems to indicate that one of these models is the most adequate. To
describe this so-far most adequate formula, let us introduce the corresponding
notations. The stress corresponding to the force in the i-th direction as applied
to a surface which is orthogonal to the j-th direction is denoted by σij . In me-
chanics, it is known that the resulting matrix σij is symmetric. The eigenvalues
of this symmetric 3× 3 matrix are called principal stresses and denoted by σ1,
σ2, and σ3.

The numerical values of the components σij of the stress matrix depend on
the selection of the coordinate system. However, based on these components, we
can form combinations of these values which are invariant, i.e., do not depend
on the coordinate system. These invariants are:

• the trace Tr(σ) =
3∑

i=1

σii = σ1 +σ2 +σ3 of the matrix; it is called the bulk

stress and denoted by θ, and

• the trace of the square of this matrix Tr(σ2), where (σ2)ij =
3∑

k=1

σik · σkj .

The second invariant is thus equal to

Tr(σ2) =

3∑
i=1

3∑
j=1

σij · σji =

3∑
i=1

σ2
i .

When the stress is isotropic, i.e., σ1 = σ2 = σ3 =
1

3
· θ, then

Tr(σ2) = 3 · σ2
i = 3 ·

(
1

3
· θ
)2

=
1

3
· θ2.

So, usually, instead of the second invariant, engineers use the difference d be-
tween the second invariant and the corresponding isotropic value

d = Tr(σ2)− 1

3
· θ2 =

3∑
i=1

σ2
i −

1

3
·

(
3∑

i=1

σi

)2

.

One can check that this difference can be reformulated in a different form

d =
1

3
· ((σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2),

a form in which it is very clear that in the isotropic case, when all the principal
stresses are equal to each other, this difference is equal to 0. The difference
d is proportional to the square of the stresses. To make it easier to compare
numerical values of different invariant characteristics, in mechanics, usually,
instead of d, a different characteristic is used which is proportional to the square
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root of d (and which is, therefore, described in the same units as the principal
stresses):

τoct
def
=

1√
3
·
√
d =

1

3
·
√

(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2.

This characteristic is known as the octahedral shear stress.
A known inequality describes the relation between the two invariants: namely,

we have

τ2oct =
1

9
· (2σ2

1 + 2σ2
2 + 2σ2

3 − 2σ1 · σ2 − 2σ1 · σ3 − 2σ2 · σ3)

while

θ2 = (σ1 + σ2 + σ3)2 = σ2
1 + σ2

2 + σ2
3 + 2σ1 · σ2 + 2σ1 · σ3 + 2σ2 · σ3.

Thus, we always have τ2oct ≤
2

9
· θ2. So, we always have τoct ≤

√
2

3
· θ. Here,

√
2

3
≈ 0.47 < 0.5, thus the octahedral shear stress is less than a half of the bulk

stress.
The equality is attained only when exactly one of the three principal stresses

σi is different from 0, and the two others are zeros. On average, the ratio is
even smaller that half. To get a ballpark estimate of the average ratio, let us
assume that each principal stress σi is uniformly distributed on some interval
[0, σ], and that different principal stresses are independent. Then, the expected

value E[σ2
i ] is equal to

1

3
· σ2 and for i 6= j, we have

E[σi] · σj ] = E[σi] · E[σj ] =

(
1

2
· σ
)2

=
1

4
· σ2,

hence

E[θ2] = 3E[σ2
i ] + 6E[σi · σj ] = 3 · 1

3
· σ2 + 6 · 1

4
· σ2 =

5

2
· σ2

and similarly

E[τ2oct] =
1

9
·
(
6E[σ2

i ]− 6 · E[σi · σj ]
)

=
1

18
· σ2.

Thus, E[τ2oct] =
1

45
· E[θ2]. So, the mean squared value of the octahedral shear

stress τoct is equal to
1√
45
≈ 0.15 of the mean squared value of the bulk stress.

The modulus E depends on both invariants θ and τoct. The most empirically
accurate formula has the form

E = E(θ, τoct) = k′1 ·
(
θ

Pa
+ 1

)k′
2

·
(
τoct
Pa

+ 1

)k′
3

. (1)
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This formula was proposed in Ooi et al. [5], and in Mazari et al. [4], it was
shown to be the most adequate model for describing the elastic modulus.

Comment. In [1, 3], we provide a theoretical explanation for this formula.

Clay vs. granular soils. The parameters k′2 and k′3 depend only on the
material – e.g., whether it is clay or some type of granular soil. In contrast, the
parameter k′1 varies strongly even for the same material – e.g., for gravel, the
value of k′1 depends on how big the grains are, what is their density, etc.

Specifically (see, e.g., Section 5.4 “Mechanical Properties” of the official
document [7]):

• for fine-grained material like clay, k′2 is close to 0, and the most significant
nonlinear term corresponds to k′3 < 0; while

• for the granular material, i.e., for gravel, sand, or silt (coarse-grained)
soils with little or no clay content, the most significant nonlinear term
corresponds to k′2 > 0.

Formulation of the problem and what we do in this paper. The prob-
lem is that there seems to be no convincing explanation of the above-described
empirical relation between the type of the soil and the relative values of the co-
efficients k′2 and k′3 describing the nonlinearity of the corresponding mechanical
properties. In this paper, we show that such an explanation can be obtained if
we analyze the related geometric symmetries.

2 Symmetry-Based Geometric Analysis of the
Problem

General idea. We are interested in analyzing when perturbations affect the
mechanical properties of a system. The mechanical properties of the system are
largely determined by the system’s geometry, in particular, on its symmetries;
see, e.g., [2].

In general, if the perturbations have the same symmetry as the original
system, then the system retains its symmetry. For example, if we isotropically
squeeze a spherical rubber ball from all sides, it remains spherical – only its size
decreases. In such cases, the mechanical properties remain largely the same.

On the other hand, if perturbations do not have the same symmetry as the
system, this may change the system’s symmetry and thus, change the system’s
mechanical properties. For example, if we squeeze the spherical rubber call in
one direction, its shape changes from a sphere to an ellipsoid-like shape.

Let us apply this general idea to our case. In our case, the mechanical
properties of a system are described by the modulus E.

Clay is isotopic. Thus, if we apply isotropic pressure – i.e., squeeze it isotrop-
ically from all sides – its symmetry remains the same, and thus, its mechanical
properties should remain the same. In terms of the principal stresses, the case
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of an isotropic perturbation corresponds to σ1 = σ2 = σ3, i.e., to the case when
the octahedral shear stress τoct is equal to 0. So, if τoct = 0, then, no matter
what is the value of the overall stress θ, the mechanical properties should remain
the same, i.e., the modulus E should not change. For the modulus described by
the formula (1), this means that the modulus E(θ, 0) should not depend on θ.
Substituting τoct = 0 into the formula (1), we conclude that

E(θ, 0) = k′1 ·
(
θ

Pa
+ 1

)k′
2

.

Thus, the fact that the modulus E(θ, 0) does not depend on 0 means that we
must have k′2 = 0 – which is what we observe.

This is, of course, in the ideal case when the medium is perfectly isotropic.
In reality, real-life systems are only approximately isotropic, as a result of which
the coefficient k′2 is only approximately equal to 0 – which is exactly what we
observe.

In contrast, gravel is not isotropic, it consists of parts of irregular shape – at
best, of the elongated shape which is invariant with respect to rotations around
the corresponding axis. In this case, practically any perturbation will change
the system’s symmetry: even when we have a perturbation which has the same
symmetry as one of the granules, all other granules have a different symmetry.
Thus, we expect that the mechanical properties will change no matter what
perturbation we apply.

So, we expect that the value E described by the formula (1) will change
when we apply some stresses; in other words, we expect k′2 6= 0 and k′3 6= 0. As
we have mentioned earlier, the octahedral shear stress is, on average, almost an
order of magnitude smaller than the bulk stress. Thus, it is reasonable to expect
that for the granular material, the most significant nonlinear term is the term
corresponding to the bulk stress, i.e., the term corresponding to k′2 – which is
also exactly what we observe.

So, symmetries indeed explain the empirical difference between the mechan-
ical properties of fine-grained materials like clay and coarse-grained materials.

3 Remaining Open Problem

In this paper, we provided a qualitative explanation for the the empirical dif-
ference between the nonlinear mechanical properties of the roads built on clay
vs. granular soils. This may be a theoretically interesting result, but, honestly,
it does not help practitioners: all we do is explain a formula which they already
use. From the practical viewpoint, it is desirable to extend our qualitative anal-
ysis to a quantitative one, hopefully enabling us to estimate the values k′2 and
k′3 based on the geometry of the soil particles.
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